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Abstract

Background: Substantially elevated blood D-lactate (DLA) concentrations are associated with neurocardiac toxicity
in humans and animals. The neurological symptoms are similar to inherited or acquired abnormalities of pyruvate

metabolism. We hypothesized that DLA interferes with mitochondrial utilization of L-lactate and pyruvate in brain

and heart.

Methods: Respiration rates in rat brain, heart and liver mitochondria were measured using DLA, LLA and pyruvate
independently and in combination.

Results: In brain mitochondria, state 3 respiration was 53% and 75% lower with DLA as substrate when compared
with LLA and pyruvate, respectively (p < 0.05). Similarly in heart mitochondria, state 3 respiration was 39% and 86%
lower with DLA as substrate when compared with LLA or pyruvate, respectively (p < 0.05). However, state 3
respiration rates were similar between DLA, LLA and pyruvate in liver mitochondria. Combined incubation of DLA
with LLA or pyruvate markedly impaired state 3 respiration rates in brain and heart mitochondria (p < 0.05) but
not in liver mitochondria. DLA dehydrogenase activities were 61% and 51% lower in brain and heart mitochondria
compared to liver, respectively, whereas LLA dehydrogenase activities were similar across all three tissues. An LDH

inhibitor blocked respiration with all three substrates.

inhibitor blocked state 3 respiration with LLA as substrate in all three tissues. A monocarboxylate transporter

Conclusions: DLA was a poor respiratory substrate in brain and heart mitochondria and inhibited LLA and
pyruvate usage in these tissues. Further studies are warranted to evaluate whether these findings support, in part,
the possible neurological and cardiac toxicity caused by high DLA levels.
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Introduction

Lactate exists as two stereoisomers, L-lactate and D-lac-
tate. Under healthy physiological conditions, L-lactate is
the major enantiomer found in blood whereas D-lactate
is normally present in very low concentrations [1]. How-
ever, supra-physiological levels of D-lactate have been
found in several disease states such as diarrhea, short
bowel syndrome, and diabetes [2,3]. Most research in
this area focus on the cause and the consequences of
extremely high levels of D-lactate (> 3 mM D-lactate in
plasma, resulting in D-lactic acidosis) in the body [3-7].
Although sub-clinical levels of D-lactate (high D-lactate
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levels, no acidosis) have been reported in several chronic
diseases including diabetes and chronic fatigue syn-
drome [8,9], few studies explore the potential negative
outcomes of such sub-clinical concentrations of D-lac-
tate circulation in the body [10]. Interestingly, the clini-
cal symptoms due to high levels of D-lactate (D-lactic
acidosis) are similar to inherited or acquired abnormal-
ities of pyruvate metabolism [11]. Therefore, D-lactate
may directly or indirectly interfere pyruvate metabolism
pathways, which are essential for mitochondrial energy
production [12]. Any disturbance in pyruvate metabo-
lism pathways may eventually impair mitochondrial
energy generation and thus affect organs that are more
highly energy dependent [13,14].

The brain and heart are metabolically active organs
with substantial energy requirements. The major cellular
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pathways of energy production are glycolysis and mito-
chondrial oxidative phosphorylation [15]. During glyco-
lysis, glucose is converted to pyruvate, which is
accompanied by the production of ATP and NADH
[15]. In mammalian cells, the enzymes responsible for
pyruvate metabolism are located in the mitochondria
[16]. Thus, pyruvate generated during glycolysis is trans-
ported into the mitochondria via monocarboxylate
transporters (MCTs) particularly MCT1 [17]. In the
mitochondria, pyruvate breakdown irreversibly funnels
the products of glycolysis into the Krebs cycle to pro-
duce ATP and a large quantity of NADH [12]. NADH
produced by both processes is then used to fuel mito-
chondrial ATP synthesis via oxidative phosphorylation
or mitochondrial respiratory chain phosphorylation
[15,16].

In some tissues, L-lactate oxidation can provide cellu-
lar energy in addition to glycolysis [18,19]. For example,
L-lactate has been identified as the preferential oxidative
energy substrate for the brain during excitation [20].
The Astrocyte-Neuron Lactate Shuttle hypothesis sug-
gests that fuel for increased energy requirement of neu-
rons during excitation is supplied by L-lactate from the
surrounding astrocytes rather than glucose [18,21]. Fol-
lowing its transport into the cell, cytosolic L-lactate is
converted to pyruvate by L-lactate dehydrogenase
(LDH), an enzyme using NAD as a cofactor [18], which
subsequently enters the TCA cycle in the mitochondria
for further energy production. In addition, mitochondria
also contain significant amounts of LDH, located largely
in the inter-membrane space [18]. L-lactate transported
into the mitochondria via MCTs is metabolized to pyru-
vate for energy production. Therefore, mitochondrial
utilization of both L-lactate and pyruvate is crucial for
cellular bioenergetics.

D-Lactate, recognized by MCTs [22], can competi-
tively inhibit L-lactate and/or pyruvate transport via
MCTs at the cellular level. For example, D-lactate inhib-
ited L-lactate uptake into erythrocytes and brain cells
and pyruvate uptake into cardiac myocytes [23,24].
Once D-lactate has entered the cells, it can affect the
transport of L-lactate and/or pyruvate into the mito-
chondria and thus affects the usage of pyruvate and/or
lactate. In fact, D-lactate interference of pyruvate meta-
bolism has been postulated based on the clinical simila-
rities between D-lactic acidosis and inherited or
acquired abnormalities of pyruvate metabolism [25];
however, no experimental data are available to support
this inference.

Cellular D-lactate is metabolized by mitochondrial D-
lactate dehydrogenase (DDH) using FAD as cofactor
[26,27]. The expression of DDH is tissue dependent and
therefore affects the usage of D-lactate in different tis-
sues [26,27]. For example, due to low expression levels
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of DDH in the brain, the rate of oxidation of D-lactate
in the brain is considerably slower compared to that of
L-lactate [26,27]. D-Lactate accumulation, then, may
compromise energy metabolism by interfering with the
mitochondrial usage of its more efficient energy sub-
strates pyruvate and/or L-lactate and thus lead to toxi-
city. Energy deficiency in the brain of chickens has been
reported following intracerebral infusion of D-lactate
which suggests D-lactate’s involvement in altered sub-
strate utilization and ATP generation [28]. In this study,
we hypothesized that D-lactate interferes with mito-
chondrial utilization of L-lactate and pyruvate.

The objectives of this study were to compare the
mitochondrial utilization of D-lactate to L-lactate and
pyruvate in mitochondria from rat heart, liver and brain
tissues. We also investigated the effects of D-lactate on
mitochondrial respiration with L-lactate or pyruvate as
substrates. The D- and L-lactate dehydrogenase activ-
ities from different tissue mitochondria were also mea-
sured. To test the role of LDH on the mitochondrial
respiration of L-lactate, a LDH inhibitor, oxamate (OX)
was used in rat liver and brain. Our investigations also
employed an MCT inhibitor, a-cyano-4-hydroxycinna-
mate (CINN), to identify the role of mitochondrial
MCTs in D-lactate, L-lactate and pyruvate metabolism
in rat liver and brain.

Materials and methods

Animals and Chemicals

Male Wistar rats were obtained from Charles River
Canada (St. Constant, PQ) and were housed in a tem-
perature and humidity controlled facility (22°C + 2°C)
on a 12-hour light: dark cycle (0700 h - 1900 h). Rats
had free access to food and water and were allowed a 7-
day acclimatization period. Rats were provided a nutri-
tionally adequate rat diet (Prolab® RMH 3000, Purina,
Inc., Richmond, IN) ad libitum. This work was approved
by the University of Saskatchewan’s Animal Research
Ethics Board, and adhered to the Canadian Council on
Animal Care guidelines for humane animal use. Chemi-
cals, unless specified, were purchased from Sigma-
Aldrich.

Mitochondrial Isolation

Mitochondria were isolated from rat (250-300 g body
weight, n = 6) brain, heart and liver following humane
euthanasia (isoflurane anaesthesia and exanguination)
and rapid removal of organs. Briefly, freshly isolated
organs were homogenized using a glass-teflon homoge-
nizer (brain and liver) or a Polytron homogenizer
(heart) with an isolation medium containing 250 mM
sucrose, 10 mM HEPES and 1 mM EGTA (pH 7.2). In
the case of brain, the mitochondria were isolated in the
presence of 0.1% fat-free bovine serum albumin (BSA).
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The homogenate was then centrifuged at 1000 g for 8
min at 4°C. The supernatant was collected and centri-
fuged at 10000 g for 10 min at 4°C. The pellet was col-
lected and washed twice with washing medium
containing 250 mM sucrose, 10 mM HEPES and 0.1
mM EGTA. The final pellets of mitochondria were sus-
pended in 2 mL of isolation medium without EGTA
[29-32].

Oxygen Uptake Studies

Mitochondrial protein was measured as described by
the biuret method using bovine serum albumin as
standard [33]. Respiration rates of isolated mitochon-
dria were measured with a Clark-type electrode (DW1;
Hansatech Instruments Ltd, Norfolk, England) in a
water-jacketed glass chamber with magnetic stirring.
An oxygen electrode was used and the respiration
chamber was kept constant at 30°C. Oxygen uptake
measurements were carried out in 1 mL of medium
containing 210 mM mannitol, 70 mM sucrose, 0.1 mM
EDTA, 20 mM Tris/HCl, 3 mM MgCl,, 5 mM
KH,PO4/K;HPO, and 0.2% BSA (pH 7.4) [34]. Assays
were performed in duplicate using fresh mitochondria.
The respiratory parameters of the mitochondria were
tested using a respiratory cocktail (containing 62.5 uM
each of malate, glutamate, alpha-ketoglutarate and pyr-
uvate), pyruvate + malate, L-lactate + malate, or D-lac-
tate + malate. Pyruvate (10 mM) and D/L-lactate (5
mM) were added alone or in combination. To inhibit
the mitochondrial monocarboxylate transporter
(mMCT), 5 mM a-cyano-4-hydroxycinnamate (CINN)
was used. To inhibit mitochondrial LDH, 50 mM oxa-
mate (OX) was used. Respiration was initiated by the
addition of 1 mg protein of the mitochondrial suspen-
sion to the reaction medium, and a conventional
respiratory experiment with transitions from state 4 to
3 was performed.

Mitochondrial respiratory state 4 is the resting state
which is differentiated by relatively slow oxygen uptake
and no availability of ADP [35]. On the other hand,
mitochondrial respiratory state 3 is the active state with
high rates of oxygen uptake and sufficient ADP supply
[35]. Thus, state 3 was initiated by adding ADP (final
concentration 0.1 mM). Mitochondrial function was
assessed by the respiratory control ratio (RCR) and
ADP:O ratios [36]. These two parameters are well
accepted as indicators of electron transport chain cou-
pling to ATP synthesis and efficiency of oxidative phos-
phorylation in the presence of different substrates. The
RCR values were calculated as the ratio of the respira-
tory rate in state 3, after addition of ADP, to the rate of
oxygen uptake without ADP (state 4). The ratio between
the amount of ADP phosphorylated and oxygen con-
sumed (ADP/O ratio) was also calculated [37].
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L- and D-Lactate Dehydrogenase (LDH and DDH) Assay
The LDH and DDH assays were performed photometri-
cally by means of a 96 well spectrophotometer at 600
nm [38] at 25°C. Briefly, the mitochondrial sample was
incubated for 2 min in 2 mL of standard medium con-
sisting of 0.2 mM sucrose, 10 mM KCI, 20 mM Hepes/
Tris, pH 7.2, 1 mM MgCl, in the presence of 30 uM
phenazine methosulphate (PMS) and 50 pM dichloroin-
dophenol (DCIP). DDH activity was determined by mea-
suring the decrease in absorbance at 600 nm (Agqg) due
to DCIP reduction when 15 mM D-lactate was added.
The activity was expressed as nmol of DCIP reduced
per min per mg of protein.

Statistics

Results are presented as mean + SEM. Respiration rates
and RCR values were compared using one way ANOVA
with Fisher’s least significant difference (LSD) post hoc
tests. The statistical differences between the values with
the presence of different substrates and the values with-
out addition of any of the test substrates are reported in
tables (Table 1, 2 and 3). Due to the complexity, the
rest of the statistical results are described in the results
section rather than in the tables.

Results

Pyruvate, D-lactate or L-lactate as substrate for
mitochondrial respiration

To demonstrate the ability of rat mitochondria from
brain, liver and heart to use pyruvate, L-lactate or D-

Table 1 Respiratory parameters® of isolated rat liver
mitochondria with pyruvate, D-lactate, or L-lactate or as
combination.

Substrate® State 4 State 3 RCR ADP/O
No substrate 324 + 028 337 034 104 + 002
Cocktail° 411+ 013 3012 +202* 733 +046* 287 + 009
Pyruvate 501 £ 056 1917 +256* 378 £0.11% 256 + 004
D-lactate 382 +£024 1411 £1.13*% 369+ 0.11* 247 +£0.11
L-lactate 422 +019 1502 + 098 356 + 0.15% 230 + 024
Pyruvate + LLA 620 + 041 2140 + 1.59% 345 + 0.06* -
Pyruvate + DLA 386 + 023 17.58 + 2.21* 456 + 0.51* -
LLA + DLA 376 +021 1178 + 041 3.14 + 0.07* -

“Respiratory rates in nmol O,/mg mitochondrial protein per min.

PSubstrate concentrations: pyruvate (10 mM + 2.5 mM malate), DLA or LLA (5
mM + 2.5 mM malate), and LLA+DLA (2.5 mM LLA and 2.5 mM DLA+ 2.5 mM
malate).

“Cocktail contains 62.5 uM each of malate, glutamate, alpha-ketoglutarate and
pyruvate.

State 4: The respiration state without ADP.

State 3: The respiration state with the addition of ADP.

RCR, Respiratory Control Ratio (state 3 rate:state 4 rate).

ADP/O ratio: The ratio between the amount of ADP phosphorylated and
oxygen consumed.

*Significantly different from the values without substrate. Values were
compared using one way ANOVA with LSD as post hoc test, o < 0.05.
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Table 2 Respiratory parameters® of isolated rat brain
mitochondria with pyruvate, D-lactate, or L-lactate or as
combination.

Substrate® State 4 State 3 RCR ADP/O
No substrate 356 + 031 521 +0.14 149 + 0.11
Cocktail° 451 + 049 2943 +292* 661 +073* 292 + 001
Pyruvate 359 + 021 3098 +242* 846 + 055% 212 +0.15
D-lactate 318 +£016 764056 239+ 010 -
L-lactate 318 £0.16 1613 £ 049* 466 +0.17% 188 +0.10
Pyruvate + LLA  3.16 £ 045 22,09 + 442% 7.16 + 1.57* -
Pyruvate + DLA 407 + 051 1641 + 285 394 + 040 -
LLA +DLA 340+ 034 541 +048 160 + 008 -

“Respiratory rates in nmol O,/mg mitochondrial protein per min.

PSubstrate concentrations: pyruvate (10 mM + 2.5 mM malate), DLA or LLA (5
mM + 2.5 mM malate), and LLA+DLA (2.5 mM LLA and 2.5 mM DLA+ 2.5 mM
malate).

“Cocktail contains 62.5 peach of malate, glutamate, alpha-ketoglutarate and
pyruvate.

State 4: The respiration state without ADP.

State 3: The respiration state with the addition of ADP.

RCR: Respiratory Control Ratio (state 3 rate:state 4 rate).

ADP/O ratio: The ratio between the amount of ADP phosphorylated and
oxygen consumed.

*Significantly different from the values without substrate. Values were
compared using one way ANOVA with LSD as post hoc test, a. < 0.05.

lactate as substrates, oxygen uptake was measured under
respiratory state 4 conditions and state 3 conditions in
the presence of 0.1 mM ADP. Mitochondria isolated
from brain, heart and liver readily oxidized pyruvate and
L-lactate with a respiration control ratios (RCR) values
higher than 5 with a respiratory substrate cocktail and

Table 3 Respiratory parameters® of isolated rat heart
mitochondria with pyruvate, D-lactate, L-lactate alone or
as combination as substrates.

State 4 State 3 RCR
307 +015 772+055 252+008

Substrate® ADP/O

No substrate

Cocktail® 1135 £ 1.52% 7089 + 589* 639 + 0.59% 276 + 0.02

Pyruvate 1251 £ 1.19% 7474 + 622% 595 £ 0.22* 301 £ 002
D-lactate 462 +019 927 +131 201 +£027 -

L-lactate 458 £ 058 1517 +£267 324+021 211 +034
Pyruvate + LLA 430 £ 025 1823 + 152 423 £0.15% -
Pyruvate + DLA 528 £ 042 1503 + 074 291 £ 0.21 -
LLA + DLA 357+022 395+026 1.11+008 -

“Respiratory rates in nmol O,/mg mitochondrial protein per min.

PSubstrate concentrations: pyruvate (10 mM + 2.5 mM malate), DLA or LLA (5
mM + 2.5 mM malate), and LLA+DLA (2.5 mM LLA and 2.5 mM DLA+ 2.5 mM
malate).

“Cocktail contains 62.5 peach of malate, glutamate, alpha-ketoglutarate and
pyruvate.

State 4: The respiration state without ADP.

State 3: The respiration state with the addition of ADP.

RCR: Respiratory Control Ratio (state 3 rate:state 4 rate).

ADP/O ratio: The ratio between the amount of ADP phosphorylated and
oxygen consumed.

* Significantly different from the values without substrate. Values were
compared using one way ANOVA with LSD as post hoc test, a < 0.05.
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ATP/O values higher than 2, which are the generally
accepted as normal for carefully prepared mitochondria
from liver, heart and brain (Tables 1, 2 and 3). However,
mitochondria isolated from brain and heart did not oxi-
dize D-lactate efficiently as demonstrated by low state 3
respiration rates and RCR values close to values
recorded without substrate, as well as unmeasurable
ADP/O ratios (p > 0.05, Table 2 and 3). Liver mitochon-
dria oxidized D-lactate with a RCR of 3.67 and ADP/O
ratio of 2.47 (Table 2), which is similar to the L-lactate
and pyruvate (p > 0.05). When compared to brain and
liver, mitochondria from heart had twice as high or
greater state 3 and state 4 respiration when using a
cocktail or pyruvate (p < 0.05), but not L-lactate. Pyru-
vate showed the highest RCR in brain mitochondria
with the lowest in liver (brain > heart > liver, p < 0.05).
The RCR values for L-lactate in brain mitochondria
were significantly higher than that of the liver and heart
mitochondria (p < 0.05).

Effect of D-lactate or L-lactate on mitochondrial oxidation
of pyruvate in liver, heart and brain

D-Lactate significantly impaired oxygen consumption
caused by pyruvate in rat brain and heart mitochondria.
The oxygen consumption rate inhibition caused by D-
lactate was slightly stronger compared to L-lactate (e.g.
47% (p < 0.05) vs. 29% (p > 0.05) reduction in state 3 in
the brain, respectively compared to pyruvate alone as
substrate). Interestingly, co-administration of D-lactate
or L-lactate did not change mitochondrial respiration
using pyruvate as substrate in liver mitochondria (p >
0.05). In addition, D-lactate significantly decreased oxy-
gen consumption caused by L-lactate in rat brain (67%
reduction in state 3, p < 0.05) and heart (74% reduction
in state 3, p < 0.05) mitochondria with a slight but non-
significant change in liver (22% reduction in state 3, p >
0.05) mitochondria.

DDH and LDH activities in brain, heart and liver
mitochondria

DDH activity was significantly higher in rat liver mito-
chondria compared to rat brain and heart mitochondria
(Figure 1). DDH activity in rat liver mitochondria was
similar to LDH activity. The activity of LDH was similar
in the brain, heart and liver mitochondria.

Effect of oxamate (OX) and a-cyano-4-hydroxycinnamate
(CINN) on mitochondrial respiration using pyruvate, D-
lactate and L-lactate

In the presence of OX, a known LDH inhibitor, the oxy-
gen consumption rate in state 3 and the RCR in brain
and liver mitochondria were similar to the values with-
out substrates (Table 4). In other words, mitochondrial
L-lactate oxidation was completely blocked by OX. It is
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Figure 1 The enzyme activities of DDH and LDH expressed as nmole of dichloroindophenol (DCIP) reduced/min/mg protein (Mean +
SEM) in mitochondria from rat brain, liver and heart (n = 6). * Different from liver mitochondria, P < 0.05.
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important to note that OX also partially inhibited
respiration with pyruvate (p < 0.05) and D-lactate (p >
0.05) (e.g. 42% and 37% decrease respectively in state 3
in the brain) as substrate, which suggests that OX had
other effects than just inhibition of LDH. In the

Table 4 Respiratory parameters® of isolated rat brain and
liver mitochondria with pyruvate, D-lactate, L-lactate as
substrates in the presence of oxamate, a LDH inhibitor.

Substrate® Tissue State 4 State 3 RCI
Pyruvate + OX Brain 320+ 057 1796+ 251 574 + 041
Liver 261 £009 998 + 031 383 + 005
LLA + OX Brain 345+012 427 +£035 1.23 £ 0.06
Liver 328 +£023 419+ 108 125 +0.23
DLA + OX Brain 325+ 0.15 483 + 1.11 147 +£0.30
Liver 411 £015 1434 +£021 350+0.12
Pyr +LLA+ OX Brain 3.06 + 042 714 +£123 232 +0.14
Liver 216 £ 022 273 £ 045 1.29 + 0.25

presence of CINN, a known MCT inhibitor, the respira-
tions caused by pyruvate, L-lactate and D-lactate were
completely blocked in brain mitochondria with the state
3, state 4 respiration rate and RCR similar to values in
the absence of substrate (Table 5).

Table 5 Respiratory parameters® of isolated rat brain and
liver mitochondria with pyruvate, D-lactate, L-lactate as
substrates in the presence of CINN, a monocarboxylate
transporter inhibitor.

Substrate® Tissue State 4 State 3 RCI
Pyruvate 4+ CINN Brain 342 +£0.33 588 £0.72 172 £ 0.13
Liver 516 +0.19 1008 + 074 197 £ 0.21
LLA + CINN Brain 2.87 + 0.04 383 +£052 134 + 0.20
Liver 289 + 0.29 3.68 £ 0.15 132 +£0.20
DLA + CINN Brain 246 + 0.29 279 £0.23 1.16 £ 0.23
Liver 250 + 040 252 £0.16 1.03 £ 0.10

Respiratory rates in nmol O,/mg mitochondrial protein per min.

PSubstrate concentrations: pyruvate (10 mM + 2.5 mM malate) and LLA or
DLA (5 mM + 2.5 mM malate); OX, oxamate (50 mM).

State 4: The respiration state without ADP.

State 3: The respiration state with the addition of ADP.

RCR: Respiratory Control Ratio (state 3 rate:state 4 rate).

ADP/O ratio: The ratio between the amount of ADP phosphorylated and
oxygen consumed.

*Significantly different from the values without substrate. Values were
compared using one way ANOVA with LSD as post hoc test. a. < 0.05

Note: Refer to Table 1 and 2 for the respiratory parameters without substrates
or with cocktail.

“Respiratory rates in nmol O,/mg mitochondrial protein per min.

PSubstrate concentrations: pyruvate (10 mM + 2.5 mM malate) and LLA or
DLA (5 mM + 2.5 mM malate); CINN, a.-cyano-4-hydroxycinnamate (5 mM).

State 4: The respiration state without ADP.

State 3: The respiration state with the addition of ADP.

RCR, Respiratory Control Ratio (state 3 rate:state 4 rate).

ADP/O ratio: The ratio between the amount of ADP phosphorylated and
oxygen consumed.

*Significantly different from the values without substrate. Values were
compared using one way ANOVA with LSD as post hoc test. a. < 0.05

Note: Refer to Table 1 and 2 for the respiratory parameters without substrates
or with cocktail.
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Discussion

D-lactate is present at low levels in the body and can be
well utilized by the liver in both human and animal
under healthy conditions [39]. However, elevated levels
of blood D-lactate in several disease states [5,40] can
result in D-lactate accumulation in specific tissues and
potential toxicity. In fact, high D-lactate levels are asso-
ciated with neurological and cardiac dysfunction [7,41].
The underlying mechanisms of such toxicities are not
fully understood. In our study, we examined whether D-
lactate was an efficient energy substrate for brain and
heart mitochondrial and, if not, whether it could inter-
fere with mitochondrial utilization of two major cellular
energy substrates, L-lactate and pyruvate. Such interfer-
ence could result in a cellular energy deficiency and,
therefore, begin to explain, in part, the neurological and
cardiac toxicities observed with D-lactic acidosis.

The majority of cellular ATP is generated by glycoly-
sis and oxidative phosphorylation of pyruvate, the lat-
ter of which takes place within the mitochondria of
eukaryotic cells. Impaired ATP production in mito-
chondria can lead to cellular energy deficiency and
eventually organ dysfunctions [42]. To understand the
factors that may influence mitochondrial pyruvate
metabolism, isolated mitochondria are often used with
measurements of respiration states, RCR and ADP/O
ratios. Mitochondrial integrity and functionality was
assessed with the supply of optimal substrates to
assure reliable outcomes [30]. The high degree of cou-
pling with high RCR (> 6) and a ADP/O ratio close to
3 using a typical cocktail solution (Table 1, 2, 3)
demonstrated that the isolated mitochondria were
functionally well preserved [43,44]. Malate was also
added into our reaction mixture as it is a vital cofactor
for various mitochondrial substrate transporters. It is
essential for mitochondrial respiration and ensures a
continuous flow of substrate across mitochondrial
membranes into the matrix. Without the presence of
malate, the respiration rate for state 3 is not induced
by the addition of ADP with any of the selected sub-
strates. Although mitochondria contain malic enzyme
[45], malate alone did not support mitochondrial
respiration in all three tissues (data not shown), which
is consistent with the literature [46,47].

Although pyruvate is a key substrate for mitochon-
drial respiration, L-lactate can serve as a preferential
substrate for mitochondrial respiration, particularly in
highly metabolic tissues under conditions that have
increased requirement for mitochondrial respiration
[48]. In our study, ADP addition stimulated mitochon-
drial electron transport chain activity and oxygen con-
sumption in all mitochondrial preparations as
indicated by higher mitochondrial state 3 respiration
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and RCR in the presence of either L-lactate or pyru-
vate. Therefore, both pyruvate and L-lactate are well
oxidized in rat brain, heart and liver mitochondria
(Table 1, 2, 3). The heart demonstrated the highest
state 3 and state 4 respiration rates with pyruvate and
L-lactate as compared with brain and liver. This was
expected since heart mitochondria has higher oxidative
capacity compared to brain and liver [49].

RCR values can indicate the efficiency of electron
transport chain coupling activity with oxidative phos-
phorylation [50]. Brain and heart, but not liver, mito-
chondria demonstrated lower RCR ratios (less than 3)
with D-lactate as substrate compared to pyruvate or L-
lactate (Table 2 and 3). D-Lactate also reduced oxygen
consumption rates in brain and heart mitochondria but
not liver and impeded efficient utilization of pyruvate
and L-lactate by brain and heart mitochondria. These
data coupled with findings of limited D-lactate dehydro-
genase activity in brain and heart mitochondria (Figure
1) suggest that D-lactate is a poor mitochondrial
respiration substrate in these tissues. Relatively high D-
lactate dehydrogenase activities in liver mitochondria
likely maintain efficient oxidative phosphorylation in
these mitochondria in essence counteracting the effects
of D-lactate noted in brain and heart mitochondria.
Therefore, an accumulation of D-lactate in the brain
and heart tissue may represent a secondary disorder of
mitochondrial function by interfering with L-lactate and
pyruvate metabolism. This has been postulated by other
researchers and our study provides the first supportive
experimental data for this postulate to our knowledge
[28,51].

Interestingly, we also observed changes in oxygen
uptake by pyruvate in rat heart, brain and liver mito-
chondria in the presence of L-lactate though the extents
of inhibition were less compared to D-lactate (Table 1,
2, 3). Both D and L-lactate share the same mitochon-
drial membrane transporter and have the potential to
competitively inhibit pyruvate transport into the mito-
chondria for energy production [28]. In the liver, both
isomers of lactate can be recognized by mitochondrial
lactate dehydrogenase (LDH and DDH respectively) and
converted into pyruvate. Such conversion can therefore
compensate for the reductions in pyruvate concentra-
tions in the mitochondria resulting from inhibition of
pyruvate transport into this organelle [52,53]. However,
the degree of the compensation depends on the enzyme
tissue distribution and activity. In our study, DDH activ-
ities were significantly lower in rat brain and heart mito-
chondria compared to liver where as LDH activities
were similar between all three tissues (Figure 1). The
low level of DDH in rat brain and heart may explain the
strong inhibition of D-lactate on mitochondrial
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respiration rates using pyruvate as substrate in these two
tissues.

To further investigate these findings, an LDH inhibitor
(oxamate) was used to block lactate oxidation in rat
brain and liver mitochondria [53]. In the presence of
oxamate, mitochondrial respiration was maintained with
pyruvate as substrate while mitochondrial respiration
was reduced with administration of L-lactate or coadmi-
nistration of L-lactate with pyruvate. These data suggest
LDH plays an important role in the oxidation of L-lac-
tate in isolated mitochondria. To investigate the possible
mechanism of L- and D-lactate mediated inhibition of
pyruvate metabolism, a monocarboxylate transporter
(MCT) inhibitor, CINN, was used to inhibit MCT func-
tion. Marked reduction of mitochondrial respiration
rates in the presence of CINN suggests a role for MCT's
in the mitochondrial uptake of both isomers of lactate
and pyruvate. Competitive interactions occurring at
MCT may explain the inhibitory effect of D-lactate on
L-lactate and pyruvate.

In conclusion, our study identified that D-lactate is a
poor substrate for rat brain and heart mitochondria, but
an efficient substrate for liver mitochondrial respiration.
Low levels of DDH activity in rat brain and heart likely
explain its poor utilization by mitochondria of these tis-
sues. Additionally, D-lactate inhibited brain and heart
mitochondrial respiration caused by pyruvate and L-lac-
tate. L-Lactate also inhibited pyruvate induced mito-
chondrial respiration in liver, brain and heart but could
maintain heart and brain mitochondrial respiration via
LDH mediated conversion of L-lactate to pyruvate.
Furthermore, an inhibitor of monocarboxylate transpor-
ters completely inhibited mitochondrial respiration in
all tissues regardless of substrate. Collectively, these
data suggest D-lactate inhibition of pyruvate and L-lac-
tate mitochondrial utilization may be due, in part, to
competitive inhibition of the monocarboxylate transpor-
ters responsible for the transport of pyruvate and lactate
into the mitochondria. Since mitochondrial oxidative
phosphorylation is the main source of ATP production
in various tissues, disruption of mitochondrial respira-
tory function in brain and heart may compromise cellu-
lar energy status and result in toxicity. Hence, D-lactate
mediated reductions in mitochondrial energy production
may contribute to the neurological and cardiac toxicity
associated with D-lactic acidosis. L-Lactic acidosis
would not result in a cellular energy deficiency due to
LDH mediated conversion of L-lactate to pyruvate by
liver, brain, and heart mitochondria. Further investiga-
tion is warranted to determine the relationship between
reductions in mitochondrial energy production to cellu-
lar energy deficiency and organ dysfunction.
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