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Abstract

This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat)
intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our
ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces
glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino
acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and
increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a
powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on
lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic
processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia,
which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with
the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable
overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot
be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation,
helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess
of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate
handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis,
hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may
result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic
syndrome
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Review
Diet and the availability of nutrients
Present-day humans are adapted to eat a varied omni-
vorous diet, in which starches provide the largest share
of energy; body physiological systems are adapted to this
diet, coincident with that consumed by primitive
humans [1,2]. Through evolution, we have evolved
mechanisms to maximize the use of available food
energy, largely plant material, and to store part of the
energy as lipid for use in periods of scarcity. However,
most of today’s diets do not conform to this pattern, lar-
gely because of the application of the same mechanisms

of food selection that helped us survive [3,4]: The cur-
rent availability of high-energy lipid-rich diets, contain-
ing additional high-biological quality protein, is
compounded by cortical signals inducing their con-
sumption because of their palatability [5] and atavistic
traits of craving for food containing scarce and/or high-
energy nutrients [6,7]. Consequently, energy intake
tends to be higher than that needed to fulfill the energy
-and plastic- nutrient needs, creating a floating excess of
nutrients, which should be processed and disposed of.
The physiologically established mechanism for excess
nutrient energy removal is thermogenesis [8-10], carried
out by the uncoupling protein system of brown adipose
tissue (BAT) [11], but also by thyroid-induced organ
insufficiency [12,13], increased energy expenditure
through protein turnover, and other metabolic activities
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[14,15]. These mechanisms tend to reduce the excessive
buildup of dietary fatty acids and glucose, but are of
only limited effect on excess amino acids because of the
additional need to remove amino nitrogen.
The elimination of excess glucose also poses a few

problems by itself. Glucose is the main inter-organ
energy staple, and is released in large amounts by the
intestine-portal vein-liver system because the main diet-
ary component is supposed to be starch, which digestion
yields glucose. The absence of dietary glucose is a phy-
siological signal in itself, a correlate of starvation, and
elicits the mobilization of lipid stores [16,17] to cover
the body energy needs. Thus, high lipid availability is
construed as a sham “starvation-like condition”, which
prevents the massive oxidation of glucose [18]. Evi-
dently, excess lipid availability because consumption of
high-fat diets is not akin to real starvation or energy
deficit, but the preservation of glucose stands; further-
more, high glucose and energy availability enhance the
protection of dietary amino acids (paradoxically also in
excess) from their utilization as energy substrates
[19,20].
The combination of excess fatty acids and excess glu-

cose poses a serious problem to the homoeostatic main-
tenance of energy balance, a condition unique to the
metabolic syndrome (MS) [21,22]. The body has to find
ways to circumvent the strict glucose preservation mea-
sures painstakingly developed and established through
evolution for its own protection, such as insulin resis-
tance [23,24].
In the present review, these processes and effects are

shown as both homoeostatic control systems and patho-
genic mechanisms in the development of the metabolic
syndrome,

Excess glucose and insulin resistance
After insulin resistance denies its entry to muscle, and
decreased blood flow restricts adipose tissue uptake,
most of the remaining glucose could only be used in
significant amounts by BAT (to sustain thermogenesis
and for lipid storage) [25], or by the liver, the intestine
and -perhaps- by the microbiota. The liver capacity to
eliminate excess glucose is limited because of space
availability constrictions to glycogen and lipid storage
[26]. However, lipogenesis has to be carried out, even
countercurrent, because of an already large excess of
dietary fatty acids and triacylglycerols, temporarily
stored in the liver, waiting for their eventual release as
VLDL. A large excess of non-exported energy (lipid, glu-
cose) may help induce liver steatosis, damaging liver
function [27]. High insulin helps drive excess glucose
towards lipogenesis [28], but the process is also limited
by the already excessive availability of acetyl-CoA, which
cannot be converted into ketone bodies via 3-hydroxy-

3-methyl-glutaryl-CoA because the high levels of glu-
cose fully inhibit the ketone pathway [29]. As a conse-
quence, glucose levels keep rising and/or are maintained
high. Let’s look now where the unwanted glucose may
go.
BAT enhanced consumption of glucose may represent

a quantitatively significant possibility for rodents, but it
is doubtful that in humans, with a limited BAT presence
[30,31], it may represent a significant dent in the pool of
excess circulating glucose, especially when BAT pre-
ferred substrate is, again, lipid [32].
Excess glucose becomes a danger by itself: can affect

water balance because of its osmotic properties [33],
and increase the glycation (and consequent loss in func-
tion) of a number of proteins, especially those in contact
with the bloodstream [34]. Thus, over a certain limit,
excess glucose may be lost via urine. However, before
these drastic measures are taken, the body tries to cor-
rect glycemia using the whole set of instruments devised
to maintain glycemic homoeostasis. High glucose levels
decrease appetite [35] and thus limit the intake of food
(in the end, of glucose). However, this effect is largely
dependent on insulin levels and function [36], which is
in turn affected by excess lipid and other insulin resis-
tance-inducing factors [37].
Glucose entry into most cells is controlled by insulin,

thus alteration of its function starves cells from access
to glucose, even in front of high blood glucose, and
altering tissue glycogen [38]. Control of glucose utiliza-
tion by the liver relies not in transport, but on its phos-
phorylation, in a way that regulation of glucokinase is
critical [39], but the insulin-controlled catabolism of
hexoses through the glycolytic and pentose-phosphate
pathways to finally -and irreversibly- yield acetyl-CoA
are also critical [40,41]. The ability of the liver to store
glucose as glycogen or to transform it into acetyl-CoA
(for oxidation of lipid synthesis) is limited, and cannot
cope with the excess glucose left over by the preferential
consumption of lipid. Where goes, then the postulated
excess of glucose?
Diabetes (type 2) and its principal cause/symptom,

insulin resistance, are widely considered the core patho-
logical trait defining the metabolic syndrome [42]. This
is because insulin resistance increases both glycemia and
insulinaemia, favoring the deposition of fat [43], and
increasing the circulating lipids [44] which help raise
arterial tension when combined [45]. These diseases are
complementary and act synergistically in deranging the
metabolic control of energy utilization [46].
Insulin resistance is closely related to excess fatty acid

availability [47,48], and facilitates the deposition of fat in
adipose and other tissues [49]. Muscle insulin resistance
is in fact a defensive mechanism converted in a deadly
trap by excessive availability of energy. Under normal
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conditions of limited energy availability, glycemia is low
(scarce supply) and in consequence, glucose is not taken
up by most tissues, being reserved for nerve tissue [50]
and glycolytic red blood cells [51]. Under these condi-
tions, lipids from the body reserves are mobilized, and
ketone bodies [52] and fatty acids are made available
(NEFA or fatty acids released by lipoprotein lipase activ-
ity) to the muscle. Their presence inhibits the insulin
signaling cascade [53] which limits the release of
GLUT4 rafts to the cell surface [54], thus effectively
diminishing glucose uptake in favor of fatty acids [55].
Under conditions of excess energy available (i.e. abun-

dant fatty acids and glucose), the effects exerted by fatty
acids are the same. Consequently, the unused glucose
(there is no need now to preserve it) builds up in blood.
Hyperglycemia elicits the secretion of insulin by the
pancreas; the ensuing hiperinsulinemia tries to counter
the muscle insulin resistance. However, the combination
of hiperinsulinemia and insulin resistance facilitates/
induces the entry of glucose in tissues less protected
than muscle. High insulinemia and high glycemia persist
because most of the blood glucose, remains unused, has
no place taking it up and using it in quantity. In
rodents, this excess glucose is largely converted into fat
by the liver and adipose tissue [56], thus aggravating the
problem of substrate utilization by muscle and other
peripheral tissues. In humans there is little lipogenesis
from glucose under normal conditions [57,58], thus the
problem of disposal of excess glucose is even greater
than in rodents. However, the active production of 3C
fragments by peripheral tissues, such as WAT [59,60],
provides the liver with substrates for either gluconeo-
genesis in part blocked by excess glucose [61] or lipo-
genesis [62]. High 3C fragment availability potentiates
hepatic lipogenesis [63,64] and may explain, at least in
part, the increased production of fatty acids from excess
glucose.
Dietary limitation of low glycemic index carbohy-

drates, but essentially decreased total energy input, may
help improve the condition of the MS [65,66] by dimin-
ishing the excess of energy/substrates to dispose of, but
also by flattening the curve of absorption of glucose
from the gut, and thus decreasing the insulin response
[67].

The fate of excess glucose
Increased BAT [68] and muscle [69] thermogenesis can
help eliminate a sizeable part of the excess unused diet-
ary glucose. This may be, probably helped by the combi-
nation of limited muscle and adipose tissue glucose
oxidation [70], liver utilization for lipid synthesis [28]
and energy utilization, including thermogenesis [71],
futile cycling and thyroid hormone-elicited loss of hepa-
tic mitochondrial efficiency [72]. These energy-spending

processes may also help diminish the amino acid load,
but probably to a lesser extent because of the constric-
tions posed by the need to eliminate their amino nitro-
gen [73].
In addition to the processes presented above, other

possible pathways for glucose disposal should be
explored. Glucose freely diffuses across the intestinal
wall (i.e. both ways) [74] and the total daily volume of
digestive secretions is considerable; several fold higher
than total volemia. Food-derived sugars are actively
metabolized by the microbiota [75]. We can thus expect
that an undetermined part of the excess body glucose
may find its way into the intestinal lumen, where it may
be taken up and metabolized by the microorganisms.
Since the microbiota behaves as a symbiotic adjunct to
our digestive system, its eventual participation in the
handling of excess substrates may constitute a substan-
tial part of their function under the anomalous condi-
tions of excess energy availability. The “obese
microbiota” has a different composition and different
metabolic function than that of lean people eating the
same diet [76]. There are, thus, factors -not immediately
diet-related- that mark the wide differences between
microbiota bacterial types of MS and normal individuals
[77,77]. The NO·/nitrate/nitrite question may be a prin-
cipal factor, but the probable availability of other dif-
fused substrates and their acting as “overflow” energy
sink is a question that may help explain part of our
newly found adaptation to excess energy.
Thus, human bodies, non adapted to the new evolu-

tionary challenge: excess of nutrients, have found ways
to cope, albeit partially, with the problems posed by our
deeply ingrained mechanisms of preservation and survi-
val against scarcity rather than by excess itself.
Short-term adaptations: lipogenesis, lipid oxidation, fat

deposition, cannot be maintained indefinitely; others
(thermogenesis, turnover, growth) have also a limited
span of application. Only long-term adaptations, affect-
ing tissue structure and function, but also shifts in
metabolic pathways (e.g. N2 excretion [78,79]) can be
sustainable over a long period. However, in all cases, the
adoption of these measures represents a forced opera-
tion (adaptation) of mechanisms not devised for these
purposes, which bears consequences in the medium and
long term by producing the changes we recognize lar-
gely as inflammation, the molecular basis of the MS.
Other compensatory mechanisms include the control

of insulin secretion by amino acids [80,81], and a shift
in the main insulin deactivation site. Under standard
conditions, the liver breaks up a large part of the insulin
it receives through the portal vein [82,83], the normal
pancreatic blood outlet; however, in hyperglycemic obe-
sity, the liver cannot remove a large portion of this insu-
lin, with the consequence of permanently raised
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systemic insulinemia [84]. A number of tissues, such as
white adipose tissue (WAT), however, develop the abil-
ity to deactivate a significant proportion of the insulin
carried by the blood [84,85], a mechanism that protects
the tissues themselves of being force-fed an unwanted
and not metabolizable (because of saturation of normal
pathways) load of glucose. This may help protect the
adipose tissue, but overall aggravates the problem of
glucose disposal and the growing contest between
increasing glucose and insulin levels.

Hepatic steatosis and hyperlipidemia
In the MS, cholesterol synthesis prevails over its uptake
from the bloodstream [86]. Hepatic steatosis reduces the
functionality of the liver, increasing the synthesis of cho-
lesterol [87], whilst liver cholesterol uptake is impaired
because of defective insulin signaling [88]. There is a
decrease in circulating HDL-cholesterol [89] but an
increase in that carried by LDL [90,91]. Liver altered
function, i.e. decreased insulin removal [92] and blocked
ketone body synthesis [93] indirectly favor cholesterol
synthesis [94] and decreased liver uptake from plasma
lipoproteins [95], which adds to the problem of
hypercholesterolemia.
In liver steatosis, protein synthesis is also altered, not

for lack of amino acids or energy, but because of lipid
clogging and cell damage [96,97], which in turn elicits
the proliferation of defense immune cells that addition-
ally intervene in the already stretched hepatic function
[98]. A probable key element in the development of
liver steatosis is endoplasmic reticulum stress [99,100],
since in liver, this cell organelle system exerts a number
of functions [101,102], largely related with lipogenesis
and the synthesis of complex lipids [103], but also the
synthesis (folding) of proteins that will be later
assembled with lipid in the dyctiosomes for export as
circulating proteins or lipoproteins [104]. Alteration of
the redox state or an unbalanced availability of nutri-
ents, such as those constantly affecting the liver in the
MS, may elicit an altered endoplasmic reticulum
response, the breakup of the assembly line for lipopro-
teins and the accumulation of fat in the liver [105].
Excess peripheral production of free radicals and the

oxidation of lipoproteins [106] may combine with the
damage to the liver because of excess lipid accumulation
to decrease its capacity to process xenobiotics [107].
The fairly constant presence of increased uric acid in
plasma in the MS [108,109] indicates that xanthine oxi-
dase activity is increased [110] helping sustain oxidative
damage. It has been suggested that a relative deficit in
minerals may help aggravate the situation, that is the
case for magnesium [111] and, especially, zinc [112].
This in turn affects -in different ways- the metabolism
of iron [113-115].

Adipose tissue and hyperglycemia
In WAT there is a large production of lactate under
conditions of insulin resistance elicited by excess fatty
acids [116], which is another consequence of hyperlipi-
demia, excess lipid consumption and the presence in the
system of more energy than needed (and which the
human machinery is able to eliminate) [117]. Insulin
resistance effectively decreases the muscle ability to take
up glucose [55]; it does not affect brain glucose uptake,
and neither does overload the liver, which lets glucose
pass through undisturbed or uses it for lipogenesis (to
add insult to injury, but to somehow limit the dangers
of excess glucose) [118]. One of the few remaining sites
large enough to use this excess glucose is adipose tissue,
which despite being far from uniform in cell size, trans-
lating ability and metabolic activity [119] contains small
but dynamic glycogen stores [120], fairly sensitive to
catecholamines [121]. WAT is able to incorporate glu-
cose from the blood even under conditions of insulin
resistance [122,123]. This glucose may be used to pro-
duce more lactate (as observed in the obese) [60] to
obtain the ATP needed for cell function under condi-
tions of varying degrees of hypoxia [124]. However, a
large portion of excess glucose finds its way into lipo-
genesis [125].
Hyperglycemia (and hyperinsulinemia) force WAT to

take up a large part of the glucose waived off by other
tissues. The logical path is the glycolytic conversion to
pyruvate, which may be increased under hypoxic or
anoxic conditions (i.e. with scarcely operative mitochon-
drial oxidative systems) as the main source of ATP. A
small part of this glucose is stored as glycogen, which
can be easily mobilized to produce glycolytic energy
even under hypoxia [126]. But under these conditions,
WAT generates an excess of acetyl-CoA, in part because
of the operation of pyruvate dehydrogenase [127], but
also from sporadic lipolysis elicited by catecholamine
stimulation, such as that of exercise [128]; this process
also activates the phosphorolysis of glycogen [129],
increasing the availability of cytosolic hexoses-phos-
phate, and then of pyruvate. Acetyl-CoA could not be
oxidized at a fast rate because of hypoxia and Krebs
cycle (NADH) saturation. Under these circumstances:
pyruvate dehydrogenase could not operate, causing a
buildup of pyruvate/lactate and the release of the latter
to the bloodstream [130,131], which generates an acido-
tic microenvironment in WAT, especially after adrener-
gic stimulation (even when mild, such as that induced
by exercise) [132]. This lactate (and the corresponding
lowering of blood pH) adds to the erythrocyte glycolysis,
forcing the dissociation of oxygen from oxyhemoglobin
[133].
The alteration of adipocyte (or macrophage) redox

equilibrium may trigger also a situation of endoplasmic
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reticulum stress [134], which may compound the severe
condition of the cells by further limiting lipogenesis and
protein synthesis [135], and/or altering the immune
response of the tissue (in the case of macrophages)
[136].
Body energy expenditure is largely dependent on the

flow of blood across the cells, enhancing their ability to
interchange substrates, gases and other compounds with
the bloodstream [137]. Thus, we must take consider the
critical importance of blood flow across the ultimate
energy sink that is adipose tissue. The lack of protection
of WAT against the avalanche of lipids results into a
massive enlargement of WAT lipid vacuoles. The hyper-
trophied tissue exerts pressure on itself and its sur-
rounding structures, limiting -again- blood flow and,
perhaps, further generating hypoxia [138].
However, this acute handling of a punctual excess of

energy cannot be indefinitely maintained, day after day
for a lifetime, since there are physical constraints to the
unchecked size increase of WAT. In fact this limit is
achieved at fairly different WAT sizes for different
WAT sites and individuals, which means that the tale is
not complete and that there exist additional factors
which protect WAT from unstoppable growth to death
[139]

White adipose tissue, the last energy sink
WAT shares with BAT the ability to store large
amounts of fat; their main difference being the higher
oxidative capacity of BAT, and its idiosyncratic capabil-
ity of wasting energy under tight nervous/endocrine
control [140-142]. WAT is (as BAT) also a disperse
organ [143,144], but most of WAT is concentrated in a
small number of large masses, which purported main
role is that of storing most of the body energy reserves
in the form of triacylglycerols [145,146]. However, WAT
also plays other functions, such as insulating, filling
spaces, and physically protecting structures [59] controls
some functions of their adjacent organs [147,148], as is
the case of intermuscular, epicardial or perivascular
WAT [149,150]. WAT is a rallying center for immune
system cells [151,152], and provides stem cells for
repair, regeneration or adaptive modulation [153,154].
However, probably its main role functions are its ability
to store large amounts of fat and its direct implication
in the control of energy partitioning and handling
energy (together with the liver) under conditions of
scarcity [146]. Location, in this case, equals specializa-
tion, since mesenteric WAT has a very direct implica-
tion in the handling of lipids absorbed by the intestine
[155], whilst other depots (retroperitoneal, perigonadal,
gluteal), with larger cells and lower overall metabolic
activity play a role more adjusted to that of storage of
lipid reserves [156]. Adipose tissue distribution shows

marked sex-related differences [157,158], which hint to
a role of sex steroid hormones in the modulation of the
long-term manifestation of the MS.
There are two other important distinguishing points

for WAT in comparison with all other tissues: first,
WAT is not as protected against insulin-mediated glu-
cose incorporation as are muscle [159] and the liver
[160], since WAT is the last stop for circulating energy
substrates (glucose, triacylglycerols). WAT has to take
in what all other organs or tissues could not use, since
it acts largely as energy buffer, to accumulate excess
energy in times of affluence and to release them in scar-
city. The second important difference is its ability to
considerably increase its mass within the physiological
range conditions [161]; only very large -and permanent-
increases in overall WAT mass (i.e. in the lipid it con-
tains) becomes a pathological condition: obesity.
WAT has considerable flexibility in distribution, cell

types and numbers, mass, lipid content, and ability to
store energy [162,163]. Its main reserves are triacylgly-
cerols [164]. Nevertheless, -at least in the obese, with
large WAT mass- it also deeply influences glucose meta-
bolism, storing glycogen and releasing lactate/pyruvate
in accordance with daily prandial cycles [59,120]. WAT
is a well known source of hormones, it synthesizes and
recycles estrone [165], and is able to interchange both
estrone/estradiol and androstenedione/testosterone
[166,167], as well as cortisol/cortisone (corticosterone/
dehydrocorticosterone in rodents) [168]. WAT also pro-
duces a number of adipocytokines that control the
response to energy challenges of the tissue itself and
surrounding tissues [138,148], i.e. has both paracrine
and endocrine secretions. WAT is the main organ
synthesizing leptin [169], a small peptide hormone
which controls gonadotropin secretion [170,171], indu-
cing the preparation for full functional reproductive
capacity. Leptin also plays an important role in the con-
trol of food intake [172,173] and body energy handling
[174-176]. The complexity of WAT in the paracrine reg-
ulation of energy partition and its own size and cell dis-
tribution is exemplified by the presence of a complete
rennin-angiotensin system [177], and the synthesis of
other adipokines such as adiponectin [178,179]. Adipo-
nectin is a powerful anti-inflammatory cytokine
[179,180], which also participates in the maintenance of
energy balance and substrate utilization control [181],
and which effects are projected to other tissues
[182,183].
WAT is one of the body tissues with highest ability to

regenerate from stem cells to preadipocytes and fully
developed adipocytes [184], depending on the demands
for energy storage; cell size may change several-fold
because of the often enormous accumulation of triacyl-
glycerols [161], which routinely accounts for up to 85%
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of the fresh tissue weight [185]. WAT cell numbers can
also decrease rapidly when storage space is not needed:
selective apoptosis mechanisms cull down the number
of adipose tissue cells [186]. This high versatility, and
WAT endocrine function, help to control the mass of
lipid energy stored [187-189], in order to make it avail-
able to the whole body under conditions of scarcity
[161], often in a cyclic way as is the case of migratory
birds [190] or the pregnancy/pre-lactation accumulation
of fat in mammals [191].
WAT is also the main site of the inflammatory pro-

cesses [138,192,193] that are at the root of the MS. This
is due largely to the reasons indicated above: its role as
key energy control player [194], but also to the fact that
WAT is the last in the line to dispose of excess energy.
Under conditions of plenty, WAT cannot dispose of the
excess energy it is forced to store, grows in size, initiates
the immune response [195], which is later amplified by
invading macrophages [196,197], and thus obesity
develops.

Conclusion
Excess energy intake is primarily countered by the nor-
mal homeostatic mechanisms regulating body weight:
signals eliciting a decrease in food intake combined with
increased energy expenditure, i.e. higher thermogenesis,
increased metabolic activity (including enhanced protein
turnover), decreased overall metabolic efficiency (which
may be also considered part of the thermogenic pro-
cess), and, ultimately, increased energy storage. How-
ever, continued exposure to high-energy diets may
either overcome the possibilities of these systems or/and
erode their efficiency, resulting in unbearable excess
energy accumulation on the storage depots. The capa-
city of body organs to store glycogen and fat are limited,
and excessive buildup of reserves provokes tissue
damage, forcing the intervention of the immune, albeit
with little success and considerable (and largely dama-
ging) release of metabolic control signals which com-
pound the problem. The arrest of WAT fat
accumulation is obtained at the price of loss of energy
partition functionality and lefts the energy partition con-
trol system in disarray, conditions that eventually
develop in a constellation of metabolic alterations that
constitute the MS.
High fatty acid availability, often the consequence of

high-energy diets rich in fats, compound the already
high digestive process-generated availability of glucose
by eliciting insulin resistance. The large excess of glu-
cose thus generated is largely used to promote energy-
consuming processes and may result, in a significant
part, converted to lipid for storage; or, in the case of
coexistent high dietary fat, used for immediate disposal
to prevent hyperglycemia. But even this process has

limits and excess glucose damages the liver-adipose tis-
sue energy-maintenance axis, which extends to the
whole body because of the implication of defense
mechanisms that inadequately try to prevent these
damages. The consequences are inflammation and the
development of the MS.
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WAT: white adipose tissue; BAT: brown adipose tissue; MS: metabolic
syndrome
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