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Abstract

Caffeine, nicotine, ethanol and tetrahydrocannabinol (THC) are among the most prevalent and culturally accepted drugs in
western society. For example, in Europe and North America up to 90% of the adult population drinks coffee daily and,
although less prevalent, the other drugs are also used extensively by the population. Smoked tobacco, excessive alcohol
consumption and marijuana (cannabis) smoking are addictive and exhibit adverse health effects. These drugs are not
only common in the general population, but have also made their way into elite sports because of their purported
performance-altering potential. Only one of the drugs (i.e., caffeine) has enough scientific evidence indicating an ergogenic
effect. There is some preliminary evidence for nicotine as an ergogenic aid, but further study is required; cannabis and alco-
hol can exhibit ergogenic potential under specific circumstances but are in general believed to be ergolytic for sports per-
formance. These drugs are currently (THC, ethanol) or have been (caffeine) on the prohibited list of the World Anti-Doping
Agency or are being monitored (nicotine) due to their potential ergogenic or ergolytic effects. The aim of this brief review
is to evaluate the effects of caffeine, nicotine, ethanol and THC by: 1) examining evidence supporting the ergogenic or
ergolytic effects; 2) providing an overview of the mechanism(s) of action and physiological effects; and 3) where appropri-
ate, reviewing their impact as performance-altering aids used in recreational and elite sports.
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Introduction
Caffeine, nicotine, ethanol and tetrahydrocannabinol
(THC) are widely consumed substances in today’s society
[1,2]. Drugs such as smoked tobacco, excessive alcohol or
cannabis pose a serious problem for public health and the
health care system [3]. Further, these substances are also
related as they are or have been on the Prohibited List of
the World Anti-Doping Agency (WADA) or are moni-
tored due to their potential performance-altering effect
and misuse in sport [4]. It is therefore important to
characterize these substances with respect to their physio-
logical mode of action as well as their potential to alter
performance, as these substances are not only of signifi-
cant importance for the general public but also for com-
petitive athletes. The purpose of this brief review is to
provide an overview of the evidence supporting the ergo-
genic or ergolytic effects of the most prevalent drugs in
western society.
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Caffeine
Overview
Apart from water, tea and coffee are among the most
popular beverages worldwide. The main pharmacologic-
ally active substance in both is the purine alkaloid of the
xanthines class, 1,3,7,-trimethylxanthine or caffeine. Ac-
cording to European and North American statistics,
~90% of the adult population consider themselves as
daily coffee users with an average daily caffeine con-
sumption of about 200 mg or 2.4 mg/kg/day (about 2
cups of coffee) [5]. It is therefore considered the world’s
most widely consumed pharmacologically active sub-
stance. Caffeine is both water and fat soluble and is
quickly distributed in the body after absorption mainly
by the small intestine and the stomach with peaking
plasma levels after 15–120 min and a half-life of about
5–6 hours with individual variation [6]. Due to its
lipophilic nature, caffeine also crosses the blood–brain
barrier [7], and is metabolized by the liver into para-
xanthine, theophylline, and theobromine [8].
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Mechanism of action
Caffeine most likely exerts its performance enhancing
effect on the human body mainly by five mechanisms:

1. Antagonism of adenosine [9]. Due to its close
chemical resemblance of adenosine, caffeine blocks
adenosine receptors (mainly A1 and A2A receptor
subtypes), thereby competitively inhibiting its action
[10]. Caffeine can decrease cerebral blood flow [11]
as well as antagonize A1, A2A and A2B adenosine
receptors in blood vessels, thereby reducing
adenosine-mediated vasodilatation and consequently
decrease myocardial blood flow [12].

2. Increased fatty acid oxidation: increased lipolysis
leads to decreased reliance on glycogen use [13].
Caffeine switches the substrate preference from
glycogen to fat by increasing hormone sensitive
lipase (HSL) activity and inhibition of glycogen
phosphorylase activity [14].

3. Caffeine acts as a nonselective competitive inhibitor
of the phosphodiesterase enzymes [15].
Phosphodiesterases hydrolyze the phosphodiesterase
bond in molecules such as cyclic adenosine
monophosphate (cAMP), inhibiting the breakdown of
cAMP. cAMP activates lipolysis by activating HSL and
is an important molecule in the epinephrine cascade
[16]. It further activates protein kinase A, which in
turn can phosphorylate a number of enzymes involved
in glucose and lipid metabolism [17].

4. Increased post-exercise muscle glycogen accumula-
tion: enhanced recovery by increased rate of glyco-
gen resynthesis following exercise [18]. Battram
et al. reported that caffeine ingestion has no effect
on glycogen accumulation during recovery in recre-
ationally active individuals [19]. Pedersen et al.
recently reported that caffeine (8 mg/kg body
weight) co-ingested with carbohydrates (CHO)
increases rates of postexercise muscle glycogen
accumulation compared with consumption of CHO
alone in well-trained athletes after exercise-induced
glycogen depletion [20]. Although this issue needs
further study in different populations (untrained,
trained) and at different time points (during exercise
or recovery), caffeine added to postexercise CHO
feeding seems to have the potential to improve
glycogen resynthesis.

5. Mobilization of intracellular calcium: It has been
shown that caffeine can enhance calcium release
from the sarcoplasmic reticulum [21] and can also
inhibit its reuptake [22]. Via this mechanism,
caffeine can enhance contractile force during
submaximal contractions in habitual and
nonhabitual caffeine consumers [23]. Intracellular
calcium favors the activation of endothelial nitric
oxide synthase, which increases nitric oxide [24].
Some of the ergogenic effects of caffeine might
therefore as well be mediated partly by effecting the
neuromuscular system and increasing contractile
force [25]. There is, however, still controversy about
the translation of results from in vitro studies on
muscle preparations to caffeine dose and calcium
release in vivo (see below).

As for many pharmacological substances, there is gen-
erally more than one potential mechanism explaining
the ergogenic effects. This is also true for caffeine which
might affect both the central nervous system (CNS) and
skeletal muscle [26]. Although questionable, a potential
downside is that caffeine also has diuretic properties
which can exert ergolytic effects during prolonged en-
durance events [27]. Caffeine intake at very high doses
(>500–600 mg or four to seven cups per day) can cause
restlessness, tremor and tachycardia [28].

Effects on performance
Caffeine reduces fatigue and increases concentration and
alertness, and athletes regularly use it as an ergogenic
aid [29]. Caffeine-induced increases in performance have
been observed in aerobic as well as anaerobic sports
(for reviews, see [26,30,31]). Trained athletes seem to
benefit from a moderate dose of 5 mg/kg [32], however,
even lower doses of caffeine (1.0–2.0 mg/kg) may im-
prove performance [33]. Some groups found significantly
improved time trial performance [34] or maximal cycling
power [35], most likely related to a greater reliance on
fat metabolism and decreased neuromuscular fatigue, re-
spectively. Theophylline, a metabolite of caffeine, seems
to be even more effective in doing so [36]. The effect of
caffeine on fat oxidation, however, may only be significant
during lower exercise intensities and may be blocked at
higher intensities [37]. Spriet et al. [13] found that inges-
tion of a high dose of caffeine before exercise reduced
muscle glycogenolysis in the initial 15 min of exercise by
increasing free fatty acid (FFA) levels which inhibits
glycolysis and spares glycogen for later use. Caffeine’s
effect of inhibition of glycogen phosphorylase has also
been shown in vitro [14] as well as its effect on increasing
HSL activity [38]. The effect of caffeine on adipose trigly-
ceride lipase [39] has not been studied and warrants inves-
tigation. Following caffeine administration prior to and
after the onset of cycling, Ivy et al. [40] found that plasma
free fatty acid levels were increased 30% compared to
placebo. This action might be mediated by inhibition of
the enzyme phosphodiesterase, thereby yielding higher
levels of cAMP, which has been identified as important
molecule for glycogen metabolism and lipolysis
[41]. Phosphodiesterase inhibition has been observed
only at high concentrations [42]. When direct Fick
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measurements were applied, Graham et al. [43] did not
find altered CHO or fat metabolism, at least in the moni-
tored leg. Further research is needed to evaluate the effect
of caffeine on lipolysis, especially during higher exercise
intensities.
Augmented post-exercise recovery by increased rates

of muscle glycogen resynthesis has been observed
[18,20]. Pedersen et al. [20] found higher rates of muscle
glycogen accumulation after the co-ingestion of caffeine
with CHO during recovery in highly trained subjects.
This might, at least in part, be mediated by the activa-
tion of AMP-activated protein kinase (AMPK) [44] as it
is involved in the translocation of glucose transporter 4
(GLUT4) to the plasma membrane. This mechanism
enables the cell to take up glucose from the plasma and
store it as glycogen. Not only does caffeine impact
endurance, it has also been reported to benefit cognitive
function and fine motor skills [45]. While the perform-
ance enhancing effects of caffeine in moderate-to-highly
trained endurance athletes are quite clear and well docu-
mented, its effects on anaerobic, high-intensity tasks
are less well investigated. Whereas caffeine supplementa-
tion did not yield significant performance increases
in a Wingate test in untrained subjects [46,47],
Mora-Rodriguez et al. [48] report that caffeine ingestion of
3 mg/kg could counter reductions in maximum dynamic
strength and muscle power output on the morning (2.5–
7.0%) thereby increasing muscle performance to the levels
found in the afternoon. Especially with regard to anaerobic
performance caffeine’s adenosine receptor blocking effect
in the CNS may be important [30]. A possible explanation
for the diverging effect of caffeine on anaerobic perform-
ance is that caffeine seems to benefit trained athletes who
show specific physiological adaptations whereas perform-
ance gains in untrained subjects might be lost or masked
by a high variability in performance.
It has been shown that coffee, by containing phenolic

compounds such as chlorogenic acids, elicits metabolic ef-
fects independent of caffeine [49]. These compounds may
have the potential to antagonize the physiological re-
sponses of caffeine. The question therefore remains
whether ingesting the same amount of caffeine via a food
source (e.g. energy bar or coffee) is as effective as ingesting
isolated caffeine in the form of a tablet. As mentioned
above, the performance enhancing effect of caffeine is very
clear. Only a few studies, however, have shown a positive
effect of coffee on performance. Whereas some studies
found enhanced performance after coffee consumption
[50-53], others did not [49,54,55].
One of the earlier works by Costill et al. [53] reported

increases in time trial performance of competitive cy-
clists only in the coffee trial group (containing 330 mg
caffeine 1 h prior to exercise) but not in the decaffein-
ated coffee trial.
Graham et al. [49] studied exercise endurance in run-
ners after ingestions of a caffeine (4.45 mg/kg BW) or
placebo capsule with water or either decaffeinated coffee,
decaffeinated coffee with added caffeine or regular cof-
fee. The authors found that only caffeine significantly
improved running time to exhaustion at 75% VO2max

but neither did regular coffee or decaffeinated coffee
plus caffeine. Based on these results, the authors specu-
lated that some component(s) in coffee possibly interfere
with the ergogenic response of caffeine alone.
This is in opposition to Hodgson et al. [52] who

looked at time trial performance in trained subjects after
administration of caffeine (5 mg caffeine/kg BW), coffee
(5 mg caffeine/kg BW), decaffeinated coffee and placebo
one hour prior to exercise. The authors report similar
significant increases of ~5% in time trial performance in
both the caffeine and the coffee supplemented group
with no effects in the decaf or placebo group. The au-
thors conclude that coffee consumed 1 h prior to exer-
cise, at a high caffeine dose improved performance to
the same extent as caffeine.
One reason for the disparity of the two studies men-

tioned above might be the different performance tests
used. Whereas Graham et al. used a time to exhaustion
test which reportedly can exhibit a coefficient of variation
as high as ~27% [56], Hodgson et al. used a time trial
which have been shown to be more reproducible. It has
also been speculated by Hodgson et al. [52] that due to
lower statistical power, Graham et al. [49] were not able to
detect a difference between caffeine and coffee ingestion
on performance. At this point, both coffee and caffeine ex-
hibit a performance enhancing effect. Further research will
hopefully extend our understanding on this issue.
Another reason for the widespread use of caffeine

within the exercise community might be its small but
significant analgesic effect [57], possibly mediated by
augmenting plasma endorphin concentrations [58]. It is
also established that caffeine reduces the rate of per-
ceived exertion during exercise [59], suggesting that ath-
letes are able to sustain higher intensities but do not
perceive this effort to be different from placebo
conditions.
Some studies used caffeine-naïve whereas others used

caffeine-habituated subjects. There seems to be a higher
increase in plasma adrenalin in caffeine-naïves compared
to caffeine habituated subjects after caffeine ingestion [60].
However, no differences between habitual caffeine intake
and 1500 m running performance [51] or force of contrac-
tion [23] could be observed. For both caffeine-naïve as
well as caffeine-habituated subjects, moderate to high
doses of caffeine are ergogenic during prolonged moderate
intensity exercise [61]. Although there is clearly the need
to study caffeine habituation further, the differences be-
tween users and non-users do not seem to be major.



Table 1 Summary of the effects of caffeine on
performance

Caffeine

WADA status: now being monitored (stimulants - in competition
only), banned from 1962 to 1972 and again from 1984 to 2003 at

urinary caffeine concentrations >12 μg/ml

Acute effect Effect on
performance

Caffeine dose Reference

Greater reliance
on fat
metabolism;
increased FFAs;
lower respiratory
exchange ratio
(RER)

Increased time
trial performance

6 mg/kg body
mass

Mc
Naughton
et al. [34]

Counteract
central fatigue,
directed effect on
the CNS

3% PMAX
increase, increase
in voluntary
activation,
maintenance of
MVC

6 mg/kg body
mass

Del Coso
et al. [35]

No clear
mechanism; effect
on CNS (greater
motor unit
recruitment and
altered
neurotransmitter
function) or direct
effect on skeletal
muscle

Enhanced time
trial performance

6 mg/kg caffeine
1 h pre-exercise
and ~1.5 mg/kg
after 2 h of
exercise

Cox et al.
[33]

No mechanism No significant 1.5 or 3 mg/kg Desbrow
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WADA status
From 1962 to 1972 and again from 1984 to 2003 caffeine
was on the WADA banned list, with a concentra-
tion >12 μg/ml in the urine considered as doping.
Caffeine has been demonstrated to be ergogenic at doses
lower than those doses that result in a urine concentra-
tion of 12 μg/ml, and higher doses appear to exhibit no
additional performance-enhancing effect [17]. During
the second banned period, many athletes tested positive
for caffeine. The sanctions ranged from warnings up to
2 year suspensions (maximum penalty, usually only
2–6 months). Since 2004, caffeine has been removed
from the prohibited list, however, it is still part of
WADAs monitoring program (stimulants - in competi-
tion only) in order to monitor the possible potential of
misuse in sport. According to WADA, one of the rea-
sons caffeine was removed from the Prohibited List was
that many experts believe it to be ubiquitous in bever-
ages and food and that having a threshold might lead to
athletes being sanctioned for social or dietary consump-
tion of caffeine [62]. Furthermore, caffeine is metabo-
lized at very different rates in individuals [63] and hence
urinary concentrations can vary considerably and do not
always correlate to the dose ingested. In addition, caf-
feine is added to a wide range of popular food products
[64] such as coffee, tea, energy drinks and bars, and
chocolate.
proposed effects observed
on performance

body mass of
caffeine 1 h
before cycling

et al. [65]

Direct effect on
skeletal muscle;
interaction with
ryanodine
receptor;
potentiated
calcium release
from the SR

Increase in
contraction force
at low frequency
stimulation
(20 Hz)

6 mg/kg 100 min
before
stimulation

Tarnopolsky
et al. [23]

Blunted pain
response

Significantly
higher reps
during leg press
set 3 with
caffeine, same
RPE

6 mg/kg 1 h prior
to 10-RM bench
and leg press

Green et al.
[66]
Summary
In summary, caffeine, even at physiological doses (3–6
mg/kg), as well as coffee are proven ergogenic aids and as
such – in most exercise situations, especially in endurance-
type events – clearly work-enhancing [26]. It most likely
has a peripheral effect targeting skeletal muscle metabol-
ism as well as a central effect targeting the brain to en-
hance performance, especially during endurance events
(see Table 1). Also for anaerobic tasks, the effect of caffeine
on the CNS might be most relevant. Further, post-exercise
caffeine intake seems to benefit recovery be increasing
rates of glycogen resynthesis.
Glycogen-sparing
effect & increased
utilization of
intramuscular TGs
and plasma FFAs
with caffeine

Increased cycling
time trial
performance with
caffeine

9 mg/kg body
mass 1 h before
exercise

Spriet et al.
[13]
Nicotine

Overview
Nicotine or 3-(1-methyl-2-pyrrolidinyl)pyridine is a nat-
urally occurring alkaloid and one of the most widely
used psychostimulants in the world [67]. Cigarettes are
the most common source of nicotine. Smoked tobacco
contains additional harmful constituents and chemicals,
which have detrimental effects on the respiratory
system [68]. Due to worldwide smoking restrictions, the
tobacco industry has developed a number of smokeless
alternatives, often containing much higher nicotine con-
centrations than regular cigarettes. These represent an
alternative for some athletes as they do not pose a risk
of adversely affecting the respiratory system.

Mechanism of action
In general, nicotine has a psychostimulatory effect on
the CNS at low doses via enhancing the actions of nor-
epinephrine and dopamine in the brain [69]. At higher
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doses, however, nicotine enhances the effect of serotonin
and opiate activity, exerting a calming and depressing
effect [70]. Nicotine-induced stimulation of the sympa-
thetic nervous system leads to increased heart rate and
blood pressure [71], cardiac stroke volume and output
[72] and coronary blood flow [73]. Although the results
are conflicting and some authors report increases in
cutaneous blood flow and skin temperature [74], others
report a decrease in cutaneous blood flow and subse-
quent decline in skin temperature associated with
nicotine consumption [75,76]. These differences in cuta-
neous blood flow are possibly related to differences in
nicotine administration. Both snus and nicotine gums
enable nicotine to diffuse across the mucous membranes
and are taken up by the bloodstream or, when inhaled,
diffuses across the alveolar membrane of the alveoli, and
enters the bloodstream. Although the amount of nico-
tine inhaled is lower than with conventional cigarettes,
the use of electronic cigarettes is becoming more and
more popular [77]. However, the amount taken up by
smokeless tobacco users tends to be much greater than
by smoking. Once in the bloodstream, nicotine is quickly
(within seconds) delivered to the brain, where it inter-
acts with neural nicotinic acetylcholine receptors
(nAChRs). It is metabolized by the liver cytochrome
P450 enzyme system and has a half-life of approximately
2 hours [78]. Upon binding of ACh or its exogenous lig-
and nicotine, the ion channel is opened and causes an
influx of sodium and calcium (Ca2+). This local increase
in intracellular Ca2+ can alter cellular functions [79]. A
mechanism termed Ca2+-induced Ca2+ release can fur-
ther boost intracellular calcium upon activation of
nAChR [80]. In vitro experiments using human neutro-
phils showed a dose-dependent rise in intracellular Ca2+

levels of 700% over baseline at a concentration of 10-2 M
nicotine [81]. In numerous pathways, Ca2+ acts as an
intracellular messenger, setting the stage for nAChRs as
potent candidates to influence a variety of Ca2+-dependent
neuronal processes, such as neurotransmitter release, syn-
aptic plasticity or gene transcription.

Effect on performance
While it is clear that smoking can lead to the develop-
ment of respiratory, cardiovascular, and skin diseases as
well as a number of tobacco-related cancers [82] there
are other forms of application such as the use of alterna-
tive smokeless tobacco (snus), which is gaining popular-
ity among athletes [83] as it bypasses the respiratory
system. Snus and cigarette consumers show similar peak
blood nicotine levels after use with a tendency for higher
cotinine levels in the former [84].
Nicotine activates the sympathoadrenal system, which

leads to increased heart rate, contractility, vasoconstriction
and a rise in blood pressure and the level of circulating
catecholamines during light exercise [85]. Nicotine also in-
creases muscle blood flow [86] and lipolysis due to en-
hanced circulating levels of norepinephrine and
epinephrine as well as direct action on nicotinic choliner-
gic receptors in adipose tissue [87]. The effects exerted by
nicotine may be beneficial in a wide variety of sports and
it is suggested that nicotine is abused by athletes [83]. Ac-
cording to Marclay [88], cumulative exposure to nicotine
metabolites were found in 26% - 56% of urine samples that
were subjected to screening for tobacco alkaloids. After
correcting for exposure to second-hand smoke, 15% of the
athletes were considered active nicotine consumers.
Among athletes, this is high considering the WHO’s 25%
worldwide estimate of smoking prevalence. It can be hy-
pothesized that the metabolites stem mostly from smoke-
less tobacco due to the adverse effects of conventional
cigarettes for athletes, which most severely affects athletes
engaging in endurance type sports [89].
Further, a large number of human and animal studies

have found nicotine-induced improvements in several
aspects of cognitive function, including learning and
memory [90], reaction time [91] and fine motor abilities
(see Table 2). Studies addressing the question of a direct
performance enhancing effect of nicotine are rare but
will be summarized here. Sports most affected include
ice hockey, skiing, biathlon, bobsleigh, skating, football,
basketball, volleyball, rugby, American football, wrestling
and gymnastics. These sports seem to gain performance
benefits from the stimulating effect of nicotine as evi-
dent from the use of other prohibited stimulants accord-
ing to the Anti-Doping Database [92]. Muendel et al.
[93] found a 17% improvement in time to exhaustion
after nicotine patch application compared to a placebo
without affecting cardiovascular and respiratory parame-
ters or substrate metabolism. In this sense, nicotine
seems to exert similar effects as caffeine by delaying the
development of central fatigue as impaired central drive
is an important factor contributing to fatigue during ex-
ercise. To date, no improvement on anaerobic perform-
ance (Wingate test) has been reported (see Table 2).
It is important to note that, compared to rest, exercise

can lead to increased drug absorption from transdermal
nicotine patches, possibly due to exercise-induced in-
crease in peripheral blood flow at the site of the trans-
dermal patch. Lenz et al. [99] report increased plasma
nicotine levels and toxicity due to increased drug ab-
sorption during physical exercise. To prevent undesir-
able side effects, health professionals, trainers and
coaches should therefore be aware of proper transdermal
patch use, particularly while exercising. Athletes are en-
couraged to inform their physician about their exercise
routine before beginning transdermal patch use. Athletes
should further be familiar with signs and symptoms of
drug toxicity related to the medication contained in the



Table 2 Summary of the effects of nicotine on
performance

Nicotine

WADA status: in order to detect potential patterns of abuse,
nicotine has been placed on WADA’s 2012 monitoring program

Acute effect Effect on
performance

Nicotine
dose

Reference

Likely delayed
development of
(central) fatigue by
nicotine receptor
activation and/or
dopaminergic
pathways; no
evidence of
altered substrate
metabolism or
cardiorespiratory
effects

17% improvement in
time to exhaustion

7 mg
nicotine
patch per 24
hours

Mundel
et al. [93]

No mechanism
proposed

No effect on anaerobic
performance
(Wingate test)

nicotine gum Meier [94]

Unclear Improvement in the
degree in a real-life
motor task, i.e. hand-
writing (more pro-
nounced in smokers
than non-smokers)

2 and
(4 mg)
nicotine gum

Tucha et al.
[95]

No mechanism
proposed

No effect on cognitive
functioning

2 and 4 mg
nicotine gum

Heishman
et al. [96]

No mechanism
proposed

No effect on speed
and accuracy of motor
activity among non-
smokers (but improve-
ments in smokers)

2 and 4 mg
nicotine gum

Hindmarch
et al. [97]

Likely by the
action of nicotine
on cholinergic
pathways

Positive effects on fine
motor abilities like
finger tapping

2 mg
intranasal

West et al.
[98]
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transdermal patch and consult their physician if signs or
symptoms arise. Reducing exercise intensity and dur-
ation for the first 1–2 weeks until potential side effects
are known might also help to minimize toxicity. To re-
duce increased exercise-induced drug absorption, ath-
letes are encouraged to avoid exercising in extreme
environmental and temperature conditions, wear appro-
priate breathable sports garments and drink plenty of
fluids to prevent dehydration [99].
Additionally, although nicotine may have ergogenic

potential, it is also highly addictive, reportedly as addict-
ive as heroin and cocaine [100]. Therefore, detrimental
effects on motor performance can be altered after a
short abstinence duration. Burtscher et al. [101] noted
that motor performance declines in heavy smokers after
a short period of abstinence appears, this decline being
similar to the motor symptoms of Parkinsonism. The ab-
stinence symptoms are ameliorated by cigarette smok-
ing. It is important to consider the concerning addictive
potential with following deterioration of motor perform-
ance upon abstinence. Interestingly, however, it was
noted that moderate and vigorous exercise led to signifi-
cant reductions of the desire to smoke among abstaining
smokers, possibly via reductions in cortisol [102]. A
recent meta-analysis showed that exercise has the poten-
tial to acutely reduce cigarette cravings and could there-
fore be a promising strategy to attenuate withdrawal
symptoms in smokers [103]. It is also important to men-
tion that the vasoconstriction mediated by nicotine
could limit exercise performance in a hot environment.
As skin blood flow increases during exercise to transfer
heat impaired nicotine-induced skin blood flow may be
ergolytic.
A recent meta-analysis conducted by Heishman and

colleagues clearly suggests significant effects of nicotine
on fine motor abilities, including attention and memory
[104]. Participants of the studies included in the meta-
analysis were mainly nonsmokers, therefore avoiding
confounding of nicotine withdrawal. Considering the im-
portance of cognition in sport, such an optimization of
neurobiological function in our view seems to be benefi-
cial for a variety of sports such as sport games or track
and field. Finally, nicotine’s effect on increased pain tol-
erance might be of advantage in a wide variety of sports
[105]. More research will hopefully fill the gap to further
evaluate nicotine’s effects on exercise performance.
WADA status
Based on observations of possible extensive smokeless
nicotine consumption among certain athletes [106], a
recent report by Marclay et al. [88] from the Swiss
Laboratory for Doping Analyses in Lausanne caught the
interest of the sporting community and the WADA.
Thereafter, discussions within WADA took place in the
List Committee which is a subcommittee of the Health,
Medical and Research Committee. Dr. Arne Ljungqvist,
chairman of the Health, Medical and Research Commit-
tee, reports that WADA wants to know more about the
use of nicotine in sports. Once the prevalence is known,
WADA will discuss a potential ban. Ljungqvist also re-
ports that the IOC has already monitored nicotine as far
back as 30 years ago in collaboration with the anti-
doping laboratory in Cologne, and did not report abusea.
Since this time, smokeless tobacco and other nicotine
delivery systems that might be appealing to the sporting
community have entered the market. As a reaction,
WADA has included nicotine, categorized as a stimulant
and ‘in-competition only’ in its 2013 monitoring pro-
gram [4]. For this purpose, WADA [4] reports: “WADA,
in consultation with signatories and governments, shall
establish a monitoring program regarding substances
which are not on the Prohibited List, but which WADA
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wishes to monitor in order to detect patterns of misuse
in sport”.

Detection
Nicotine use can be detected in urine samples based on
its major metabolites (cotinine, trans-3-hydroxycotinine,
nicotine-N0-oxide and cotinine-N-oxide) and tobacco
alkaloids (anabasine, anatabine and nornicotine) which
can be used as an indicator of a person’s exposure to
nicotine as suggested by Marclay et al. [88].

Summary
In summary, nicotine seems to have ergogenic potential.
Athletes appear to benefit from activation of the sym-
pathoadrenal system with increased catecholamine re-
lease and subsequent increases in muscle blood flow and
lipolysis. One component of nicotine action seems to act
via a central mechanism (by nicotine receptor activation
and/or dopaminergic pathways; see Table 2). There is
evidence for the abuse of nicotine by athletes. Although
the sale of snus is illegal within the European Union
[107], anecdotal observations by coaches and research
from Scandinavia shows a high prevalence of snus use
among athletes [83,108]. It might therefore be reason-
able to assume that smoking cigarettes will not be an
issue for athletes. Instead, as there are several nicotine
alternatives many of the negative effects of cigarettes can
be circumvented.

Ethanol (alcohol)
Overview
Alcohol (ethanol; here referred to as alcohol or EtOH) is
and has been one the most commonly consumed and
abused drugs for a substantial period in human history.
Alcohol is a dependence-producing drug which affects a
host of organ systems and one that increases the risk of
morbidity and mortality from different diseases when
abused [109]. Indeed, some authors have suggested that
alcohol is harmful similar to drugs such as heroin or
cocaine and that excessive alcohol consumption is a
serious world-wide health risk [110]. Although the detri-
mental effects of alcohol on human physiology are well
known, even elite athletes consume alcohol. When look-
ing at the effects of alcohol on overall health, it is,
however, important to distinguish between chronic,
moderate alcohol consumption versus alcohol abuse.
Alcohol consumption and sport have been inextricably

linked since ancient times when alcohol was considered
the elixir of life [111]. To some extent that may be true,
given that a substantial body of epidemiological evidence
shows that moderate ingestion of alcohol may reduce
the risk of cardiovascular disease [112]. The link be-
tween alcohol consumption and mortality is subject to a
J-shaped curve i.e. improved longevity with moderate
consumption with increasing intake resulting in greater
mortality risk [113]. Indeed, dietary guidelines from the
American Heart Association recommend moderation of
alcohol intake as it has been associated with a lower risk
of cardiovascular events [112].
Alcohol use is fairly widespread among the athletic

population with 88% of intercollegiate American athletes
reporting the use of alcohol [114]. It is also noteworthy
that many athletes consume alcohol prior to sports
events [115]. However, it is important to note that scien-
tific evidence suggests that the consumption of alcohol
has some detrimental effects on exercise performance
[109,114]. It is fairly obvious that it is unlikely for com-
petitive athletes to be alcohol abusers and most perform-
ance studies have focused on the acute ergolytic effects
of EtOH consumption. The chronic studies merely
reinforce the point that EtOH is profoundly ergolytic in
the long term setting. They also serve to reinforce that
chronic EtOH use can be toxic to cardiac and skeletal
muscle.

Mechanism of action
Chronic alcohol abuse has significant detrimental effects
on the human cardiac muscle [116] and one of the puta-
tive mechanisms via which alcohol may induce cardiac
dysfunction is through the induction of increased oxida-
tive stress. Interestingly, exercise training blunted the
oxidative damage observed in a rat model of chronic al-
cohol consumption [117]. The authors suggest that exer-
cise training results in an up-regulation of cardiac
antioxidants which may in turn reduce the deleterious
effects of chronic alcohol induced oxidative stress.
Acute alcohol use can also have effects on cardiovas-

cular determinants of exercise performance. Lang et al.
[118] examined the effects of acute alcohol administra-
tion on left ventricular contractility using echocar-
diography and found that alcohol had a significant
depressant effect on the myocardium. Specifically, acute
alcohol consumption resulted in a decreased end-
systolic pressure-dimension slope and reduced velocity
of myocardial fiber shortening [118].
Alcohol has significant effects on skeletal muscle sub-

strate utilization during exercise. Specifically, it has been
demonstrated that alcohol consumption decreases glu-
cose and amino acid utilization, which can have adverse
effects on energy supply to exercising muscle [119-121].
Ethanol consumption induces hypoglycemia and de-
creases glucose appearance in plasma by decreasing hep-
atic gluconeogenesis [122]. Ethanol administration has
been shown to worsen skeletal muscle determinants of
exercise performance such as muscle capillary density
and muscle fiber cross-sectional area [121]. It was shown
in vitro that alcohol can inhibit sarcolemmal calcium
channel actions thereby potentially impair excitation-
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contraction coupling and diminishing muscular per-
formance [123].
Muscle capillary density is closely related to the oxida-

tive capacity of skeletal muscle [124]. Greater capillary
density also allows for a greater surface area for gas ex-
change and delivery of metabolic substrates. Long term al-
cohol consumption is associated with the development of
alcoholic myopathy which is characterized by a reduction
in skeletal muscle capillarity [125]. Exercise training, how-
ever, appears to attenuate these adverse changes [126].
Epidemiological data suggest that moderate alcohol con-

sumption is associated with many salutary changes in
blood coagulation and fibrinolysis. However, compelling
experimental evidence is lacking and often conflicting
[109]. Alcohol can also lead to significant post-exercise
perturbations in levels of clotting factors. Moderate post-
exercise alcohol consumption resulted in significantly
elevated levels of Factor VIII at 5 and 22 hours during
the post-exercise milieu [127]. Both circulating catechol-
amine and vasopressin levels have been implicated in up-
regulation of Factor VIII [109]. These factors in turn, have
been implicated in the pathogenesis of atherosclerosis in
prospective studies [128].
Alcohol and exercise may interact with each other to

induce disorders in platelet aggregation which are asso-
ciated with an elevated risk of cardiovascular and cere-
brovascular events. Alcohol intoxication has been shown
to be linked to cerebrovascular infarctions in a few case-
control studies [129,130]. However, the exact patho-
logical mechanisms of the same are currently unknown.
Alcohol consumption following athletic participation

is commonly observed and may be associated with disor-
ders in platelet aggregation. El-sayed et al. [131] demon-
strated that alcohol ingestion following exercise was
associated with a marked increase in platelet count
1-hour following exercise. Platelet aggregation induced
by adenosine diphosphate was found to be reduced
when exercise was followed by alcohol consumption
[131]. Thus, it appears that ingestion of a moderate
quantity of alcohol is associated with delayed recovery of
platelet aggregation. It is important to note however,
that the performance impact of ethanol consumption
mediated post-exercise coagulopathy is unknown.
Acute alcohol consumption is associated with the de-

terioration of psychomotor skills. A significant difference
exists in injury rates between drinkers and non-drinkers
in athletic populations. Athletes that consume alcohol at
least once a week have almost a 2-fold higher risk of in-
jury compared to non-drinkers and this elevated injury
rate holds true for the majority of sports examined
[114]. The exact mechanisms that may be responsible
for the elevated risk of injury are unknown.
Alcohol may also interfere with the body’s ability to re-

cover from injury. Barnes et al. [132] examined the
effects of 1 g/kg body weight alcohol consumption on
recovery from eccentric exercise-induced muscle injury.
The authors measured peak and average peak isokinetic
and isometric torque produced by the quadriceps. Alco-
hol consumption was associated with significantly
greater decreases in torque production (40-44%) 36 hours
into recovery. The authors concluded that the consump-
tion of a moderate amount of alcohol after damaging ex-
ercise magnified the loss of muscle force production
potential.
Finally, there is some evidence to suggest that chronic

alcohol consumption may result in a positive energy bal-
ance and a potentially obesogenic state. Tremblay et al.
[133] reported that chronic alcohol consumption did not
result in a reduction in lipid intake and that a dietary
regimen that provided a large fraction of energy in the
form of alcohol increased the risk for a positive energy
balance in a free-living state. It appears that alcohol may
have a fat-sparing effect [134] similar to that of carbohy-
drates and may cause fat gain. Suter et al. [135] sug-
gested that alcohol could result in excess body fat gain
especially in the upper body. There is some evidence to
suggest that obese individuals may be more susceptible
to weight gain and the hyperlipidemic effects of alcohol
consumption as compared to lean individuals [136]. This
is in contrast to epidemiological studies that report a
negative association between alcohol consumption and
adiposity [137]. This may be explained by the induction of
unregulated futile metabolic cycles that appear to signifi-
cantly aid in the disposal of excess calories [138]. In gen-
eral, it appears that the effects of alcohol on body weight
are controversial and it is likely that moderate consump-
tion of alcohol that replaces calories from carbohydrates
and fat is unlikely to result in weight gain [139].

Effects on performance
Alcohol has direct and demonstrable effects on athletic
performance which may be due to its cardiovascular
effects. McNaughton et al. [140] demonstrated signifi-
cant ergolytic effects in short and middle distance
runners. The adverse effects were most prominent in
events that were more dependent upon aerobic capacity
(i.e. 800 m and 1500 m). However there were no adverse
effects observed in the 100 m run. Similarly, Kendrick
et al. [141] demonstrated a significant impairment in
60-minute treadmill time trial performance in trained
athletes following alcohol ingestion. Heart rate and VO2

were significantly elevated in subjects after alcohol
ingestion and only 1 out of 4 subjects could complete
the run. This may be due, in part, to the significant
hypoglycemia that the subjects experienced at the 60 mi-
nute time point. Acute alcohol consumption may also
result in small but significant reductions in sustained
power output. Lecoultre et al. [142] demonstrated that
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acute ethanol ingestion resulted in a ~4% reduction in
average cycling power output during a 60 minute time-
trial. However, the detrimental effect of alcohol on aer-
obic performance seems to be dose dependent with a
threshold of 20 mmol/L, upon which the effect becomes
significant [143]. Consumption of alcohol 24 hours prior
to exercise has also been shown to reduce aerobic per-
formance by 11% [114]. Some studies have failed to
show reductions in exercise performance following alco-
hol consumption [144,145]. However, this may be due to
limitations in their experimental design as well as type
of exercise used. For instance, the lack of ergolytic
effects on exercise performance during bicycle ergom-
eter testing may be due to the fact that using a station-
ary bicycle ergometer does not place significant motor
coordination demands as compared to running.
Alcohol can also impair recovery following exercise. It

has been shown that alcohol can impair glycogen resyn-
thesis after prolonged cycling [146]. More importantly,
alcohol seems to interfere with protein synthesis, most
likely by suppressing the mTOR pathway, which is
critical to facilitate repair and hypertrophy following
strength training [147].
Although alcohol seems to have an overall ergolytic

effect on exercise performance, a well-known athlete re-
portedly consumed alcohol before a ski downhill compe-
tition [148]. This is potentially a dangerous precedent
especially since alcohol has significant effects on execu-
tive functions such as judgment and decision making
while also having significant adverse effects on motor
control and coordination. This has to be considered in
sports requiring a high level of boldness (downhill ski-
ing, downhill mountain biking) and may have implica-
tions for pre-participation testing. In addition, the effects
of an alcohol-induced hangover are poorly quantified
and as such are relatively unknown and subject to fur-
ther investigation in humans.
Table 3 Summary of the effects of alcohol on performance

Alcoh

WADA status: alcohol is prohibited by WADA in competition only. T
banned in the following sports: aeronautics (FAI), archery (FITA), auto

(UIM

Acute effect Chronic effect

Reduced left ventricular contractility Increased left ventricular
dimensions and worsened
left ventricular dysfunction

No mechanism proposed; decreased
performance possibly due to reduced
myocardial contractility and reduced lung
ventilation

Hypoglycemia at 60-minute time-point

No mechanism proposed.
WADA status
Alcohol is prohibited in-competition only and it is pro-
hibited in the following sports: aeronautic, archery, auto-
mobile, karate, motorcycling and powerboating. Until
2010, modern pentathlon was also included in this list.

Detection
Detection is conducted by breath or blood analysis. The
limit (blood tests) eligible for a doping violation is 0.10
g/L.

Summary
Alcohol is the most commonly consumed drug in athletic
communities. The American College of Sports Medicine
(ACSM) concludes in its position stand that alcohol con-
sumption adversely affects psychomotor skills and exercise
performance while resulting in minimal reductions in max-
imal oxygen consumption (see also Table 3). The ACSM
also recommends that if an athlete must consume alcohol,
that they should refrain from alcohol consumption for at
least 48 hours prior to competition. Chronic alcohol abuse
is associated with significant impairments in cardiac and
skeletal muscle. It also slows post-exercise recovery by inhi-
biting protein synthesis. Thus, alcohol is a uniformly ergo-
lytic agent that has significant detrimental effects on
exercise performance and that use of the same during com-
petitive activity should be minimized for athlete safety and
so as to maximize athletic performance.

Tetrahydrocannabinol
Overview
Cannabis (Cannabis sativa) is known for its widespread
use worldwide. In total, more than 400 different com-
pounds, distributed by 18 chemical groups, including its
most active substance Δ9-THC have been detected in
different species of cannabis plants. Consumption of
THC-containing cannabis products, such as marijuana
ol

he doping violation threshold is 0.10 g/L. As of 2013, alcohol is
mobile (FIA), karate (WKF), motorcycling (FIM) and powerboating
)

Effect on performance EtOH Dose Reference

Negative effects
on cardiac output

1.15 g/kg body
weight

Delgado
et al. [149]

Increased 800 m-1500 m
run times

0.05 – 0.1 mg/mL
blood alcohol
concentration

McNaughton
et al. [140]

Reduced 60-min,
treadmill time-trial performance

25 ml in 150 ml
grapefruit juice

Kendrick
et al. [141]

Reductions in sustained power
output during cycling times trials.

0.5 ml/kg FFM Lecoulre
et al. [142]
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(herbal cannabis) and hashish (resinous cannabis) are
commonly consumed in the form of cigarettes or even
in small pipes. In addition, dronabinol, a THC synthetic
product, has been approved in many countries to treat
medical conditions such as HIV and cancer. The wide-
spread popularity of use of substances derived from can-
nabis, such as marijuana among young athletes has led
to its high detection frequency. In 2012, 7.6 million indi-
viduals 12 years of age or older used marijuana on 20 or
more days in the past month [150].

Mechanism of action
The structure of THC was described long before its re-
ceptors, CB1 and CB2 were discovered. CB1, which has
been primarily found in the CNS, likely explains the cen-
tral psychotropic effects of marijuana [151]. CB2 recep-
tors, on the other hand, are mainly found in sensory
tissue mediating an analgesic effect [152]. Anandamide,
an endogenous ligand binds to these receptors. Anande-
mide, however, appears to also signal via other receptors
than CB1 and CB2. Future studies should investigate the
effects of exercise on the cannabinoid receptor system
and how this is modulated by marijuana use. Numerous
cannabimimetics (cannabis receptor agonists) are being
developed that have similar pharmacologic effects but
limited negative side effects. However, illicit cannabimi-
metics such as Spice and K2 (synthetic cannabis) with
dangerous side effects are on the rise, which is a con-
cerning issue [153].

Effects on performance
The ergogenic effects of marijuana are questionable, as
its performance enhancing effect, if any, has yet to be
established. Along these lines, very few studies have
tested the effects of marijuana on performance. One of
the first studies to evaluate the effects of marijuana
smoking on exercise performance was performed by
Steadward and Singh [154], who tested the effects of
marijuana smoking compared to placebo on several indi-
ces of exercise performance. Resting heart rate and both
systolic and diastolic blood pressure were significantly
elevated at rest after marijuana consumption compared
to both control and placebo. Although there was no sig-
nificant decrease in grip strength, physical work capacity
at a heart rate of 170 decreased by 25% compared to pla-
cebo. Renaud and Cormier [155] tested subjects 10 min
after smoking a marijuana cigarette (containing 1.7% of
Δ9-THC) of 7 mg/kg of body weight, and noted a slight,
but significant decrease in cycle ergometry time to ex-
haustion. Avakian et al. [156] demonstrated that double-
blind administration of marijuana as 7.5 mg of Δ9-THC
or placebo did not affect blood pressure, ventilation or
oxygen uptake during submaximal exercise (15 min at
50% of Vo2max), however did increase heart rate and the
rate-pressure product at rest and during both exercise
and recovery. Tashkin et al. [157] hypothesized that the
decrease in exercise performance may be due to its
chronotropic effect leading to achievement of maximum
heart rate at reduced workloads. Furthermore, detrimen-
tal effects on other aspects of performance have also
been demonstrated. When subjects were acutely given
THC orally (215 µg/kg) acutely, significant deficits in gen-
eral performance, standing steadiness, reaction time and
psychomotor performance were observed over a 5 hour
period post-ingestion [158]. Interestingly, in a case report
[159], it was documented that in a patient with asthma, a
condition characterized by bronchoconstriction, smoking
marijuana prior to exercise testing led to bronchodilation
and no defect in pulmonary function [160,161]. Thus, if
there is any positive effect of marijuana, it likely only indir-
ectly improves performance.
It is conceivable that cannabis may reduce an athlete’s

feelings of pre-competition stress and anxiety as a result
of the euphoric effect it may produce. Also, because can-
nabis diminishes alertness and has relaxing and sedative
properties, use may be driven by the effects of relax-
ation, well-being and improved sleep quality. For ex-
ample, it has been reported that relaxing, pleasure, and
improved sleeping were the main motives to use canna-
bis [162], with the rationale that adequate sleep and being
relaxed before competition may lead to optimal perform-
ance. However, due to the trade-off of decreased exercise
performance, possibly secondary to increases in heart rate
and blood pressure, which may alter perceived exertion,
marijuana may be considered an ergolytic agent.
WADA status
The International Olympic Committee included canna-
bis in the banned substance list beginning in 1989 and
since 2004 the World Anti-Doping Agency has prohib-
ited its use for all sports competition [163]. Cannabi-
noids are substances prohibited in-competition only.
Detection
Testing for cannabis in the form of marijuana, hashish or
other cannabis containing products is performed by urine
analysis. The target molecule detected in urine analysis is
11-nor-9-carboxy-Δ9-THC, with the limit for a positive
test at >15 ng/mL. Detection is determined by gas-
chromatography/mass spectrometry, and this threshold
distinguishes active users from passive smokers and foods
that contain traces of cannabinoids [164-166]. However,
it should be pointed out that recently Brenneisen et al.
[167] suggested that THC, 11-nor-9-carboxy-Δ9-THC and
11-hydroxy-Δ9-THC all should be considered as target
analytes for cannabis doping.



Table 4 Summary of the effect of THC on performance

TETRAHYDROCANNABINOL

WADA status: the International Olympic Committee included
cannabis in the banned substance list beginning in 1989 and since
2004 the World Anti-Doping Agency has prohibited its use for all

sports competition [163]

Acute effect Effect on
performance

THC dose Reference

Resting heart rate
and both systolic/
diastolic blood
pressure were
significantly
elevated at rest

Physical work
capacity at a heart
rate of 170 decreased
by 25% compared to
placebo

18.2 mg of
Δ9-THC

Steadward
and Singh
[154]

Induced
tachycardia at rest

VE, VO2 and VCO2

were increased above
control at ≥50% max
effort; Small, but
significant reduction
in maximal exercise
duration; tachycardia
up to 80% of
maximum effort and
during recovery

7 mg/kg
marijuana
(containing
1.7% Δ9-THC)

Renaud
and
Cormier
[155]

Increased heart rate
and the rate-
pressure product at
rest

No effect on blood
pressure, ventilation
or oxygen uptake
during submaximal
exercise (15 min at
50% of VO2max);
increased heart rate
and the rate-pressure
product during
recovery

Smoking 7.5
mg of Δ9-
THC

Avakian
et al. [156]
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Summary
Overall, it appears that cannabis does not have ergogenic
potential in sports activities and thus, its inclusion on
the banned list is likely a function of its illicitness. As
cannabis smoking impairs exercise and psychomotor per-
formance (such as sedative effect, slower reaction times
and other psychomotor effects), its ability to serve as an
ergogenic aid has been questioned, and is generally con-
sidered to be an ergolytic drug (see also Table 4). This is
likely due to increase in heart rate and blood pressure,
decline of cardiac output and reduced psychomotor activ-
ity that have been demonstrated in prior studies.

Drug interactions
Alcohol acts as a depressant and caffeine as a stimulant
of the CNS. If the two substances are consumed to-
gether, the psychostimulatory effect of caffeine seems to
antagonize the depressive effect of alcohol via incom-
plete antagonism. Indeed, ingestion of a combination of
alcohol and caffeine showed no significant difference
from placebo when simple reaction time the amplitude
of the evoked potentials was assessed [168]. However,
the subject’s feeling of intoxication persisted.
The interaction of caffeine with cannabis seems to be

more complex. When caffeine and cannabis were given
to rats, memory deficits induced by THC were not at-
tenuated but actually exacerbated [169]. This might have
to do with the interaction of caffeine with adenosine A1

receptors that also modulate cannabinoid signaling in
the hippocampus.
In the presence of nicotine, caffeine exhibits a shorter

half-life and faster metabolism [170]. Ethanol on the other
hand has been shown to slow caffeine metabolism and in-
creases its half-life [171]. Co-ingestion of caffeine and
nicotine exhibit additive effects on cardiovascular parame-
ters such as blood pressure during baseline conditions but
less than additive effects during conditions of physical and
mental stress and sympathoadrenal stimulation [172].
The section on interactions of drugs is not exhaustive

but demonstrates that even for these highly prevalent and
socially accepted drugs there are potential interactions.
Before drawing conclusions from drug interactions, ques-
tions arise such as: is the time to peak psychomotor effect
of either drug altered in the presence of the other? Does
the magnitude of the peak blood concentration change for
either drug in the presence of the other? More studies are
needed to validate drug interactions and to address these
questions in a performance-related context. In the view of
the high prevalence of these drugs this task would provide
relevant information.

Conclusion and perspectives
The physiological effects of the above mentioned sub-
stances are well established. However, the ergogenic
effect of some of the discussed drugs may be ques-
tioned and one has to consider the cohort tested for
every specific substance. However, only caffeine has
enough strength of evidence to be considered an
ergogenic aid. Cannabis and alcohol are ergolytic for
sports performance, and nicotine needs confirmation
with further research. It is well known that there
is intersubject variability in response to every drug
[173]. Also, every consumer has to understand poten-
tial side effects as well as possible interaction effects,
if multiple drugs are consumed. Future research with
diverse combinations over a longer duration will be
needed to establish the safety and efficacy of drugs
and ergogenic dietary aids. Educating societal aware-
ness of the potential dangers from drug intake is of
paramount importance. For nicotine, WADA will
need to if it wants to move the substance from the
monitoring program to the Prohibited List in order to
curtail wide-spread use of smokeless tobacco in
sports. Apart from the ergogenic effect of nicotine,
this would underscore WADA’s effort following the
ban of THC to promote a drug-free sport. Whether
ergogenic or not, the addictive potential of a drug
should always be considered.
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