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Abstract
Background Body composition and body fat distribution are important predictors of cardiometabolic diseases. 
The etiology of cardiometabolic diseases is heterogenous, and partly driven by inter-individual differences in tissue-
specific insulin sensitivity.

Objectives To investigate (1) the associations between body composition and whole-body, liver and muscle insulin 
sensitivity, and (2) changes in body composition and insulin sensitivity and their relationship after a 12-week isocaloric 
diet high in mono-unsaturated fatty acids (HMUFA) or a low-fat, high-protein, high-fiber (LFHP) diet.

Methods This subcohort analysis of the PERSON study includes 93 individuals (53% women, BMI 25–40 kg/m2, 
40–75 years) who participated in this randomized intervention study. At baseline and after 12 weeks of following 
the LFHP, or HMUFA diet, we performed a 7-point oral glucose tolerance test to assess whole-body, liver, and muscle 
insulin sensitivity, and whole-body magnetic resonance imaging to determine body composition and body fat 
distribution. Both diets are within the guidelines of healthy nutrition.

Results At baseline, liver fat content was associated with worse liver insulin sensitivity (β [95%CI]; 0.12 [0.01; 0.22]). 
Only in women, thigh muscle fat content was inversely related to muscle insulin sensitivity (-0.27 [-0.48; -0.05]). 
Visceral adipose tissue (VAT) was inversely associated with whole-body, liver, and muscle insulin sensitivity. Both 
diets decreased VAT, abdominal subcutaneous adipose tissue (aSAT), and liver fat, but not whole-body and tissue-
specific insulin sensitivity with no differences between diets. Waist circumference, however, decreased more following 
the LFHP diet as compared to the HMUFA diet (-3.0 vs. -0.5 cm, respectively). After the LFHP but not HMUFA diet, 
improvements in body composition were positively associated with improvements in whole-body and liver insulin 
sensitivity.
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Background
Obesity is accompanied by an increased risk for the 
development of chronic cardiometabolic diseases, includ-
ing cardiovascular diseases (CVD), type 2 diabetes (T2D) 
and several types of cancer. However, individuals with 
obesity make a heterogeneous group where some develop 
cardiometabolic diseases while others remain relatively 
healthy [1, 2]. Furthermore, the etiology towards obe-
sity-associated cardiometabolic diseases is highly heter-
ogenous. Insulin resistance for example can develop to 
a different extent in insulin-sensitive organs such as the 
liver and skeletal muscle within individuals with obesity, 
representing different etiologies towards T2D and car-
diometabolic risk [3].

The body mass index (BMI) is a simple and inexpensive 
measurement that has been extensively used to identify 
obesity, but it is not a good indicator of cardiometabolic 
health at the individual level [4]. Body composition and 
body fat distribution, which include the distribution of fat 
storage in different adipose tissue depots, skeletal mus-
cle mass, and ectopic fat deposition, can help to explain 
the differences in cardiometabolic disease risk observed 
among individuals with overweight or obesity [1, 5–8]. 
Indeed, excessive abdominal visceral and subcutaneous 
adipose tissue (VAT and SAT) [6] and low skeletal mus-
cle mass [1, 7], as well as liver fat [6], are strongly associ-
ated with whole-body insulin resistance in humans. Body 
composition and body fat distribution may be important 
determinants of tissue-specific metabolic disturbances 
and may thus also be associated with tissue-specific insu-
lin resistance [7, 9]. Notably, clear sex differences in body 
composition and its relationship to cardiometabolic dis-
eases have been reported, as extensively reviewed [10]. 
However, whether body composition and body fat dis-
tribution can (partially) explain the distinct etiologies of 
the tissue-specific insulin resistant phenotypes in obesity, 
and whether this is different between men and women, is 
unclear.

Adopting a healthy diet is an important strategy for 
decreasing cardiometabolic disease risk, at least partially 
due to positive effects on body composition [11–13]. 
Both quality and quantity of dietary protein, fat and car-
bohydrate seem to impact body composition, body fat 
distribution, and ectopic fat deposition [9, 12], as well 
as affect insulin sensitivity and glucose control [14]. We 

have recently shown that two isocaloric diets within 
guidelines of healthy nutrition - a low-fat, high-protein, 
high-fiber diet (LFHP) and a high mono-unsaturated 
fatty acid diet (HMUFA) - can both elicit pronounced 
improvements in body composition and several cardio-
metabolic parameters [15]. Nevertheless, it is not yet 
clear what the effect of these two isocaloric healthy diets 
differing in macronutrient composition are on body com-
position and body fat distribution, measured with state-
of-the-art methodology, including characterization of 
VAT and SAT, ectopic fat deposition, and skeletal muscle 
volume and whether these improvements are related to 
improvements in (whole-body and tissue-specific) insulin 
sensitivity.

The present study aimed to investigate the relationship 
between body composition, body fat distribution, ectopic 
fat deposition, and muscle volume with whole-body and 
tissue-specific insulin sensitivity. Furthermore, we inves-
tigated the impact of a 12-week dietary intervention with 
either an isocaloric LFHP or a HMUFA diet, both within 
the context of the Dutch dietary guidelines for healthy 
nutrition, on changes in body composition and insulin 
sensitivity, as well as the relationship between improve-
ments in body composition and improvements in insu-
lin sensitivity. The findings may provide leads for dietary 
intervention strategies that better target cardiometabolic 
risk factors in obesity.

Methods
Study design and population
The present analysis is a part of the larger two-center 
(Maastricht University Medical Center+ (MUMC+) and 
Wageningen University (WUR), both The Netherlands) 
double-blind, randomized dietary intervention trial, the 
PERSonalized Glucose Optimization Through Nutri-
tional Intervention (PERSON) study. The rationale and 
methodology of the PERSON study have been described 
previously [16]. Recruitment started June 2018 and the 
study was completed November 29, 2021. Originally, 242 
participants were included and randomly assigned to 
either Phenotype Diet (PhenoDiet) group A or PhenoDiet 
group B. PhenoDiet group A included individuals with 
MIR following a HMUFA, and individuals with LIR fol-
lowing a LFHP diet. PhenoDiet group B included individ-
uals with muscle (MIR) and liver insulin resistance (LIR) 

Conclusions Liver and muscle insulin sensitivity are distinctly associated with liver and muscle fat accumulation. 
Although both LFHP and HMUFA diets improved in body fat, VAT, aSAT, and liver fat, only LFHP-induced improvements 
in body composition are associated with improved insulin sensitivity.
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on LFHP and HMUFA diets, respectively. Both research-
ers and participants were blinded to the participants’ 
metabolic phenotype (LIR or MIR), and thus blinded to 
whether participants were allocated to PhenoDiet A or 
B. The primary outcome of the original study was the 
change in disposition index, a composite marker of insu-
lin secretion and insulin sensitivity, in PhenoDiet group 
A vs. B. The presence of tissue-specific insulin resistance 
was based the glucose and insulin responses from a 
7-point oral glucose tolerance test (OGTT) at screening, 
from which the hepatic insulin resistance index (HIRI) 
and the muscle insulin sensitivity index (MISI) were 
calculated [16]. Tertile cut-offs for MISI and HIRI from 
a previous study (the Maastricht Study [17]) were used 
to identify individuals with predominant MIR or LIR. 
Before and after the intervention, extensive measure-
ments in laboratory and daily life were performed. Exclu-
sion criteria for participation included amongst others: 
not weight stable (> 3 kg weight change in last 3 months), 
smoking, alcohol abuse (> 14 glasses/week), pre-diagno-
sis of diabetes, major cardiovascular disease, major gas-
trointestinal disease or surgery, and dietary restrictions 
interfering with the dietary study protocol. For the cur-
rent secondary analysis, the relationship between body 
composition and body fat distribution with whole-body 
and tissue-specific insulin sensitivity was determined in 
93 individuals from the PERSON study that underwent 
a whole-body magnetic resonance imaging (MRI) scan 
at MUMC+. The study design for the secondary analy-
sis is shown in Fig. 1. A comparison was made between 
participants allocated to follow an isocaloric diet either 
HMUFA and participants allocated to a LFHP diet for 12 
weeks (supplementary Fig. 1).

The study was approved by The Medical Ethics Com-
mittee of MUMC+ (NL63768.068.17) and registered at 
ClinicalTrials.gov (identifier: NCT03708419). All partici-
pants provided written informed consent. The study was 

carried out in accordance with the principles of the Dec-
laration of Helsinki.

Dietary intervention
The HMUFA diet had a targeted macronutrient compo-
sition of 38% of energy from fat (20 en% mono-unsat-
urated, 8 en% poly-unsaturated, and 8 en% saturated 
fatty acids), 48% of energy from carbohydrates (30 en% 
polysaccharides, 3  g/MJ fiber), and 14% of energy from 
protein. For the LFHP diet, the targeted macronutrient 
composition was 28% of energy from fat (10 en% mono-
unsaturated, 8 en% poly-unsaturated, and 8 en% saturated 
fatty acids), 48% of energy from carbohydrates (30 en% 
polysaccharides, > 4 g/MJ fiber), and 24% of energy from 
protein. Participants received verbal and written dietary 
instructions at the start of the intervention and received 
weekly dietary counseling and were provided with key 
food products. Body weight was monitored every week 
to ensure participants remained relatively weight stable 
throughout the intervention. Dietary adherence was 
assessed with three unannounced one-day food records 
during the intervention. A detailed description of the 
dietary compliance has been described elsewhere [16]. 
In short, the dietary compliance to both the HMUFA 
as well as LFHP was overall high, with distinct intake 
between diets in intake from total fat, mono-unsaturated 
fatty acids, protein, and fiber, and similar intake of satu-
rated fatty acids and total carbohydrates. An extensive 
description of the details of the dietary intervention are 
described in detail elsewhere [16].

Anthropometrics and body composition
Body weight (kg) and height (cm), and waist and hip cir-
cumference (cm) were measured to the closest 0.1 unit 
in duplicate and in underwear. A subgroup (n = 93) of 
the total PERSON study population (MUMC + partici-
pants) underwent a whole body 3T MRI scan (3T MAG-
NETOM Prisma fit, Siemens Healthcare). Analyses were 

Fig. 1 Study design of the subcohort analysis in the present study. Participants were assigned to either a HMUFA (high in mono-unsaturated fatty acids) 
or a LFHP (low in fat and high in protein and fiber) diet for a duration of 12 weeks. At week 0 and week 12, a 7-point oral glucose tolerance test (OGTT), 
anthropometric measurements, whole-body MRI, and a DXA-scan were conducted
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performed using computational modeling (method by 
AMRA Medical AB, Linköping, Sweden [18]). Fat ratio: 
(%, total abdominal adipose tissue / (total abdominal 
adipose tissue + total thigh muscle volume)*100), VAT 
volume (L), abdominal subcutaneous adipose (aSAT) 
volume (L), thigh muscle fat (%), liver fat: (%), abdominal 
adipose tissue (AT) index (L/m2, (VAT + aSAT)/height2), 
weight-to-muscle ratio (kg/L, body weight/total muscle 
volume), thigh muscle volume (L), and thigh muscle vol-
ume Z-score (adjusted for sex and body size (height, body 
weight, BMI) invariant) were quantified. Participants 
underwent a dual-energy X-ray absorptiometry (DXA) 
(MUMC+, Discovery A, Hologic; WUR, Lunar Prodigy, 
GE Healthcare) to determine body fat %.

Whole-body and tissue-specific insulin sensitivity
Whole-body and tissue-specific (liver and muscle) insulin 
sensitivity were estimated based on a 7-point OGTT at 
baseline and after 12 weeks of intervention. Participants 
ingested a 200 ml, 75gr glucose solution (Novolab), after 
an overnight fast. Blood draws were performed from the 
antecubital vein at t = 0, 15, 30, 45, 60, 90, and 120  min 
and plasma glucose and insulin were determined. From 
these glucose and insulin values, we calculated the Mat-
suda index for whole-body insulin sensitivity, HIRI 
for liver insulin sensitivity, and MISI for muscle insu-
lin sensitivity. The Matsuda index was calculated by: 
10.000 ÷ square root of (fasting plasma glucose (mmol/L) 
x fasting insulin (pmol/L) x (mean glucose (mmol/L) x 
mean insulin (pmol/L)) using 5 timepoints of the OGTT 
(excluding t = 15 and 45). The calculations of the HIRI 
and MISI have been described previously [16]. Briefly, 
HIRI was calculated as the area under the curve from 
both glucose and insulin in the first 30 min of the OGTT 
while the MISI was calculated by the slope of the peak 
of the OGTT to the nadir divided by mean insulin con-
centrations throughout the OGTT. The Matsuda index 
[19], HIRI, and MISI [20] have been validated against the 
golden standard hyperinsulinemic clamp technique.

Statistical analysis
Participant characteristics are presented as mean ± stan-
dard deviation (SD) and an independent t-test was per-
formed to assess differences between diets groups, and 
between sexes at baseline.

Cross-sectional relationship between body compo-
sition and body fat distribution with (whole-body 
and tissue-specific) insulin sensitivity Linear regres-
sion analysis was performed to assess crude associations 
(model 1), with adjustments for age and sex (model 2), 
additionally adjusted for body weight (model 3), and addi-
tionally adjusted for MISI in the model with HIRI and vice 
versa (model 4). Variables that are expressed relative to 

body size (for example body fat %) were not adjusted for 
body weight in model 3 and 4. Effect modification by sex 
was assessed by addition of an interaction term. In case of 
significant interaction, results are presented separately for 
women and men. Data are reported as β (95% confidence 
interval (CI)).

The effects of both diets on changes in (whole-body 
and tissue-specific) insulin sensitivity, body composi-
tion, and body fat distribution Repeated mixed-model 
analysis was performed including time (pre- and post-
intervention) as repeated measure, while adjusting for age 
and sex. To examine whether the two diets differentially 
affected these parameters, an interaction term between 
diet*time was added. Data are reported as Estimated Mar-
ginal Mean (EMM) (95% CI).

The associations between diet-induced changes in 
body composition and changes in (whole-body and tis-
sue-specific) insulin sensitivity Linear regression analy-
sis was performed including model 1 (with adjustment for 
diet) is reported, as well as model 2 (additionally adjusted 
for age, sex, and menopausal status), model 3 (addition-
ally adjusted for weight change (Δ weight)), and model 4 
(additionally adjusted for MISI or HIRI in the model with 
HIRI and MISI as dependent variable, respectively). Inter-
action terms were included to test for effect modification 
of diet and sex, and stratified analysis are reported in case 
of significance. Data are reported as β (95% CI).

Data were transformed with the natural logarithm in case 
of not-normally distributed residuals. Statistical signifi-
cance was defined as P < 0.05. Analyses were performed 
using the IBM SPSS Statistics software (version 25).

Results
Participant characteristics
Baseline data was available for 94 people (of which 54 
were randomized to follow the HMUFA diet, and of 
which 49 were women) as indicated in Table 1. At base-
line, no significant differences were observed between 
the diet groups, except for waist circumference. Waist 
circumference was higher in the LFHP group (105.2 ± 9.5 
vs. 100.9 ± 10.2, P = 0.042), which most likely is explained 
by the larger, but non-significant, proportion of women 
in the HMUFA group (57%) compared to LFHP group 
(46%) (P = 0.283). Furthermore, women were slightly 
younger compared to men (58.3 ± 8.9 vs. 62.0 ± 7.5 years, 
respectively) (P = 0.034). BMI was similar between sexes, 
on average 31.7 ± 3.8 and 30.8 ± 2.9  kg/m2, for women 
and men, respectively (P = 0.231). Parameters of glucose 
homeostasis were comparable between sexes. On aver-
age, individuals were normal glucose tolerant accord-
ing to clinical cut-off values for fasting and 2-hr glucose 
values [21]. Large differences between most parameters 
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of body composition were observed between sexes. 
Women showed greater total body fat %, higher abdomi-
nal AT index, and lower VAT volume and muscle fat % 
compared to men (all P < 0.001). Liver fat % and muscle 
volume Z-score (normalized for sex and body size) were 
similar between sexes (Table 1).

Associations between body composition and whole-body 
and tissue-specific insulin sensitivity at baseline
Body weight was significantly associated with the Mat-
suda index and HIRI, but not with MISI at baseline 
(Table  2). The Matsuda index, HIRI, and MISI showed 
distinct associations with parameters of body composi-
tion. Only for the association between MISI and muscle 
fat, a significant sex interaction was present, and data 
are reported separately for women and men. Specifically, 
higher muscle fat (%) was associated with lower MISI 

(i.e., with lower muscle insulin sensitivity) in women 
(-0.27 (-0.48; -0.05), P = 0.016), but not in men. Muscle fat 
(%) was not related to the Matsuda index or HIRI. Higher 
liver fat was associated with lower whole-body, liver, 
and muscle insulin sensitivity (i.e. Matsuda index, HIRI 
and MISI, respectively), but the significant association 
between liver fat and MISI disappeared after adjustment 
for HIRI. All measures of insulin sensitivity were inde-
pendently associated with the abdominal AT index, VAT, 
and waist circumference, although the latter two did 
not reach statistical significance in model 4 (adjustment 
for age, sex, body weight, HIRI) for MISI (P = 0.073 and 
P = 0.063, respectively). Fat ratio (%) was only associated 
with the Matsuda index (-0.25 (-0.38; -0.13), P < 0.001), 
but not with MISI or HIRI.

Table 1 Baseline participant characteristics, stratified by diet group and by sex
HMUFA LFHP P-value Women Men P-value
(n = 54) (n = 39) diet (n = 49) (n = 44) sex

General characteristics
Age (years) 59.8 ± 8.8 60.5 ± 7.9 0.667 58.3 ± 8.9 62.0 ± 7.5 0.034
Sex (n, % women) 31 (57%) 18 (46%) 0.283 n/a n/a
Premenopausal (n, %) 7 (13%) 1 (3%) 0.078 8 (16%) n/a
BMI (kg/m2) 31.2 ± 3.8 31.4 ± 2.8 0.792 31.7 ± 3.8 30.8 ± 2.9 0.231
Body weight (kg) 90.8 ± 12.7 93.4 ± 12.9 0.336 86.9 ± 11.5 97.4 ± 11.9 < 0.001
Waist circumference (cm) 100.9 ± 10.2 105.2 ± 9.5 0.042 98.2 ± 9.5 107.7 ± 8.2 < 0.001
Waist-to-hip (ratio) 0.92 ± 0.10 0.96 ± 0.09 0.088 0.86 ± 0.06 1.02 ± 0.06 < 0.001
Total cholesterol (mmol/L) 5.18 ± 0.91 5.25 ± 0.93 0.698 5.52 ± 0.92 4.86 ± 0.78 < 0.001
Systolic blood pressure (mmHg) 126 ± 14 131 ± 11 0.072 123 ± 12 133 ± 12 < 0.001
Diastolic blood pressure (mmHg) 83.5 ± 9 85 ± 7 0.317 84 ± 8 85 ± 9 0.700
Glucose parameters
HbA1c (mmol/L) 34.0 [32.0; 37.0] 36.0 [33.0; 40.0] 0.090 34.0 [33.0; 38.5] 34.0 [32.3; 38.0] 0.879
Fasting glucose (mmol/L) 5.5 ± 0.7 5.7 ± 0.7 0.398 5.5 ± 0.7 5.7 ± 0.8 0.187
2-hr glucose (mmol/L) 6.4 [5.1; 7.3] 6.7 [5.2; 8.7] 0.360 6.5 [5.3; 7.3] 6.4 [5.1; 8.5] 0.979
Fasting insulin (pmol/L) 53.4 [37.6; 58.9] 54.5 [38.1; 68.5] 0.356 52.1 [37.2; 66.4] 56.7 [41.1; 67.9] 0.310
HOMA-IR (A.U.) 1.80 [1.26; 2.54] 1.97 [1.46;2.41] 0.302 1.80 [1.18; 2.49] 2.02 [1.37; 2.55] 0.221
Matsuda index (A.U.) 11.2 [7.7; 16.5] 9.2 [6.8; 13.8] 0.284 11.2 [7.3; 17.3] 10.3 [7.0; 13.9] 0.310
HIRI (A.U.) 517 [300; 639] 430 [333; 569] 0.762 418 [308; 588] 423 [311; 599] 0.945
MISI (A.U.) 0.121 [0.088; 0.200] 0.148 [0.100; 0.199] 0.740 0.129 [0.093; 0.199] 0.134 [0.088; 0.209] 0.911
Body composition
Body fat (%) 38.9 [31.1; 44.1] 34.4 [30.9; 43.1] 0.719 43.5 [40.5; 46.0] 30.9 [27.5; 32.6] < 0.001
Fat ratio (%) 58.1 ± 9.4 58.6 ± 7.4 0.758 63.6 ± 6.2 52.3 ± 6.7 < 0.001
VAT (L) 5.5 ± 2.3 6.1 ± 2.1 0.209 4.4 ± 1.4 7.3 ± 1.9 < 0.001
aSAT (L) 10.0 [6.8; 13.5] 9.8 [8.4; 13.5] 0.933 12.7 [9.9; 14.6] 7.9 [6.4; 9.6] < 0.001
Muscle fat (%) 8.0 [6.2; 9.3] 7.6 [6.7; 8.4] 0.631 8.3 [7.4; 9.8] 6.7 [5.6; 7.7] < 0.001
Liver fat (%) 4.0 [2.7; 9.4] 8.2 [3.6; 16.3] 0.052 4.6 [3.1; 13.6] 5.3 [3.1; 12.2] 0.721
Abdominal AT index (L/m2) 5.6 ± 1.6 5.7 ± 1.2 0.750 6.2 ± 1.4 5.0 ± 1.3 < 0.001
Weight-to-muscle (ratio) 8.0 [7.0; 9.7] 7.8 [7.1; 9.4] 0.768 9.4 [8.4; 10.3] 7.1 [6.5; 7.5] < 0.001
Muscle volume (L) 11.1 [9.3; 13.4] 12.1 [9.3; 14.4] 0.409 9.3 [8.4; 10.3] 13.9 [12.6; 14.6] < 0.001
Muscle volume (Z-score) 0.224 ± 1.074 0.062 ± 1.055 0.461 0.100 ± 1.148 0.220 ± 0.921 0.584
Data are presented as mean ± standard deviation or median [inter quartile range] in case of non-normally distributed values. An independent sample t-test (normally 
distributed variables) or a Mann-Whitney U test (non-normally distributed variables) was performed to assess differences between sexes. Significant P-values (< 0.05) 
are highlighted in bold. aSAT, abdominal subcutaneous adipose tissue; HIRI, hepatic insulin resistance index; HOMA-IR, homeostatic model assessment for insulin 
resistance; MISI, muscle insulin sensitivity index; VAT, visceral adipose tissue
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Table 2 Associations between tissue-specific and whole-body insulin sensitivity and body composition at baseline
 Model 1:

Crude 
Model 2:
Adj. for age and sex 

Model 3:
Adj. for age, sex, body 
weight*

Model 4:
Adj. for age, sex, body 
weight*, MISI/HIRI

β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value
HIRI Body weight (kg) 0.17 (0.07; 0.27) 0.001 0.21 (0.10; 0.32) < 0.001 0.21 (0.09; 0.33) 0.001

Waist circumference 
(cm)

0.24 (0.15; 0.34) < 0.001 0.25 (0.15; 0.34) < 0.001 0.27 (0.10; 0.43) 0.002 0.22 (0.05; 0.39) 0.014

Body fat (%) 0.00 (-0.11; 0.11) 0.970 0.03 (-0.18; 0.23) 0.795 0.00 (-0.19; 0.20) 0.974
Fat ratio (%) 0.07 (-0.04; 0.17) 0.230 0.16 (-0.01; 0.33) 0.064 0.10 (-0.04; 0.24) 0.157
VAT (L) 0.16 (0.06; 0.27) 0.002 0.27 (0.14; 0.40) < 0.001 0.18 (0.04; 0.33) 0.016 0.16 (0.01; 0.31) 0.042
aSAT (L) 0.06 (-0.08; 0.20) 0.374 0.14 (0.00; 0.28) 0.051 -0.13 (-0.33; 0.07) 0.193 -0.14 (-0.33; 0.06) 0.159
Muscle fat (%) 0.03 (-0.08; 0.14) 0.599 0.04 (-0.09; 0.16) 0.577 -0.06 (-0.18; 0.07) 0.346 -0.06 (-0.18; 0.06) 0.350
Liver fat (%) 0.16 (0.05; 0.26) 0.003 0.16 (0.05; 0.26) 0.003 0.12 (0.01; 0.22) 0.028 0.12 (0.01; 0.22) 0.029
Abdominal AT index 
(L/m2)

0.12 (0.01; 0.22) 0.032 0.15 (0.04; 0.27) 0.012 0.13 (0.01; 0.25) 0.028

Weight-to-muscle 
(ratio)

0.04 (-0.07; 0.14) 0.500 0.10 (-0.07; 0.26) 0.243 0.07 (-0.09; 0.22) 0.401

Muscle volume (L) 0.06 (-0.05; 0.17) 0.256 0.21 (0.01; 0.41) 0.038 0.05 (-0.17; 0.27) 0.643 0.08 (-0.13; 0.29) 0.471
Muscle volume 
(Z-score)

-0.07 (-0.26; 0.11) 0.420 -0.07 (-0.22; 0.07) 0.312 -0.04 (-0.18; 0.10) 0.536

MISI Body weight (kg) -0.01 (-0.14; 0.12) 0.930 -0.02 (-0.18; 0.14) 0.818 0.07 (-0.09; 0.22) 0.402
Waist circumference 
(cm)

-0.10 (-0.23; 0.03) 0.118 -0.14 (-0.29; 0.01) 0.062 -0.30 (-0.52; -0.08) 0.009 -0.21 (-0.44; 0.01) 0.063

Body fat (%) -0.02 (-0.16; 0.11) 0.725 -0.07 (-0.31; 0.18) 0.591 -0.05 (-0.28; 0.19) 0.700
Fat ratio (%) -0.08 (-0.21; 0.06) 0.260 -0.12 (-0.30; 0.05) 0.160 -0.08 (-0.25; 0.09) 0.351
VAT (L) -0.10 (-0.23; 0.03) 0.115 -0.18 (-0.35; -0.01) 0.034 -0.23 (-0.43; -0.04) 0.018 -0.17 (-0.37; 0.02) 0.073
aSAT (L) -0.03 (-0.16; 0.11) 0.690 -0.03 (-0.22; 0.13) 0.610 -0.08 (-0.34; 0.19) 0.560 -0.13 (-0.38; 0.12) 0.292
Muscle fat 
(%)

Women -0.18 (-0.38; 0.02) 0.070 -0.20 (-0.42; 0.02) 0.067 -0.19 (-0.42; 0.05) 0.115 -0.27 (-0.48; -0.05) 0.016
Men 0.13 (-0.08; 0.34) 0.228 0.34 (-0.09; 0.34) 0.234 0.11 (-0.13; 0.35) 0.343 0.10 (-0.13; 0.33) 0.396

Liver fat (%) -0.14 (-0.27; -0.01) 0.040 -0.14 (-0.27; -0.01) 0.042 -0.15 (-0.28; -0.01) 0.041 -0.09 (-0.23; 0.05) 0.210
Abdominal AT index 
(L/m2)

0.04 (-0.22; 0.04) 0.166 0.17 (-0.26; 0.03) 0.132 -0.19 (-0.38; 0.00) 0.045

Weight-to-muscle 
(ratio)

-0.06 (-0.19; 0.07) 0.348 0.35 (-0.32; 0.07) 0.204 0.04 (-0.09; 0.17) 0.498 -0.09 (-0.28; 0.10) 0.342

Muscle volume (L) 0.50 (-0.12; 0.38) 0.294 0.18 (-0.10; 0.46) 0.205 0.18 (-0.10; 0.46) 0.205 0.19 (-0.08; 0.45) 0.159
Muscle volume 
(Z-score)

0.12 (-0.03; 0.26) 0.113 0.11 (-0.05; 0.24) 0.210 0.06 (-0.07; 0.19) 0.340

Mat-
suda 
index

Body weight (kg) -0.12 (-0.22; -0.02) 0.023 -0.17 (-0.29; -0.06) 0.004
Waist circumference 
(cm)

-0.23 (-0.33; -0.14) < 0.001 -0.27 (-0.38; -0.17) < 0.001 -0.33 (-0.49; -0.18) < 0.001

Body fat (%) 0.01 (-0.10; 0.11) 0.905 -0.18 (-0.37; 0.01) 0.057
Fat ratio (%) -0.10 (-0.20; 0.00) 0.054 -0.25 (-0.38; -0.13) < 0.001
VAT (L) -0.26 (-0.34; -0.17) < 0.001 -0.36 (-0.47; -0.25) < 0.001 -0.36 (-0.48; -0.23) < 0.001
aSAT (L) -0.03 (-0.14; 0.07) 0.522 -0.16 (-0.28; -0.03) 0.019 -0.02 (-0.21; 0.18) 0.862
Muscle fat (%) -0.08 (-0.18; 0.03) 0.135 -0.11 (-0.23; 0.00) 0.058 -0.05 (-0.17; 0.07) 0.382
Liver fat (%) -0.26 (-0.35; -0.17) < 0.001 -0.26 (-0.35; -0.17) < 0.001 -0.24 (-0.33; -0.14) < 0.001
Abdominal AT index 
(L/m2)

-0.16 (-0.26; -0.06) 0.002 -0.24 (-0.35; -0.14) < 0.001

Weight-to-muscle 
(ratio)

-0.05 (-0.16; 0.05) 0.317 -0.21 (-0.36; -0.07) 0.005

Muscle volume (L) -0.03 (-0.13; 0.08) 0.611 0.02 (-0.18; 0.21) 0.847 0.19 (-0.01; 0.4) 0.065
Muscle volume 
(Z-score)

0.11 (-0.02; 0.25) 0.101 0.08 (-0.05; 0.21) 0.227

* Variables that are expressed relative to body size (body fat, fat ratio, abdominal AT index, weight-to-muscle ratio, muscle volume Z-score) were not adjusted for 
body weight in model 3 and 4.

Data are reported as β (95% confidence interval (CI)). In case of significant sex interaction, data are reported separately for women and men. Significant P-values 
(< 0.05) are highlighted in bold. Adj, adjusted; aSAT, abdominal subcutaneous adipose tissue; AT, adipose tissue; HIRI, hepatic insulin resistance index; MISI, muscle 
insulin sensitivity index; VAT, visceral adipose tissue.
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Diet-induced changes in body composition and whole-
body and tissue-specific insulin sensitivity
Body weight decreased to a similar extent in both diets, 
from 90.3 (95% CI, 87.5; 93.3) to 88.4 (85.6; 91.3) kg fol-
lowing HMUFA diet and from 91.3 (88.0; 94.8) to 89.3 
(86.0; 92.8) kg following the LFHP diet (time P < 0.001, 
diet x time P = 0.824) (Table 3). Body fat, fat ratio, VAT, 
aSAT, liver fat, the abdominal AT index, and muscle 
volume also decreased following both diets (all time 
P < 0.05), without significant differences between diets. 
Waist circumference decreased from 103.8 (101.1; 106.7) 
to 100.8 (98.2; 103.5) cm following the LFHP diet, while 
it remained similar (from 100.8 (98.5; 103.1) to 100.3 
(98.0; 102.6) cm) following the HMUFA diet (diet x time 
P = 0.006). Trends for greater decrease in muscle fat (diet 
x time P = 0.071), and lower muscle volume (z-score) 
decrease (diet x time P = 0.071) were observed following 
the LFHP compared to HMUFA diet. The Matsuda index, 
HIRI, and MISI were not significantly affected by either 
the HMUFA or LFHP diet (Table 3).

Associations between diet-induced changes in body 
composition and changes in whole-body and tissue-
specific insulin sensitivity
The associations between changes in body composition 
and changes in (whole-body and tissue-specific) insulin 
sensitivity upon the dietary intervention are reported in 
Table 4. Several interactions with diet and with sex were 
present. In case of these interactions, data are reported 

for women and men or for both diets separately. In the 
fully adjusted model, the change in body weight was posi-
tively associated with change in HIRI (0.14 (0.05; 0.23), 
P = 0.002) following both diets. Furthermore, the decrease 
in VAT was associated with a decrease in HIRI, but only 
following the LFHP diet (0.27 (0.02; 0.52), P = 0.039). 
No associations between change in body weight and 
VAT were observed with the Matsuda index or with 
MISI in the fully adjusted models. The change in body 
fat was associated with the change in MISI only in men 
in all models (fully adjusted model: -0.11 (-0.21; -0.01), 
P = 0.028). The change in fat ratio following the LFHP diet 
was negatively associated with the change in Matsuda 
index, whilst the change in muscle volume was positively 
associated with the change in Matsuda index, indepen-
dent of age, sex, and change in body weight. Associations 
with fat ratio and muscle volume were not observed in 
relation to the tissue-specific insulin resistance indices 
HIRI and MISI.

Discussion
In this study, we investigated the relationship between 
body composition and body fat distribution and whole-
body and tissue-specific insulin sensitivity in men and 
women with overweight and obesity using state-of-the-
art whole-body MRI technology. Additionally, we inves-
tigated diet-induced changes in body composition and 
the relationship with changes in (tissue-specific) insulin 
sensitivity after a 12-week isocaloric dietary intervention. 

Table 3 Changes in parameters of body composition and insulin sensitivity following the HMUFA and LFHP diet
HMUFA diet (n = 40) LFHP diet (n = 30) P-value
Week 0 Week 12 Week 0 Week 12 Time Diet Diet x time

Glucose parameters
Matsuda index (A.U.) 11.2 (9.8; 12.8) 12.0 (10.5; 13.8) 10.1 (8.6; 11.8) 10.7 (9.1; 12.5) 0.160 0.304 0.895
HIRI (A.U.) 432.9 (375.4; 499.2) 424.4 (358.2; 503.2) 426.0 (360.7; 503.7) 382.3 (313.2; 466.4) 0.777 0.886 0.416
MISI (A.U.) 0.126 (0.106; 0.149) 0.138 (0.116; 0.164) 0.135 (0.111; 0.166) 0.139 (0.114; 0.169) 0.330 0.578 0.635
Body composition
Body weight (kg) 90.3 (87.5; 93.3) 88.4 (85.6; 91.3) 91.3 (88.0; 94.8) 89.3 (86.0; 92.8) < 0.001 0.650 0.824
BMI (kg/m2) 29.9 (29.3; 30.5) 29.3 (28.7; 29.9) 29.5 (29.0; 30.1) 28.8 (28.2; 29.3) < 0.001 0.341 0.160
Waist circumference (cm) 100.8 (98.5; 103.1) 100.3 (98.0; 102.6) 103.8 (101.1; 106.7) 100.8 (98.2; 103.5) 0.422 0.101 0.006
Body fat (%) 36.1 (35.0; 37.2) 35.2 (34.0; 36.6) 37.3 (36.0; 38.6) 36.4 (34.9; 38.0) 0.002 0.177 0.900
Fat ratio (%) 57.6 (55.8; 59.3) 56.6 (54.8; 58.4) 59.5 (57.5; 61.5) 58.1 (56.1; 60.2) < 0.001 0.155 0.212
VAT (L) 5.19 (4.76; 5.65) 4.90 (4.51; 5.33) 5.53 (5.01; 6.11) 5.13 (4.65; 5.65) < 0.001 0.332 0.279
aSAT (L) 9.54 (8.84; 10.3) 9.09 (8.40; 9.84) 10.37 (9.48; 11.34) 9.79 (8.93; 10.74) < 0.001 0.165 0.476
Muscle fat (%) 7.48 (7.08; 7.89) 7.44 (7.05; 7.85) 7.54 (7.08; 8.03) 7.39 (6.94; 7.86) 0.383 0.847 0.071
Liver fat (%) 5.12 (4.08; 6.44) 3.33 (2.62; 4.24) 7.26 (5.53; 9.54) 5.02 (3.77; 6.69) < 0.001 0.055 0.515
Abdominal AT index 
(L/m2)

5.25 (4.92; 5.61) 4.98 (4.65; 5.34) 5.62 (5.20; 6.07) 5.27 (4.86; 5.7) < 0.001 0.196 0.433

Weight-to-muscle (ratio) 8.05 (7.78; 8.33) 7.99 (7.72; 8.26) 8.26 (7.93; 8.60) 8.16 (7.85; 8.49) 0.012 0.343 0.515
Muscle volume (L) 11.21 (10.82; 11.61) 11.08 (10.7; 11.47) 11.06 (10.61; 11.52) 10.98 (10.54; 11.43) < 0.001 0.629 0.343
Muscle volume (Z-score) 0.227 (-0.058; 0.511) 0.172 (-0.108; 0.451) 0.027 (-0.304; 0.357) 0.048 (-0.276; 0.37) 0.051 0.366 0.078
Data are presented as Estimated Marginal Mean (EMM) adjusted for age, sex, and study center as analyzed with a mixed model with repeated measure. Significant 
p-values (< 0.05) are highlighted in bold. aSAT, abdominal subcutaneous adipose tissue; AT, adipose tissue; HMUFA, high mono-unsaturated fatty acids; LFHP, low-fat 
high-protein; VAT, visceral adipose tissue.
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Model 1:
Adj. for diet 

Model 2:
Adj. for diet, age, sex, 
and menopause 

Model 3:
Adj. for diet, age, sex, 
menopause and Δ body 
weight

Model 4:
Adj. for diet, age, sex, 
menopause,
Δ body weight, and Δ MISI/HIRI

β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value
Δ HIRI Δ Body weight 

(kg)
0.16 (0.06; 0.23) 0.001 0.15 (0.06; 0.23) < 0.001 0.14 (0.05; 0.23) 0.003

Δ Waist circum-
ference (cm)

0.05 (-0.03; 0.13) 0.241 0.05 (-0.04; 0.13) 0.263 0.00 (-0.08; 0.08) 0.926 0.00 (-0.08; 
0.08)

0.985

Δ Body fat (%) 0.03 (-0.04; 0.11) 0.401 0.03 (-0.05; 0.11) 0.452 -0.01 (-0.09; 0.06) 0.732 -0.02 (-0.10; 
0.06)

0.652

Δ Fat ratio (%) 0.09 (0.02; 0.15) 0.007 0.09 (0.02; 0.15) 0.009 0.03 (-0.05; 0.11) 0.493 0.03 (-0.05; 
0.11)

0.478

Δ VAT 
(L)

HMUFA 0.04 (-0.02; 0.11) 0.202 0.05 (-0.02; 0.13) 0.153 0.01 (-0.09; 0.10) 0.873 0.01 (-0.09; 
0.11)

0.818

LFHP 0.27 (0.13; 0.42) < 0.001 0.26 (0.10; 0.43) 0.003 0.23 (0.02; 0.45) 0.037 0.27 (0.02; 0.52) 0.039
Δ aSAT (L) 0.12 (0.04; 0.19) 0.002 0.13 (0.05; 0.21) 0.002 0.05 (-0.09; 0.19) 0.494 0.06 (-0.09; 

0.21)
0.402

Δ Muscle fat (%) 0.02 (-0.06; 0.10) 0.656 0.02 (-0.07; 0.10) 0.706 -0.05 (-0.13; 0.04) 0.275 -0.04 (-0.13; 
0.04)

0.304

Δ Liver fat (%) 0.05 (-0.03; 0.13) 0.245 0.05 (-0.03; 0.13) 0.213 0.00 (-0.08; 0.08) 0.967 0.00 (-0.09; 
0.08)

0.926

Δ Abdominal AT 
index (L/m2)

0.12 (0.05; 0.19) 0.002 0.13 (0.05; 0.20) 0.002 0.05 (-0.08; 0.18) 0.462 0.06 (-0.08; 
0.20)

0.413

Δ Weight-to-
muscle (ratio)

0.05 (-0.03; 0.13) 0.181 0.05 (-0.03; 0.14) 0.187 -0.01 (-0.10; 0.08) 0.808 -0.01 (-0.10; 
0.08)

0.788

Δ Muscle vol-
ume (L)

0.07 (0.00; 0.15) 0.063 0.08 (0.00; 0.16) 0.056 0.01 (-0.08; 0.10) 0.817 0.02 (-0.08; 
0.11)

0.738

Δ Muscle vol-
ume (Z-score)

0.00 (-0.08; 0.08) 0.924 0.00 (-0.08; 0.09) 0.918 -0.01 (-0.08; 0.07) 0.886 0.00 (-0.08; 
0.08)

0.983

Δ 
MISI

Δ Body weight 
(kg)

-0.05 (-0.12; 
0.01)

0.108 -0.05 (-0.12; 
0.01)

0.103 -0.04 (-0.12; 
0.03)

0.244

Δ Waist circum-
ference (cm)

-0.05 (-0.11; 
0.00)

0.060 -0.05 (-0.11; 
0.00)

0.068 -0.05 (-0.11; 0.01) 0.123 -0.05 (-0.11; 
0.02)

0.131

Δ Body 
fat (%)

Women 0.02 (-0.05; 0.08) 0.637 0.01 (-0.05; 0.08) 0.671 0.01 (-0.06; 0.09) 0.715 0.01 (-0.07; 
0.09)

0.806

Men 0.04 (-0.11; 0.20) 0.564 -0.11 (-0.21; 
-0.02)

0.020 -0.11 (-0.20; -0.01) 0.027 -0.11 (-0.21; 
-0.01)

0.028

Δ Fat ratio (%) -0.03 (-0.08; 
0.02)

0.251 -0.28 (-0.08; 
0.02)

0.255 -0.01 (-0.08; 0.05) 0.695 -0.01 (-0.08; 
0.05)

0.717

Δ VAT (L) -0.03 (-0.09; 
0.02)

0.248 -0.04 (-0.10; 
0.02)

0.153 -0.02 (-0.11; 0.06) 0.568 -0.02 (-0.11; 
0.06)

0.614

Δ aSAT (L) -0.01 (-0.07; 
0.05)

0.741 -0.01 (-0.07; 
0.05)

0.749 0.09 (-0.02; 0.19) 0.112 0.09 (-0.02; 
0.20)

0.114

Δ Muscle fat (%) 0.00 (-0.06; 0.06) 0.987 0.00 (-0.06; 0.05) 0.868 0.01 (-0.05; 0.08) 0.723 0.01 (-0.05; 
0.08)

0.704

Δ Liver fat (%) -0.06 (-0.11; 
0.00)

0.039 -0.05 (-0.11; 
0.03)

0.061 0.05 (-0.11; 0.01) 0.109 -0.05 (-0.11; 
0.01)

0.126

Δ Abdominal AT 
index (L/m2)

-0.03 (-0.09; 
0.03)

0.354 -0.03 (-0.09; 
0.03)

0.347 0.02 (-0.09; 0.13) 0.700 0.02 (-0.09; 
0.13)

0.684

Δ Weight-to-
muscle (ratio)

-0.03 (-0.09; 
0.02)

0.235 -0.03 (-0.09; 
0.02)

0.257 -0.02 (-0.08; 0.05) 0.589 -0.02 (-0.08; 
0.05)

0.633

Δ Muscle vol-
ume (L)

0.01 (-0.04; 0.07) 0.655 0.00 (-0.05; 0.06) 0.880 0.04 (-0.02; 0.11) 0.198 0.04 (-0.03; 
0.11)

0.206

Δ Muscle vol-
ume (Z-score)

0.04 (-0.02; 0.10) 0.178 0.03 (-0.02; 0.10) 0.245 0.04 (-0.01; 0.10) 0.138 0.04 (-0.02; 
0.10)

0.147

Table 4 Associations between the diet-induced changes in tissue-specific insulin resistance and changes in body composition
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We show that impaired liver and muscle insulin sensitiv-
ity are associated with distinct body composition profiles. 
Interestingly, liver fat was associated with impaired liver 
insulin sensitivity, and in women, an association between 
muscle fat and impaired muscle insulin sensitivity was 
found. Furthermore, both the LFHP and HMUFA diet 
resulted in improvements in body composition in the 
presence of only minor weight loss (∼2  kg). The LFHP 
diet resulted in a greater reduction in waist circumfer-
ences as compared to the HMUFA diet. The diet-induced 
changes in whole-body and tissue-specific insulin sensi-
tivity in the current analyses were in line with changes 
found in the complete study population of the PERSON 
study [15] but did not reach statistical significance, which 
seems related to the smaller sample size in the present 
study. Despite this, the LFHP-induced reduction in VAT 
was associated with improved liver insulin sensitivity. 
Furthermore, the decrease in fat ratio and lower decrease 

in muscle volume were associated with improvements in 
whole-body insulin sensitivity following the LFHP but 
not HMUFA diet.

We observed that women had higher total body fat 
and muscle fat at baseline compared to men, but with 
similar insulin sensitivity, which is in line with previ-
ous studies [10, 22, 23]. This observation may reflect the 
higher fat storage capacity of women in peripheral tis-
sues including the gluteo-femoral region but also in the 
skeletal muscle without developing adverse effects on 
insulin sensitivity. In line, when newly diagnosed with 
type 2 diabetes, the BMI of women has shown to be 
almost 2 kg/m2 higher despite similar levels of HbA1c 
[24]. Interestingly, an increase in muscle fat was linked to 
worse insulin sensitivity in women, but not in men. The 
underlying mechanisms remain unclear but may related 
to the fact that women need to attain higher levels of 
muscle fat to develop insulin resistance, but once women 

Model 1:
Adj. for diet 

Model 2:
Adj. for diet, age, sex, 
and menopause 

Model 3:
Adj. for diet, age, sex, 
menopause and Δ body 
weight

Model 4:
Adj. for diet, age, sex, 
menopause,
Δ body weight, and Δ MISI/HIRI

β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value
Δ 
Mat-
suda 
index

Δ Body weight 
(kg)

-0.13 (-0.28; 
0.01)

0.066 -0.11 (-0.26; 
0.03)

0.112

Δ Waist circum-
ference (cm)

-0.10 (-0.23; 
0.03)

0.130 -0.12 (-0.25; 
0.01)

0.063 -0.10 (-0.23; 0.04) 0.153

Δ Body fat (%) -0.07 (-0.20; 
0.05)

0.244 -0.12 (-0.24; 
0.01)

0.064 -0.09 (-0.22; 0.04) 0.163

Δ Fat 
ratio 
(%)

HMUFA -0.09 (-0.18; 
0.00)

0.052 -0.06 (-0.15; 
0.03)

0.179 0.00 (-0.11; 0.12) 0.937

LFHP -0.21 (-0.43; 
0.00)

0.054 -0.25 (-0.48; 
-0.02)

0.035 -0.30 (-0.57; -0.04) 0.025

Δ VAT (L) -0.12 (-0.24; 
0.01)

0.064 -0.14 (-0.26; 
-0.02)

0.022 -0.13 (-0.3; 0.03) 0.117

Δ aSAT (L) -0.15 (-0.27; 
-0.02)

0.022 -0.13 (-0.26; 
0.01)

0.060 -0.11 (-0.33; 0.12) 0.364

Δ Muscle fat (%) -0.08 (-0.21; 
0.05)

0.238 -0.11 (-0.24; 
0.01)

0.077 -0.08 (-0.22; 0.05) 0.219

Δ Liver fat (%) -0.13 (-0.25; 
0.00)

0.044 -0.11 (-0.24; 
0.01)

0.069 -0.09 (-0.22; 0.05) 0.199

Δ Abdominal AT 
index (L/m2)

-0.16 (-0.28; 
-0.04)

0.011 -0.14 (-0.27; 
-0.02)

0.023 -0.18 (-0.39; 0.04) 0.112

Δ Weight-to-
muscle (ratio)

-0.12 (-0.25; 
0.00)

0.054 -0.10 (-0.22; 
0.02)

0.110 -0.07 (-0.21; 0.07) 0.346

Δ 
Muscle 
vol-
ume 
(L)

HMUFA -0.10 (-0.22; 
0.01)

0.082 -0.07 (-0.19; 
0.05)

0.237 -0.01 (-0.14; 0.12) 0.888

LFHP 0.18 (-0.07; 0.43) 0.147 0.17 (-0.08; 0.41) 0.172 0.28 (0.01; 0.56) 0.045

Δ Muscle vol-
ume (Z-score)

0.05 (-0.08; 0.18) 0.447 0.06 (-0.07; 0.19) 0.356 0.07 (-0.06; 0.19) 0.277

Data are reported as β (95% confidence interval (CI)). Δ Indicates the change from week 0 till 12, calculated as value week 12 minus the value of week 0. In case of 
significant diet or sex interaction, data are reported separately for HMUFA and LFHP or women and men, respectively. Significant P-values (< 0.05) are highlighted in 
bold. Adj, adjusted; aSAT, abdominal subcutaneous adipose tissue; AT, adipose tissue; HIRI, hepatic insulin resistance index; HMUFA, high mono-unsaturated fatty 
acids; LFHP, low-fat high-protein; MISI, muscle insulin sensitivity index; VAT, visceral adipose tissue.

Table 4 (continued) 
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develop prediabetes or T2D, impaired glucose metabo-
lism is more strongly associated with cardiometabolic 
risk factors compared to men, as reported previously 
[25]. Notably, most women in the present study were 
in the postmenopausal state which is associated with 
decreased estrogen and increased testosterone levels 
compared to premenopausal women. This, in turn, may 
impact the association between body composition and 
metabolic health [22, 26]. It can be speculated that above 
a certain threshold women may lose their reserve capac-
ity to handle a higher muscle fat storage after menopause. 
Sexual dimorphism in relation to body composition and 
cardiometabolic health is well established [1, 27, 28], and 
confirmed in the present study, but the underlying mech-
anisms for the present findings remain to be elucidated.

Furthermore, we found that waist circumference and 
the abdominal AT index were inversely associated with 
whole-body, as well as tissue-specific insulin sensitiv-
ity. Waist circumference is often used as an indicator 
of abdominal adipose tissue mass [29]. Adipose tissue 
within the abdominal region, including both aSAT and 
VAT, has been linked to an adverse cardiometabolic 
health profile in previous studies [30, 31]. The mea-
surement of waist circumference in the present study 
thus was a good indicator for overall abdominal-obesity 
related cardiometabolic risk (i.e. insulin resistance). Nev-
ertheless, determining waist circumference does not 
allow for discrimination between abdominal SAT and 
VAT [32]. With more detailed characterization of body 
composition, as done in the present study, we were able 
to demonstrate that the associations between abdomi-
nal adiposity and whole-body and tissue-specific insulin 
resistance appeared to be mainly driven by VAT volume, 
rather than aSAT volume. In line with this, VAT has been 
previously reported to be linked to an even more adverse 
metabolic, inflammatory, and dyslipidemic phenotype 
compared to aSAT [30, 33]. It should be noted however 
that VAT may be a result of spillover of other AT depots, 
such as the aSAT, resulting from dysfunctional adipose 
tissue which fails to appropriately expand [1, 34].

Besides cross-sectional associations, we found 
improvements in body composition following either a 
12-week LFHP or HMUFA diet, in the presence of minor 
weight loss (∼2 kg). Interestingly, the LFHP diet demon-
strated more pronounced improvements in waist circum-
ference, a tendency towards a higher reduction in muscle 
fat, and lower reduction in muscle volume (Z-score). 
Previous studies also reported beneficial effects of a 
low-fat diet on body composition [35, 36]. For example, 
the LIPGENE study investigated the effect of diets dif-
fering in dietary fat quantity and quality on metabolic 
health in individuals with the metabolic syndrome dur-
ing a 12-wk period, showing that two isocaloric low-fat 
diets (28 en% fat) resulted in greater reduction in body 

weight compared to isocaloric higher-fat diets (38 en% 
fat) [35]. In another study, body weight and waist circum-
ference decreased more following a low-fat (28 en%) ver-
sus a Mediterranean diet rich in MUFA’s without energy 
restrictions for 2 years [36]. The higher dietary fiber con-
tent [37, 38] and higher protein content [39] in the LFHP 
diet in the present study may also have contributed to the 
more beneficial effects on body composition. Despite the 
lack of significant improvements in insulin sensitivity in 
this subgroup that participated in the PERSON study, we 
found that LFHP diet-induced reductions in VAT were 
associated with improvement in HIRI. Additionally, the 
LFHP-induced decrease in fat ratio and lower reduction 
of muscle volume were associated with improvements in 
whole-body insulin sensitivity, whereas this was not seen 
following the HMUFA diet. To the best of our knowledge, 
the present study is one of the first studies to show that 
LFHP-, but not HMUFA-induced improvements in body 
composition are associated with improvements in whole-
body and liver insulin sensitivity.

One of the strengths of the present study is the very 
well-detailed analysis of body composition and body fat 
distribution. Body composition can be measured with 
high accuracy and precision with a whole-body MRI, and 
this technique may even be considered the gold standard 
to measure body fat distribution [40]. Nevertheless, this 
study also has some limitations. The association between 
body composition and insulin sensitivity might be differ-
ent for women in the premenopausal compared to post-
menopausal state. Due to the relatively small number of 
premenopausal women in the present analysis (n = 8), we 
were not able to confirm this. Addition of the premeno-
pausal status as a covariate in the analysis did not alter 
the conclusions of the present study. Future studies are 
warranted to investigate the relationship between body 
composition and insulin sensitivity in premenopausal 
women and age-matched men. Furthermore, we did not 
observe significant improvements in the Matsuda index, 
HIRI, and MISI following dietary intervention on a group 
level, as a result of limited power in this subset, since 
improvements were observed in the complete PERSON 
study population [15]. Despite this, we were still able to 
identify significant associations between changes in body 
composition and changes in insulin sensitivity. Lastly, 
it is important to acknowledge that the current analysis 
predominantly focused on Caucasian older adults (> 50 
years), and as a result, the findings cannot be extrapo-
lated to other age groups or ethnicities.

Conclusion
In summary, tissue-specific insulin resistant pheno-
types are associated with distinct body composition 
profiles. Specifically, body weight and liver fat were asso-
ciated with liver insulin sensitivity while muscle fat was 
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associated with muscle insulin sensitivity in women but 
not in men. VAT was independently associated with both 
whole-body and tissue specific insulin sensitivity. Dis-
tinct phenotypes of body composition have previously 
been identified in individuals with similar BMI, possibly 
representing different etiologies towards T2D or CVD 
[5, 18, 41]. Our findings support the presence of distinct 
metabolic profiles depending on the tissue site of insulin 
resistance (either in the liver or muscle), which is in line 
with previous research which identified distinct lipidome, 
metabolome, and inflammatory profiles in individuals 
with liver versus muscle insulin resistance [42–44]. Fur-
thermore, we observed that body composition and body 
fat distribution improved following isocaloric 12-week 
healthy diets, in the presence of only minor weight loss. 
Although both the LFHP and HMUFA diet elicited ben-
eficial effects on body composition and body fat distri-
bution, the LFHP appeared most effective in reducing 
waist circumference. Additionally, only LFHP-induced 
improvements in body composition were associated with 
improved (whole-body and liver) insulin sensitivity. Find-
ings of this study give more insight into the heterogeneity 
of the etiology towards cardiometabolic diseases and can 
have implications for the development of more targeted 
dietary intervention strategies to improve cardiometa-
bolic health.
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