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Abstract

Background: The increased incidence of obesity and associated metabolic diseases has driven research focused on
genetically or pharmacologically alleviating metabolic dysfunction. These studies employ a range of fasting-
refeeding models including 4–24 h fasts, “overnight” fasts, or meal feeding. Still, we lack literature that describes the
physiologically relevant adaptations that accompany changes in the duration of fasting and re-feeding. Since the
liver is central to whole body metabolic homeostasis, we investigated the timing of the fast-induced shift toward
glycogenolysis, gluconeogenesis, and ketogenesis and the meal-induced switch toward glycogenesis and away
from ketogenesis.

Methods: Twelve to fourteen week old male C57BL/6J mice were fasted for 0, 4, 8, 12, or 16 h and sacrificed 4 h
after lights on. In a second study, designed to understand the response to a meal, we gave fasted mice access to
feed for 1 or 2 h before sacrifice. We analyzed the data using mixed model analysis of variance.

Results: Fasting initiated robust metabolic shifts, evidenced by changes in serum glucose, non-esterified fatty
acids (NEFAs), triacylglycerol, and β-OH butyrate, as well as, liver triacylglycerol, non-esterified fatty acid, and
glycogen content. Glycogenolysis is the primary source to maintain serum glucose during the first 8 h of
fasting, while de novo gluconeogenesis is the primary source thereafter. The increase in serum β-OH butyrate
results from increased enzymatic capacity for fatty acid flux through β-oxidation and shunting of acetyl-CoA
toward ketone body synthesis (increased CPT1 (Carnitine Palmitoyltransferase 1) and HMGCS2 (3-Hydroxy-3-
Methylglutaryl-CoA Synthase 2) expression, respectively). In opposition to the relatively slow metabolic
adaptation to fasting, feeding of a meal results in rapid metabolic changes including full depression of serum
β-OH butyrate and NEFAs within an hour.

Conclusions: Herein, we provide a detailed description of timing of the metabolic adaptations in response to
fasting and re-feeding to inform study design in experiments of metabolic homeostasis. Since fasting and
obesity are both characterized by elevated adipose tissue lipolysis, hepatic lipid accumulation, ketogenesis,
and gluconeogenesis, understanding the drivers behind the metabolic shift from the fasted to the fed state
may provide targets to limit aberrant gluconeogenesis and ketogenesis in obesity.
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Background
The 22.9 % incidence of metabolic syndrome has driven
research focused on genetic, pharmacologic, stress, and
diet induced changes in metabolic status [1–4]. Inter-
pretation and design of these studies requires an in
depth understanding of the acute changes in metabolite
flux induced by either fasting or meal consumption, yet
the literature lacks studies that evaluate the timing of
metabolic adaptations to acute changes in food con-
sumption. Fasting durations range from 4 h to 48 h. The
commonly reported “overnight fast” is indicative of the
disregard for shifting physiological adaptations that ac-
company fasts of varying duration. Most importantly the
food deprivation and resulting metabolic perturbations
are often imposed without an explanation of physio-
logical considerations.
The liver is the central tissue maintaining metabolic

homeostasis as the animal shifts between fed and fasted
states. Fasting induces hepatic glucose and ketone body
production, glycogen depletion, and triacylglycerol accu-
mulation [5–7]. The triacylglycerol accumulation is a re-
sponse to increased adipose tissue lipolysis [7], while
many of the metabolic adaptations are adaptive to pre-
vent hepatic lipotoxicity [6, 8, 9]. Feeding a carbohydrate
containing meal stimulates hepatic glucose uptake and
glycolysis, repletes glycogen stores, and induces fatty
acid synthesis, while inhibiting β-oxidation and ketogen-
esis [10–13]. Understanding the elasticity of hepatic me-
tabolite flux and the central role of the liver in providing
nutrients to peripheral tissues is essential to studies of
metabolic perturbation.
We conducted two sets of studies to delineate the tim-

ing of hepatic metabolic adaptations that maintain
homeostasis through the transitions from the fed to the
fasted and back to the fed state across physiologically
relevant durations in the mouse. The first set of studies
set out to understand the duration of fast that induces
glycogenolysis, gluconeogenesis, β-oxidation and ketogen-
esis. To assess this, we have measured serum metabolites,
hepatic glycogen and triglyceride content, activity of rate
limiting enzymes in gluconeogenesis and ketogenesis, and
the mRNA expression of enzymes and nuclear hormone
receptors that regulate flux through β-oxidation, ketogen-
esis, and gluconeogenesis. Subsequently, we examined the
effects of re-feeding after a fast to understand the hepatic
transition from the fasted to the fed state. Together these
studies define the timing of changes in hepatic metabolism
and aim to encourage informed application of these diet-
ary manipulations to study metabolic diseases.

Methods
Animals
Twelve to fourteen week old male C57BL/6J mice were
purchased from The Jackson Laboratory (Bar Harbor,

ME). Individually housed mice were exposed to a 14-h
light/10-h dark cycle, given ad libitum access to NIH-31
chow (Harlan Laboratories, Indianapolis, IN) and water,
and adapted to the environment for 1 week prior to
study initiation. Mice were housed on wood chip bed-
ding (Harlan Laboratories; Cat #7090 Sani-Chips) to
limit any potential consumption of nutrients from bed-
ding during the fasting period. We initiated fasting at ei-
ther 4, 8, 12, or 16 h prior to sacrifice 4 h after lights on
for all mice. In the fast-refeed study, mice were given ac-
cess to food at 4 h after lights on for 0, 1, or 2 h after 0,
8, or 16 h of fasting. These studies were approved by the
Institutional Animal Use and Care Committee at the
University of Arizona.

Sample collection and storage
We anesthetized mice with isoflurane using the bell-jar
method and sacrificed mice by decapitation to collect
trunk blood. The blood clotted at 4 °C overnight. To col-
lect serum, we centrifuged the blood at 3,000 × g for
30 min. Serum was stored at −80 °C until analysis.
Whole liver was collected, immediately frozen on dry
ice, and stored at −80 °C. To obtain a homogenous liver
sample, we powdered whole frozen liver using a liquid
nitrogen cooled mortar and pestle.

Serum analyses
We used colorimetric assays to analyze serum β-OH bu-
tyrate (Cat. # 700190, Cayman Chemicals, Pittsburg,
PA), glucose (Cat. # G7519, Pointe Scientific Inc.,
Canton MI), non-esterified fatty acids (NEFA; HR Series
NEFA-HR, Wako Diagnostics, Richmond, VA), and tri-
acylglycerols (Cat# T7531, Ponte Scientific Inc., Canton,
MI).

Liver analyses
We extracted total liver mRNA with TRI Reagent® (Life
Technologies, Grand Island, NY), performed reverse
transcription using Verso cDNA synthesis kit (Thermo
Scientific, Inc., Waltham, MA) and performed real-time
PCR using SYBR 2X mastermix (Bio-Rad Laboratories,
Hercules, CA) and the Biorad iQ™5 iCycler (Bio-Rad
Laboratories, Hercules, CA). Prior to initiating the re-
verse transcription reaction, RNA was cleared of any
phenol contamination using a water saturated butanol and
ether method [14]. Table 1 list the primers used to analyze
expression of β-actin (ACTB), D-beta-hydroxybutyrate de-
hydrogenase type 1 (BDH1), D-beta-hydroxybutyrate de-
hydrogenase type 2 (BDH2), 3-hydroxy-3-methyl glutaryl
CoenzymeA synthase II (HMGCS2), peroxisome prolif-
erator activated receptor α (PPARα), uncoupling protein 2
(UCP2), glucose 6-phosphatase (G6Pase), phosphoenoly-
pyruvate carboxykinase (PEPCK), and carnitine palmi-
toyltransferase (CPT1) mRNA. Raw amplification data
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was imported into LinReg PCR analysis software to
establish efficiency of amplification [15] and output
data was converted to fold change in expression using
the efficiency-ΔΔCt method and with β-actin as the
housekeeping gene [16].
We used the Folch method to extract total lipid from

powdered liver [17]. Extracted lipids were assayed for
triacylglyerol (Cat# T7531, Ponte Scientific Inc., Canton,
MI) and expressed as mg triacylglycerol/g liver. Liver
NEFA content was assessed by homogenizing 10–20 mg
of powdered liver tissue in 10 volumes 0.1 M phosphate
buffered saline. NEFA were extracted from the tissue
homogenate by vortexing with 10 volumes of 100 %
ethanol for 20 min. Subsequently, NEFA were measured
in 50 μl of ethanol using a commercially available non-
esterified fatty acid kit (HR Series NEFA-HR, Wako
Diagnostics, Richmond, VA). Dilution in ethanol rather
than phosphate buffered saline did not affect the absorb-
ance resulting from the standards, but standards were
diluted in 100 % ethanol so that samples and standards
were in the same diluent. Liver glycogen content was
measured using a previously described colorimetric
assay [18].
Using previously described enzyme activity assays that

rely on the NADH to NAD+ ratio, we measured the en-
zymatic drive of acetoacetate to β-OH butyrate (BDH1
activity) and gluconeogenic potential from tricarboxylic
acid (TCA) cycle intermediates (PEPCK activity) in
powdered liver tissue homogenates as previously de-
scribed [19, 20]. To measure liver adenosine triphos-
phate (ATP) content, we homogenized liver in somatic
cell ATP releasing agent (Cat. FLASR, Sigma Chemical
Co., St. Louis, MO) and measured ATP using an ATP
Determination Kit (A22066, Molecular Probes, Eugene,
OR) with luciferase read in real time on Clarity™
Luminescence Microplate Reader (BioTek Instruments,
Winooski, VT). Liver cyclic adenosine monophosphate
(cAMP), an integrative measure of hormone signaling
within the hepatocyte, was measured in powdered liver

tissue by enzyme-linked immunosorbent assay (ELISA;
ADI-900-066, Enzo Life Sciences, Farmingdale, NY) and
expressed per gram of tissue.

Statistical analysis
We analyzed the effect of fasting duration on all
dependent variables using the mixed model in SAS En-
terprise Guide 4.3 (SAS Institute Inc., Cary, NC). Prob-
abilities of differences between means were determined
using Tukey’s adjustment for multiple comparisons. The
effects of re-feeding were analyzed with a two-way
ANOVA including fasting duration (0 and 16 h) and re-
feeding duration (0, 1, and 2 h) and their interaction as
the main effects. The probabilities of differences between
means were assessed within a fasting duration and
within a re-feeding duration. Accordingly, a Bonferroni
correction was employed. Independent variables were
identified as classification variables in both models. All
raw data was plotted in Graphpad PRISM® Version 5.04
for Windows (GraphPad Software, San Diego California
USA, www.graphpad.com).

Results
Fasting duration
Fasting decreased serum glucose levels significantly by
12 h (P < 0.05; Fig. 1a). In accordance with increased
lipolysis at adipose tissue, serum NEFA concentrations
increased with duration of fasting (P = 0.02; Fig. 1b).
Four hours of fasting maximally decreased serum tri-
acylglycerol concentrations (P < 0.05; Fig. 1c), which
remained depressed with additional fasting. The most
robust response to fasting was the increase in serum
β-OH butyrate concentration (P < 0.0001; Fig. 1d). In
fact, serum β-OH butyrate concentration was elevated
by 8 h of fasting and continued to increase with dur-
ation of fasting. At 16 h of fasting, serum β-OH butyrate
was approximately 5 times greater than baseline levels.
The relatively steady serum glucose concentrations and
elevation in serum β-OH butyrate during a fast result

Table 1 Primer sequences for real-time PCR

Target Forward primer (5′-3′) Reverse primer (5′-3′) Gene ID

β-actin TCGGTGACATCAAAGAGAAG GATGCCACAGGATTCCATA 11461

β-OH Butyrate Dehydrogenase 1 AGGCTGTGACTCTGGATTTGGG CTGGATGGTTCTCAGTCGGTCA 71911

β-OH Butyrate Dehydrogenase 2 AGGAGCTGGAAAGACCGAGG TCGCAATCCAGGATGGTTCCGT 69772

3-hydroxy-3-methylglutaryl-CoA Synthase II AGAGAGCGATGCAGGAAACTT AAGGATGCCCACATCTTTTGG 15360

Peroxisome Proliferator Activated Receptor α AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTTGCAAAACCAAA 19013

Uncoupling Protein 2 ATGGTTGGTTTCAAGGCCACA CGGTATCCAGAGGGAAAGTGAT 22228

Glucose 6 Phosphatase CGACTCGCTATCTCCAAGTGA GTTGAACCAGTCTCCGACCA 14377

Phosphoenolpyruvate Carboxykinase CTGCATAACGGTCTGGACTTC CAGCAACTGCCCGTACTCC 18534

Carnitine Palmitoyltransferase I CTCCGCCTGAGCCATGAAG CACCAGTGATGATGCCATTCT 12894

Annealing temperature for all primer pairs was 58 °C, except HMGCS2 which was 55 °C
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from the shift toward hepatic glucose and ketone body
production.
Hepatic glucose production relies on either glycogen

breakdown or gluconeogenesis from glycerol, amino
acids, or TCA cycle intermediates. Accordingly, we mea-
sured the decrease in hepatic glycogen content with fast-
ing duration (Fig. 2a). Within 8 h more than 50 % of
liver glycogen was depleted and at 12 h glycogen content
was minimal. Hepatic glucose production from either
glycogenolysis or gluconeogenesis is dependent on
glucose-6-phosphatase. Glucose-6-phosphatase (G6P)
mRNA expression rose with duration of fasting increas-
ing 240 % by 16 h of fasting (P < 0.05; Fig. 2b). To assess
the gluconeogenic potential from TCA cycle intermedi-
ates we assessed PEPCK activity and gene expression.
PEPCK activity and mRNA expression increased with
the duration of fast, reaching significance only at 16 h of
fasting (Figs. 2c and d). Serum glucose decreased by
45 % between hours 8 and 12 of fasting, corresponding
with maximal glycogen depletion at 12 h of fasting
(Figs. 1a and 2a). However, serum glucose recovered by
28 % at 16 h fasting, when the greatest level of PEPCK
activity was observed. This suggests a heavier reliance
on gluconeogenesis to maintain serum glucose concen-
trations after glycogen stores have been exhausted.
PEPCK mRNA and PEPCK activity are altered by cAMP,

a downstream messenger increased by glucagon and de-
creased by insulin [21–25]. Interestingly, this integrative
measure of insulin and glucagon signaling at the liver,
followed a nearly identical pattern as PEPCK activity. In
fact, cAMP was minimal at 4 h of fasting and increased
linearly with time to 16 h (Fig. 2e). Accordingly, and the
hepatic cAMP concentration and PEPCK activity were
highly correlated (R2 = 0.47).
The liver is the primary source of β-OH butyrate. To

understand the induction of ketogenesis we first mea-
sured the hepatic accumulation of liver triacylglycerol
and non-esterified fatty acids, the primary substrate fuel-
ing ketone synthesis. Liver triacylglycerol and non-
esterified fatty acid concentrations increased with dur-
ation of fast (P < 0.0001; Fig. 3a and b). In fact, a signifi-
cant rise in liver NEFA was observed within 4 h of
fasting. The lipolytic and ketogenic responses to fasting
depend, in part, on expression of PPARα, a NEFA acti-
vated nuclear hormone receptor, which promotes ex-
pression of genes essential to enhanced ketogenesis
(CPTI, HMGCS2, BDH1, and UCP2; [8, 26–28]). Fasting
increased expression of PPARα mRNA within 8 h and
expression continued to increase out to 16 h (P < 0.05,
Fig. 3c). CPT1 mRNA was also significantly elevated at
8 h and continued to rise to 16 h (P < 0.0001; Fig. 3d). In
the fasted liver, CPT1 encourages flux of fatty acids

Fig. 1 Changes in serum metabolites in response to fasting duration. Serum concentration of a glucose, b non-esterified fatty acid (NEFA), c triac-
ylglycerol (TAG), and d β-OH Butyrate in mice that were fasted for 0, 4, 8, 12, and 16 h. a,b,c,dBars that do not share a common letter differ signifi-
cantly (P < 0.05; n = 6)
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Fig. 2 Hepatic glucoregulatory responses to fasting duration. Liver a glycogen (mg/g tissue) content, b Glucose 6 phosphatase (G6Pase) mRNA
expression, c Phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression, d PEPCK activity, and e cAMP concentration (pM/g tissue). a,b,c Bars
that do not share a common letter differ significantly (P < 0.05; n = 6)

Fig. 3 Hepatic lipid storage and metabolism responses to increasing fasting duration. Liver a Triacylglycerol (TAG) content, b Non-Esterified Fatty
Acid, c Peroxisome proliferator-activated receptor alpha (PPARα) mRNA expression, d Carnitine palmitoyl transferase I (CPT1) mRNA expression,
and e Hydroxymethylglutaryl Coenzyme A Synthase 2 (HMGCS2) mRNAexpression. a,b,c,dBars that do not share a common letter differ significantly
(P < 0.05; n = 6)
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through β-oxidation, resulting in the production of
acetyl-CoA [29]. HMGCS2 is then required for the flux
of acetyl-CoA into ketogenesis. Twelve and 16 h of
fasting increased hepatic HMGCS2 mRNA expression
(P < 0.0001, Fig. 3e).
The flux of fatty acids through β-oxidation and acetyl-

CoA through the tricarboxylic acid cycle increases hep-
atic mitochondrial NADH production. Without regener-
ation of NAD+, there would be limited flux of fatty acids
through β-oxidation and decreased production of acetyl-
CoA, which would limit ketogenesis. The liver has
adapted 2 methods to regenerate NAD+ during a fast.
First, it can increase the ratio of β-OH butyrate to acet-
oacetate production by altering the expression of BDH1
and BDH2. BDH1 primarily catalyzes the conversion of
acetoacetate to β-OH butyrate and simultaneously
NADH to NAD+, while BDH2 catalyzes the reverse reac-
tion. Hepatic BDH1 activity increased within 4 h of fast-
ing (P = 0.02; Fig. 4a). This preceded a significant
increase in BDH1 mRNA, which was significantly ele-
vated by fasting at 8 and 12 h (P < 0.05; Fig. 4b). Fasting
decreased BDH2 mRNA expression significantly by 16 h
(P < 0.05; Fig. 4c). By increasing BDH1 and decreasing
BDH2, fasting increased the BDH1:BDH2 ratio to favor

synthesis of β-OH butyrate and NAD+ (Fig. 4d). Alterna-
tively, the liver can regenerate NAD+ by uncoupling
electron transport and oxidative phosphorylation
through upregulation of uncoupling protein 2, a PPARα
responsive gene. We observe a robust fasting induced
increase in UCP2 expression (P < 0.0001; Fig. 4e). This
increase in hepatic UCP2 expression is expected to de-
crease hepatic ATP synthesis, explaining the reduction
in hepatic ATP content following an overnight fast [30,
31]. Accordingly, liver ATP content decreased as the
fasting duration went from 4 and 8 to 16 h (P = 0.02;
Fig. 4f ).

Re-feeding after fasting
The 1 h food intakes in mice fasted for 0, 8 or 16 h were
0.10 ± 0.03, 0.60 ± 0.06 and 0.81 ± 0.05 g, respectively.
The food intake during the second hour of refeeding
was 0.03 ± 0.02, 0.11 ± 0.01 and 0.34 ± 0.10 g, respect-
ively. This food intake data provides context for re-
feeding responses presented in Figs. 5, 6, 7, and 8.
In mice that were maintained on ad libitum feeding

throughout the study (0 h fasting duration), food was
never removed, yet the time of sacrifice was 1 or 2 h
later to match that in the fast-refed groups. Accordingly,

Fig. 4 Mechanisms that regenerate NAD+ to allow for continued metabolic flux through β-oxidation and the tricarboxylic acid cycle. First, we
present a β-OH butyrate dehydrogenase 1 (BDH 1) activity and b BDH1 mRNA expression to understand the potential regeneration of NAD+ as
acetoacetate is converted to β-OH butyrate by β-OH butyrate dehydrogenase 1. c BDH2 converts β-OH butyrate to acetoacetate and in turn
reduces NAD+ to NADH. d By assessing the relative ratio of BDH1:BDH2 we can see that as fasting duration is extended so is the flux from
acetoacetate to β-OH butyrate which will increase the regeneration of NAD+. Finally, we shown that uncoupling protein 2 expression increases
with fasting duration (e), leading to decreased synthesis of ATP and decreased hepatic ATP content (f). a,bBars that do not share a common letter
differ significantly (P < 0.05; n = 6)
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there was little response to this delay in sacrifice. In fact,
the only significant effect in the 0 h fasted group, was a
decrease in serum triacylglycerols at 1 h of “re-feeding”
that was not evident at 2 h (P = 0.047; Fig. 5c). All other
measures of serum metabolites, hepatic mRNA expres-
sion, hepatic enzyme activity, and hepatic metabolites
showed no effect of sacrificing the mice 1 or 2 h later
(P > 0.05). Thus, responses to 1 and 2 h of refeeding ob-
served in 8 or 16 h fasted mice are a result of the re-
feeding following a fast.
The hyperphagia following a 16 h fast elevated serum

glucose 1 h after re-feeding (P < 0.05; Fig. 5a). Re-feeding
suppressed serum NEFA levels in both 8 and 16 h fasted
mice (P < 0.001; Fig. 5b). Interestingly, 2 h of re-feeding
returned serum TAG to ad libitum fed levels in 8 h
fasted mice, but had no effect in 16 h fasted mice
(Fig. 5c). The 8 and 16 h fasting induced increases in
serum β-OH butyrate were erased within 1 h of re-
feeding and remained the same as ad libitum fed mice
2 h after initiation of refeeding (Fig. 5d).
We expected the post-fast hyperphagia to increase

serum glucose, resulting in hormonal changes that
stimulate hepatic glycogen synthesis and inhibit hepatic
glucose production. Liver glycogen concentration in-
creased significantly with 2 h of refeeding, but did not

return to concentrations seen in ad libitum fed mice
(Fig. 6a). As expected, refeeding robustly depressed
G6Pase mRNA expression in both 8 and 16 h fasted
mice (P < 0.0001; Fig. 6b) [32]. Within 1 h of re-feeding
hepatic PEPCK activity was no longer elevated relative
to ad libitum fed mice (Fig. 6d). The response to re-
feeding was more evident in PEPCK mRNA expression
as 1 and 2 h of refeeding depressed 16 h fasting expres-
sion by 65 and 93 %, respectively (P < 0.0001; Fig. 6c).
The robust depression in serum β-OH butyrate indi-

cates that ketogenesis is dramatically depressed within
1 h of refeeding. Substrate is not limiting, as hepatic tri-
acylglycerol and non-esterified fatty acid content were
not affected by 2 h of re-feeding in either 8 or 16 h
fasted mice (P > 0.1; Fig. 7a and b). To understand the
gene expression changes that may mediate this robust
decrease in ketogenesis we measured PPARα, CPTI,
HMGCS2, BDH1, and BDH2 mRNA expression changes
in response to refeeding. A decrease in mRNA expres-
sion is a combined measure of decreased expression and
increased mRNA turnover. After 8 h of fasting, refeeding
did not significantly decrease expression of PPARα,
CPTI, or HMGCS2 mRNA (P > 0.05; Fig. 7c-e). How-
ever, expression of these genes did not differ from the
non-fasted animals after 2 h of refeeding (P > 0.05). In

Fig. 5 Serum metabolites in response to re-feeding. Serum a glucose, b non-esterified fatty acids (NEFA), c triacylglycerol (TAG), and d β-OH
butyrate concentrations in mice fasted for 0, 8, or 16 h then allowed to re-feed for 0 (white bars), 1 (grey bars), or 2 (black bars) hours. *Denotes a
significant difference from 0 h fasting within re-feeding duration (P < 0.05). a,bBars that do not share a common letter differ significantly within
fasting duration (P < 0.05; n = 3–6). NS, no significant differences within a fasting duration (P > 0.05)
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16 h fasted mice re-feeding for 1 h significantly decreased
expression of PPARα and CPT1 mRNA (P < 0.05). Expres-
sion of CPT1 and HMGCS2 mRNA decreased further
after 2 h of food provision (P > 0.05).
To examine expression of genes involved in NAD+ re-

generation, we again measured BDH1, BDH2, and UCP2
mRNA expression. Interestingly, expression of these
genes does not appear to be under robust control in re-
sponse to meal consumption. BDH1 and BDH2 mRNA
expression and the ratio of expression didn’t change with
re-feeding in either 8 or 16 h fasted mice (Fig. 8a-c).
UCP2 expression was not changed by refeeding in 8 h
fasted mice, but decreased with 2 h of refeeding in 16 h
fasted mice (P < 0.05; Fig. 8d).

Discussion
Here we show the timing of the fasting induced meta-
bolic shift toward gluconeogenesis, glycogenolysis, β-
oxidation, and ketogenesis in the mouse. Flux through
each of these pathways was evaluated using biochemical
indicators of pathway activity, enzyme activity assays,
and measurement of mRNA expression. Gluconeogenic
potential was assessed by the change in PEPCK mRNA
and activity, glycogenolytic potential by the change in
hepatic glycogen content, and the potential for hepatic
glucose output by G6Pase mRNA [5]. Elevated mRNA

expression of gluconeogenic and ketogenic enzymes
translates functionally into increased flux through these
metabolic pathways. In fact, mice overexpressing PEPCK
mRNA, have elevated hepatic glucose output both in
vivo and in vitro [5, 33], while overexpression of G6Pase
mRNA results in hyperglycemia, hyperinsulinemia, and an
over 50 % reduction in liver glycogen [34, 35]. Overex-
pression of CPT1 or HMGCS2 increases hepatic β-
oxidation and ketone synthesis [36, 37], while HMGCS2
knockdown completely eliminates the fasting induced rise
in serum β-OH butyrate [38]. We measured mRNA for
CPT1, a fatty acid translocase whose expression controls
the rate of fatty acid flux into the mitochondria and the
flux through β-oxidation [39]. Serum β-OH butyrate con-
centration, BDH1 activity, and expression of mRNA en-
coding HMGCS2, BDH1, and BDH2 were measured as
indicators of ketogenic potential from acetyl-CoA.
The 24 or 48 h food deprivation that is commonly

employed in rodent studies appears to better model star-
vation than fasting [40–44]. In fact, serum NEFA con-
centrations are similarly elevated by 8 h of fasting in the
mouse and 24 h of fasting in the human [45]. In rats,
G6Pase mRNA is increased 3.5 times in 24 h fasted rats
and not further increased by 48 h fasting [32], while
48 h fast increases CPT1 mRNA 7.5 times relative to the
fed animal [46]. We observed similar 3.4 and 7.4 times

Fig. 6 Hepatic glucoregulatory responses to re-feeding after a fast. Liver a glycogen (mg/g tissue) content, b Glucose 6 phosphatase (G6Pase)
mRNA expression, c Phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression, d PEPCK activity, and e cAMP concentration (pM/g tissue).
*Denotes a significant difference from 0 h fasting within re-feeding duration (P < 0.05). a,bBars that do not share a common letter differ signifi-
cantly within fasting duration (P < 0.05; n = 3–6). NS, no significant differences within a fasting duration (P > 0.05)
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increases in G6Pase and CPT1 mRNA, respectively, at
16 h fasting in the mouse (Figs. 2b and 3d). Thus, max-
imal changes in mRNA expression induced by fasting
may be achieved within 16 h in mice. We conclude that
8 h fasting in the mouse represents a realistic time point
for metabolic adaptations which occur early in a fast, as
hepatic triglyceride accumulation and serum β-OH bu-
tyrate are minimally elevated and hepatic glycogen re-
serves are not yet depleted. In the mouse, 16 h of
fasting, represents a complete induction of the fasting
response, as hepatic triglyceride and serum β-OH butyr-
ate concentrations are robustly elevated and hepatic
glycogen stores are exhausted. Thus, refeeding after
8 h and after 16 h represents the transition from the
fasted back to the fed state after a partial and
complete activation of hepatic fasting metabolic adap-
tations, respectively.
Serum glucose homeostasis at the onset of fasting re-

lied heavily on depletion of hepatic glycogen content,
which was almost fully exhausted by 12 h of fasting
(Fig. 2a). When the fasting duration exceeded 8 h, we
observed increases in hepatic gluconeogenic potential
(PEPCK activity and mRNA expression, Fig. 2c and d)
from TCA cycle intermediates. When re-fed, the in-
crease in hepatic glycogen combined with a decrease in

G6Pase and PEPCK mRNA indicate inhibition of hepatic
glucose output. Elevated serum insulin immediately
stimulates hepatic glycogen synthesis upon refeeding,
and glycogen content is restored to the level of fed ani-
mals by 5 h of refeeding [47, 48]. Interestingly, hepatic
glycolysis remains low during the initial refeeding phase,
while gluconeogenesis remains active until hepatic glyco-
gen levels are restored [47, 48]. In fact, early glycogen
repletion is a consequence of maintained hepatic gluco-
neogenesis [48–50]. Thus, although PEPCK and G6Pase
mRNA expression decreases immediately upon termin-
ation of a fast, the switch from gluconeogenesis to gly-
colysis does not occur until several hours following
refeeding. During early fasting hepatic glucose output is
dominated by glycogenolysis and replenishment of
glycogen stores through glycogenesis is prioritized upon
refeeding. Therefore, hepatic glycogen appears to play a
central role in maintenance of short-term glucose
homeostasis during transitions between the fed and
fasted state [51].
Re-feeding immediately and robustly inhibits adipose

tissue lipolysis and hepatic ketogenesis as observed by
changes in serum NEFA and β-OH butyrate (Fig. 5b
and d). The declines in hepatic CPT1 and HMGCS2
mRNA expression parallel the decline in β-OH butyrate,

Fig. 7 Hepatic lipid storage and metabolism responses to re-feeding after a fast. Liver a Triacylglycerol (TAG) content, b Non-Esterified Fatty Acid
(NEFA) content, c Peroxisome proliferator-activated receptor alpha (PPARα) mRNA expression, d Carnitine palmitoyl transferase I (CPT1) mRNA
expression, and e Hydroxymethylglutaryl Coenzyme A Synthase 2 (HMGCS2) mRNA expression. *Denotes a significant difference from 0 h fasting
within re-feeding duration (P < 0.05). a,b,cBars that do not share a common letter differ significantly within fasting duration (P < 0.05; n = 3–6). NS,
no significant differences within a fasting duration (P > 0.05)
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yet the decline in hepatic ketogenesis is more robust and
rapid than explained by changes in gene expression alone
(Fig. 7d and e). The inhibition of ketogenesis is not
dependent on a depression in hepatic β-oxidation, as high
levels of β-oxidation and low rates of de novo lipogenesis
have been reported to continue several hours into refeed-
ing [47, 52, 53]. More likely, it results from insulin’s inhib-
ition of HMGCS2 activity [54].
The pancreatic hormones, insulin and glucagon, are

critical mediators in coordinating the systemic re-
sponse to changes in nutritional status, with the liver
being a primary site of action. The insulin:glucagon
ratio decreases with fasting and increases upon
refeeding [55, 56]. Regulation of metabolite flux, en-
zyme activity, and gene expression is exerted through
changes in intracellular cAMP. Glucagon increases
cAMP concentrations through Gαs signaling at its re-
ceptor while insulin decreases cAMP concentrations
by enhancing phosphodiesterase activity [57]. Elevated
cAMP directly upregulates transcription of PEPCK,
G6Pase, CPT1, and HMGCS2 through identified cAMP
response elements (CRE) in the promoter region of these
genes [22, 58–60]. The observed increase in hepatic
cAMP with fasting and decline upon refeeding reflect

glucagon and insulin mediated control of gene transcrip-
tion (Figs. 2e and 6e).
In addition to cAMP signaling through CRE, a number

of hormonally regulated transcription factors control ex-
pression of gluconeogenic, β-oxidative, and ketogenic
enzymes. When fasted, decreased insulin and increased
glucagon result in dephosphorylation of forkhead box
proteins (FoxO) and class IIa histone deacetylases
(HDAC), respectively. This dephosphorylation allows
nuclear translocation of these proteins and upregulation
of G6Pase and PEPCK mRNA expression [61]. FoxA2,
inhibited by insulin dependent phosphorylation, stimu-
lates transcription of β-oxidative, and ketogenic enzymes
[62]. This is merely a short list of insulin and glucagon
regulated transcription factors meant to demonstrate the
central role of glucoregulatory hormone signaling in or-
chestrating the hepatic mRNA transcript expression in
transitions between the fed and fasted state [63].
Peroxisome proliferator activated receptor α (PPARα),

a nuclear hormone receptor that is activated by non-
esterified fatty acids (NEFAs), is another transcription
factor central to the metabolic shift initiated by fasting
[6]. Our results propose that liver NEFA concentrations
are very sensitive to the initiation of a fast, as NEFA

Fig. 8 Re-feeding induced changes in hepatic a β-OH butyrate dehydrogenase I (BDH1), b β-OH butyrate dehydrogenase II (BDH2), c BDH1:BDH2
mRNA expression ratio, and d uncoupling protein 2 (UCP2) mRNA expression. *Denotes a significant difference from 0 h fasting within re-feeding duration
(P< 0.05). a,b Bars that do not share a common letter differ significantly within fasting duration (P< 0.05; n= 3–6). NS, no significant differences within a
fasting duration (P> 0.05)
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concentrations increased 5.4 times within 4 h of fasting.
(Fig. 3b). NEFA activated PPARα binds to the promoter
and encourages expression of target genes involved in
flux through gluconeogenesis, β-oxidation, and ketogen-
esis [6, 64–67]. Indicative of the integral role for PPARα
in the gluconeogenic response to fasting, PPARα null
mice display fasting hypoglycemia [6, 64, 68]. PPARα
null mice also lack the ability to properly transition to
ketogenesis despite normal NEFA mobilization from adi-
pose tissue [6, 69]. PPARα induced expression of UCP2
is equally important to support the increased hepatic
lipid oxidation and ketogenesis of fasting [70]. In fact,
fasting does not increase serum β-OH butyrate in the
UCP2 knockout mouse [71]. By uncoupling oxidative
phosphorylation from the electron transport chain,
UCP2 allows unbridled oxidation of NADH to NAD+,
increasing the pool of NAD+ and allowing efficient oxi-
dation of fatty acids to acetyl CoA through β-oxidation.
Thus, PPARα signaling works to limit the potential hep-
atotoxic effects of lipid accumulation by enhancing lipid
oxidation and ketone body synthesis. PPARα null mice
display a muted gluconeogenic and ketogenic response
to fasting induced lipid accumulation. Like fasting, obes-
ity is characterized by hepatic lipid accumulation, hyper-
ketonemia, enhanced hepatic glucose production, and
decreased hepatic ATP content resulting from increased
expression of UCP2 [5–9, 31, 72–75]. These metabolic
changes are downstream of increased PEPCK mRNA,
protein, and activity, G6Pase mRNA and protein, and
CPT1 and BDH1 mRNA and appear to be common to
hepatic lipid accumulation [32, 76–79]. Mice fed diets
high in fructose, sucrose, or fat all develop hepatic lipid
accumulation and aberrantly overexpress hepatic
PEPCK, G6Pase, and UCP2 mRNA [80–82]. Interest-
ingly, PPARα null mice, which are unable to properly
upregulate gluconeogenesis and ketogenesis in response
to a fast, are protected from metabolic responses (hyper-
glycemia and hyperketonemia) common to obesity in-
duced lipid accumulation. Thus it appears that PPARα is
integral for the metabolic adaptations/maladaptations
(increased ketogenesis and gluconeogenesis) in response
to either fasting or obesity-induced lipid accumulation.
Given that many of the metabolic pathways that are active
during fasting are also active in obesity, careful consider-
ation must be applied toward study design and data inter-
pretation when food depriving diet- or genetically induced
obese mice.

Conclusion
There are common hepatic adaptations to lipid accumu-
lation resulting from either fasting or obesity. Outlining
how hepatic ketogenic and gluconeogenic fluxes are nor-
mally affected by fasting and feeding is essential to opti-
mally design studies aimed at understanding aberrant

metabolic flux through these pathways. These data will
allow for informed design of studies aimed at under-
standing the response to fasting and obesity induced
maladaptations in hepatic metabolism.
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