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Metabolic diseases and pro- and prebiotics:
Mechanistic insights
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Abstract

Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of
metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades.
Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical
activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly
rely on individual’s behavior and motivation, novel science-based strategies should be considered for prevention
and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in
inflammation through nutrient and pathogen sensing systems which recognize compounds with structural
similarities. Dietary macronutrients (fats and sugars) can induce inflammation through activation of an innate
immune receptor, Toll-like receptor 4 (TLR4). Long-term intake of diets high in fats and meats appear to induce
chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the
idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of
probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as
lipopolysaccharide (LPS) sources through LPS and/or bacterial translocation into the circulation due to a vulnerable
microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression
of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and
type 2 diabetes), chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective
views of probiotic and prebiotic interventions for the diseases.
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Background
Obesity and overweight are world-wide health problems
afflicting various populations, regardless of age, gender,
and ethnicity. Obesity and overweight are abnormal con-
ditions with excess fat accumulation, and are often
determined by body mass index (BMI); BMI ≥25 is over-
weight while BMI ≥ 30 is obesity. According to data from
the National Health and Nutrition Examination Survey
(NHANES) 2007–2008, 68.0% of adults are overweight
or obese, while16.9% of children and adolescents are
obese in the U.S. [1,2]. Although no significant increase
in obesity was observed among U.S. adults over the past
ten years, the prevalence of obesity (33.8%) remains
high. In contrast, the prevalence of obesity among U.S.
children and adolescents has significantly increased over
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the past few decades [2,3], alerting health agencies to the
serious health-related issue which has become wide-
spread in the young population. Obesity and overweight
have been thought to be a consequence of energy imbal-
ance consisting of over-consumption of energy-dense
foods (i.e., high-fat and high-sugar diets) and physical in-
activity. Data from NHANES 1971–2000 reveals that
average energy intake has significantly increased from
2450 kcal to 2618 kcal for U.S. men and from 1542 kcal
to 1877 kcal for U.S. women during the past three dec-
ades [4]. The increase in the average energy intake is
attributed to increased intake of fats (in grams) and
carbohydrates, primarily as consumption of beverages
providing simple sugars [5]. Similarly, the averages of
daily energy intake among U.S. children (3–19 years old)
were 2280 kcal (boys) and 1793 kcal (girls), and the en-
ergy intake was positively associated with BMI percentile
from the age of six [6].
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Diabetes is characterized by impaired secretion and/or
activity of insulin and increased levels of blood glucose.
The estimated case number of type 2 diabetes world-
wide in 2000 is 171 million, translating into 2.8% of total
population [7]. Wild et. al. predict a continuous
increased trend of type 2 diabetes along with a stable
prevalence of obesity; for example, an estimated preva-
lence of type 2 diabetes is 4.4% in 2030. Diabetes is one
of the main causes of death in the U.S. According to
CDC, 25.8 million of U.S. people (including 7 million of
undiagnosed diabetes) have diabetes, accounting for
8.3% of total population. In 2010, an additional 79 mil-
lion of U.S. adults are estimated to have prediabetes in
which blood glucose levels exceed the normal range.
Total costs of diabetes in 2007 were $174 billion, includ-
ing $116 billion of direct medical costs and $58 billion
of indirect costs (e.g., work loss, premature death,
related disability) [8]. The epidemic of type 2 diabetes in
the U.S. is associated with changes in diet, particularly
an increase in intake of refined carbohydrates, including
beverages, and decrease in intake of fiber during the past
century [9].
Subsequently based on such national statistics, we

could conclude that traditional approaches, such as diet
and physical activity, have been unsuccessful in decreas-
ing the prevalence of obesity and related diseases. Be-
cause these approaches strongly rely on individual’s
behavior and motivation, we should consider other novel
science-based strategies for prevention and therapy of
metabolic diseases, particularly for weight loss.

Metabolic disease-associated inflammation and
endotoxiaemia
Obesity and overnutrition (long-term intake of high fat/
sugar diets) are positively associated with chronic sys-
temic low-grade inflammation, oxidative stress, and risks
of other metabolic diseases, such as type 2 diabetes, car-
diovascular disease, and some types of cancer [10-12].
Intestinal inflammation is associated with high fat

diets and is considered as an early event in obesity and
insulin resistance [13,14]. Diets high in meat products
contain lipopolysaccharides (LPS) which are inducers of
Toll-like receptor 4 (TLR4) [15]. TLR4 is an innate im-
mune receptor which is localized on the surface of vari-
ous cells. LPS are found in the outer membrane of
gram-negative bacteria (e.g., E. coli.) and serve as endo-
toxins. Toxicity is associated with the lipid portions of
LPS, lipid A, in which all of fatty acids are saturated,
while immunogenicity is caused by their polysaccharide
portions which contain O-antigens [16]. Released lipid A
initiates a series of immune responses in the circulation
after bacteria are lysed by host immune system. The im-
mune system includes LPS-detoxifying properties
through the intestinal alkaline phosphatase (IAP)[17].
However, dietary LPS can trigger immune responses to
the hosts due to their resistance to temperatures and
low pH, even though their carriers (e.g., meat products,
processed foods) are edible [15,18]. LPS-induced TLR4
activation leads to inflammation by secreting pro-
inflammatory cytokines and chemokines. Dietary fats in-
crease absorption/plasma concentrations of LPS and
TLR4 expression of mononuclear cells in normal
humans [19]. Increases in the expression and activity of
TLR4 and endotoxicity were observed in the monocytes
of patients with metabolic syndrome [20]. LPS are inter-
nalized and transported by chylomicrons along with
dietary fats in the circulation. These processes contrib-
ute to diet-induced systemic (either acute or chronic) in-
flammation and eventually the development of
metabolic diseases, such as obesity, type 2 diabetes, and
cardiovascular diseases, which are associated with
chronic systemic low-grade inflammation [13,21]. A
positive association was found between serum LPS activ-
ity and biomarkers of metabolic syndrome (e.g., trigly-
ceride levels, insulin resistance, chronic inflammation) in
type 1 diabetic patients [22]. Also, plasma levels of LPS-
binding protein (LBP) were high in both obese-prone
and high-fat-diet fed mice, compared to controls fed
standard diets [23]. LBP is an acute phase protein to
transfer LPS to CD14 on the cell surface and a bio-
marker of metabolic endotoxiaemia. In obese humans,
compared to normal-weight controls, LBP levels were
high and positively associated with biomarkers of meta-
bolic syndrome and type 2 diabetes [24]. Thus, LPS-
induced inflammation and endotoxiaemia are closely
linked to obesity and type 2 diabetes.

Dietary macronutrient-induced inflammation
Metabolism and immune system are linked. Undernutrition
results in immunosuppression or susceptibility to infection,
while overnutrition (i.e., obesity) leads to immunoactivation
or susceptibility to inflammatory diseases, such as diabetes.
Overnutrition (long-term intake of high fat/sugar diets) and
infection lead to chronic and acute inflammation through
nutrient and pathogen sensing systems, respectively [25].
Dietary macronutrients can act as inducers of TLR4

activation [26-29]. Lipids are non-immunogenic and can
be haptens. The nutrient and pathogen sensing systems
are likely to recognize compounds with structural simi-
larities (e.g., saturated fatty acids in diets, lipid A derived
from pathogens) and subsequently lead to the same con-
sequence, inflammation (i.e., chronic or acute). Obesity-
associated chronic inflammation could be characterized
by a continuous activation of the innate immune system
[30] and induced by overnutrition. LPS-induced TLR4
activation seems to be involved in either acute (i.e., in-
fection) or chronic (i.e., overrnutrition) inflammation.
Saturated fatty acids, not unsaturated fatty acids, induce
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inflammatory responses through TLR4 activation [28].
Eicosapentaenoic acid (ω-3, C20:5) and decosahexaenoic
acid (ω-3, C22:6) are well-studied polyunsaturated fatty
acids, which have exhibited anti-inflammatory and anti-
diabetic properties mainly in animal models [31-34].
These ω-3 fatty acids down-regulate inflammation and
adiposity by up-regulating adiponection via peroxisome
proliferator-activated receptor gamma (PPARγ) activa-
tion and β-oxidation via PPARγ activation, respectively
[34]. Similarly, lipid A containing unsaturated fatty acids
are non-toxic and can serve as an antagonist against
endotoxins [35,36].
Among unsaturated fatty acids, conjugated linoleic acid

(CLA) is a group of geometric and positional isomers of
linoleic acid (ω-6, C18:2), and is found mainly in dairy pro-
ducts and synthesized in the rumen as an intermediate by
gram-negative bacteria, Butyrivibrio fibrisolvens, during the
biohydrogenation of linoleic acid to stearic acid [37]. Some
Lactobacillus species also produce significant amounts of
CLA [38] (see the section of “potentials of probiotics and
prebiotics” below). CLA is a possible PPARγ agonist [39],
and has been shown to have health promoting properties
such as anti-oxidant, anti-inflammatory, anti-carcinogenic,
anti-atherogenic, and anti-obesity effects [40-44]. CLA
exhibited dose-dependent differential effects (i.e., prooxi-
dant or antioxidant, cytotoxic) associated with redox-
sensitive transcription factors PPARγ and NF-B in human
endothelial cells [44,45]. These transcription factors seem
to modulate oxidative stress and inflammation in a coordi-
nated fashion, depending on micro-environmental factors
[46]. Anti-obesity effects of CLA in humans are supported
by two meta-analyses of Whigham et al. [47,48]. Kennedy
et al. [40] conclude in their review that anti-obesogenic
effects of CLA are due to: 1) reduction of energy intake
with suppressed appetite, 2) induction of energy expend-
iture in white adipose tissue, muscles, and liver tissue, 3) re-
duction of lipogenesis or adipogenesis, 4) induction of
lipolysis, and 5) induction of adipocyte apoptosis.
In addition to dietary fats, dietary carbohydrates appear

to be involved in inflammation through TLR4 activation.
High glucose treatment induces TLR4 expression in human
monocytes [26], while insulin reduces LPS-induced TLR4
activation and oxidative stress [49,50]. Free saturated fatty
acids exacerbate the expression and activity of TLR4 which
is induced by high glucose in human monocytes along with
increases in superoxide generation, NF-κB activity, and
pro-inflammatory factors [51]. A decrease in the levels of
the insulin-sensitive glucose transporter (GLUT4) is a char-
acteristic of type 2 diabetes and insulin resistance. Insulin
resistance results from down-regulation of GLUT4 and glu-
cose transport selectively in adipose tissue [52]. Reduced
levels of GLUT4 found in type 2 diabetes appear to be in
part due to GLUT4 expression suppressed by free fatty
acids through PPARγ [53]. PPARγ is known to be an
adipogenic factor which triggers adipocyte differentiation.
However, PPARγ agonists (e.g., thiazolidinediones) cause
PPARγ protein to dissociate from the GLUT4 gene
promoter and improve insulin resistance, by blocking sup-
pression of GLUT4 mediated by fatty acids (i.e., arachidonic
acid) and/or TLR4 agonists (i.e., LPS) and inducing GLUT4
expression via PPARγ activation [53-55]. In summary, an
association is suggested between dietary macronutrients,
inflammation through TLR4 activation, redox-sensitive
transcription pathways, and metabolic diseases.

Involvement of intestinal bacteria in the pathogenesis of
metabolic diseases
Because the gut is exposed to foreign antigens in foods,
the gut associated lymphoid tissue (GALT) has evolved
mechanisms to avoid strong immune responses to food
antigens and to protect against pathogenic organisms
derived from foods. Human gut bacteria consist of ap-
proximately 1014 colony-forming-unit (cfu)/mL and 500
to1000 species and live in symbiosis with their host [56].
Bacteroidetes and Firmicutes are dominant (>90% of total
microbial population) in the normal mouse and human
intestines [57]. Bacteroidetes and Firmicutes play a role in
nutrient absorption, mucosal barrier fortification, xeno-
biotic metabolism, angiogenesis, and postnatal intestinal
maturation [57-59]. The population of these bacteria is
controlled by diets (i.e., high fat) [60], and is crucial in de-
velopment of obesity and diabetes [57,61,62]. The relative
abundance of Bacteroidetes was higher in diabetic-prone
rats with the development of diabetes than those without
the development [61]. A decrease in Bacteroidetes and in-
crease in Firmicutes were observed in obese humans and
mice [57,60]. The changes in these phyla depend on diets
(i.e. high fat) regardless of phenotypes (i.e., lean, obese-
prone, obese-resistant) [60,62]. In addition, differences in
types of immune cells present in the adipose tissue of
obese and lean mice may be a consequence of differences
in microbial composition [63].
Recent findings that support the idea of the in-

volvement of intestinal bacteria in the development of
obesity and diabetes include: 1) the resistance to
high-fat diet-induced obesity in germ-free mice [64],
2) antibiotic-induced reduction of plasma LPS levels
in obese mice fed a high-fat diet [65], and 3) delayed
onset and development of type 1 diabetes by use of
antibiotics in a diabetes-prone rat model [61]. Also,
chronic intake of high-fat diets modulate intestinal
inflammation through alteration of intestinal environ-
ment, such as intestinal permeability, microbial com-
position, and LPS-detoxifying ability of the intestinal
alkaline phosphatase (IAP: an LPS detoxifying
enzyme) activity [62,66]. Certain types of intestinal
bacteria appear to serve as sources of LPS through
the translocation of LPS and/or bacteria [67,68]
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leading to chronic low-grade inflammation locally
and/or systemically. Furthermore, these studies reveal
that energy imbalance, which results from high cal-
orie diet and physical inactivity, is not the only factor
to attribute to development of obesity and metabolic
diseases.
Thus, specific intestinal bacteria may provide LPS to

induce low-grade inflammation locally and/or systemic-
ally through the translocation of intestinal bacteria and/
or their products, and play a role in host metabolism.
Since the mechanistic links are suggested mainly in ani-
mal models, further investigation is needed to determine
mechanisms in humans.

Potentials of probiotics and prebiotics
Probiotics, such as Lactobacilli and Bifidobacteria, are
defined as “live microbial feed supplements which bene-
ficially affect the host animal by improving its intestinal
microbial balance”[69]. Prebiotics are non-digestible, fer-
mentable carbohydrates and fibers, such as inulin-type
frucans and galacto-oligosaccharides, which exhibit
health promoting properties to host through selective
stimulation of growth and/or activities of a limited num-
ber of bacteria (i.e., probiotics). Since probiotic- and
prebiotic- induced health promoting effects are likely to
be attributed to their ability to antagonize pathogenic
bacteria and to modulate host immune responses
[70,71], earlier studies mainly focused on the relation-
ship between probiotics/prebiotics and immune diseases
(e.g., atopic disease, asthma) and infant nutrition [72-
74]. In 2007, Gordon and his colleagues first reported
the involvement of intestinal microbes in obesogenesis
[64]. Afterward, some investigators have documented
that altered intestinal environment (i.e., microbial com-
position, intestinal permeability, LPS-detoxifying ability)
could contribute to adiposity and insulin resistance
[61,62,64-66,75], as described in the previous section.
Several investigations have been done on the effects of
probiotics and prebiotics for obesity and diabetes [68,76-
79].
Investigation of probiotics (e.g., Lactobacilli, Bifidobac-

teria) and prebiotics (e.g., inulin, oligofructose) have lead
to the suggestion that these supplements could have pre-
ventative and therapeutic potentials for immune diseases,
exhibiting bacteria-specific immunomodulatory properties
[71,80-82]. First, probiotics, such as Lactobacillus casei,
Lactobacillus paracasei, Lactobacillus acidophilus, and
Bifidobacterium animalis, can survive and grow at 20-40%
of the estimated survival rate in the GI tracts after their
oral administration and increase their population in the
intestines [83-85]. Low abundance of Lactobacilli and Bifi-
dobacteria is associated with development of type 1 dia-
betes [86]. Similarly, high levels of Lactobacillus casei/
paracasei and Lactobacillus plantarum in human gut are
negatively associated with obesity, but high levels of Lacto-
bacillus reuteri are positively associated [68,87]. In
addition, Lactobacillus species were decreased in the distal
esophagus of rats fed a high fat diet, compared to those
fed the standard diet [88]. Yogurt containing Lactobacillus
acidophilus exhibits anti-cholesterolemic properties in
mature boars [89]. Anti-inflammatory effects of probiotics,
Lactobacillus casei, are negatively associated with NF-кB
p50/p65 activation [90], which is induced by LPS through
TLR4 activation, and positively associated with PPARγ ac-
tivation [91].
Anti-obesity effects were observed in C57BL/6 J diet-

induced obese mice supplemented with 1 × 109 colony-
forming unit (cfu) of Lactobacillus rhamnosus PL60 which
can produce CLA [79]. CLA are also produced from
linoleic acid by Lactobacillus acidophilus, Lactobacillus
plantarum, Lactobacillus paracasei, and Lactobacillus casei
in vitro and in vivo (i.e., mice) [38,92]. CLA-induced ad-
verse effects, such as increased insulin resistance and
inflammation, have been observed mainly by use of single
purified CLA isomer (in particular the trans-10, cis-12
CLA isomer) through NF-кB p50/p65 activation [93-95],
while CLA producing Lactobacillus species (e.g., L. casei,
L. plantarum) exhibited anti- inflammatory effects along
with increased PPARγ expression [92]. CLA produced by
probiotics in vivo appears to remain within the intestinal
lumen and serve as a PPARγ agonist locally, whereas or-
ally supplemented CLA seems to be absorbed and affect
systemically [96].
As for prebiotics, Parnell and Reimer demonstrated that

obese and lean rats fed a diet containing inulin and oligo-
fructose (0, 10, 20% w/w) increased anorexigenic peptide
levels and probiotic population and decreased glucagon
levels in a dose-dependent manner. However, no signifi-
cant changes in body weight or blood insulin/glucose were
observed between rats fed with or without prebiotics [77].
In contrast, prebiotic treatments (0.3 g/mouse/day)
exhibited anti-obesity, anti-diabetic, antioxidant, and anti-
inflammatory effects in obese mice and altered intestinal
microbial composition [76].
Exosaccharides or extracelluar polysaccharides (EPS)

consisting of sugar residues are bound to the cell surface
of gram-positive/negative bacteria, or secreted as sol-
uble/insoluble polymers [97]. Probiotic-derived EPS are
counterparts of LPS produced by pathogenic bacteria,
and antagonize the bacteria and endotoxins [98,99]. EPS
is heat resistant with its degradation temperature of
260 °C [100], similar to LPS. Supplementation of EPS
isolated from Bifidobacterium results in immunomodu-
latory effects (5 g/mL of EPS) in macrophages and anti-
microbial effects against pathogenic bacteria (80 g/mL of
EPS) [101]. Oral administration of EPS (100 mg/kg body
weight/day of Lactobacillus kefiranofaciens for 2 to
7 days) effectively induces systemic immunity through
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Figure 1 Mechanistic links of metabolic diseases. Overnutrition (chronic intake of high fat/sugar diets) may modulate intestinal environment,
and subsequently may lead to chronic low-grade inflammation locally and systemically and alter metabolism.
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cytokines released into the circulating blood of mice
[102]. Hypoglycemic effects of EPS derived from mush-
rooms (Tremella fuciformis and Phellinus baumii) were
observed in obese mice, and the effects were associated
with increased PPARγ expression [103]. Lactobacillus
species-derived EPS (kefiran) prevents the onset and de-
velopment of atherosclerosis in hypercholesterolemic
rabbits fed diet with 1% w/w kefiran through anti-
Figure 2 Relationships at microbial and molecular levels in metabolic
signaling pathways could be determinants in the development of metabol
(suppressors) of the diseases.
inflammatory and antioxidant properties [104]. EPS iso-
lated from Lactobacillus paracasei exhibits immunomo-
dulatory and antioxidant properties in a dose-dependent
manner [105].
Therefore, one is lead to speculate that health promoting

properties of probiotics could be related to PPARγ activa-
tion through their products by antagonizing intestinal pro-
inflammatory bacteria, blocking the NF-кB p50/p65
diseases. Nutrition status, classes/species of intestinal bacteria, and
ic diseases and be expressed as agonists (inducers) or antagonists
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activation which is induced by LPS derived from the bac-
teria, and modulating intestinal environment/microbial
composition. Clinical trials of pro-/prebiotic intervention
are needed, as the speculation is attributed to mainly results
from animal studies.

Conclusions: Prospective insights
Mechanistic links of metabolic diseases are shown in
Figure 1. Optimum nutrition includes long-term in-
take of diets rich in unrefined carbohydrates (or
fibers/prebiotics), while overnutrition refers to long-
term intake of diets high in fats/meat (particularly
saturated fats) and refined carbohydrates (or simple
sugars). Chronic intake of diets high in fats and
sugars may alter intestinal environment, including mi-
crobial composition and mucosal structure/functions,
and result in a vulnerable microbial barrier and
increased permeability of the intestines or leaky gut
[67]. These changes allow intestinal bacteria and/or
LPS to move into the circulation, and eventually lead
to chronic systemic low-grade inflammation asso-
ciated with metabolic diseases [67,106]. Nutrition sta-
tus, classes/species of intestinal bacteria, and signaling
pathways could be classified as agonists (or inducers)
or antagonists (or suppressors) of metabolic diseases.
Overnutrition, increased ratio of pro-inflammatory
bacteria to total intestinal bacteria, and NF-кB p50/
p65 activation could serve as agonists of metabolic
diseases, whereas optimum nutrition, optimum ratio
of probiotic bacteria (e.g., Lactobacilli, Bifidobacteria),
and PPARγ activation could act as antagonists of the
diseases (Figure 2). The antagonists may be able to
alleviate or reverse processes induced by the agonists.
As previously described, classes/species and/or ratio
of pro-inflammatory bacteria remain to be determined
because the results of existing investigations were in-
conclusive. Further research are needed to clarify
classes/species or ratio of the bacteria to total bacter-
ial population.
The control of intestinal microbial composition by use of

probiotics and prebiotics is likely to impact the develop-
ment of metabolic diseases through modulation of immune
responses/inflammation and metabolism. Supplementation
of probiotics and prebiotics may delay and/or reverse the
progression of metabolic diseases. Additional preclinical
and clinical investigations are warranted to determine the
relationship between metabolism and immune system and
the efficacy of probiotics and prebiotics as preventative and
therapeutic means for metabolic diseases.
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