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Abstract 

Background  Lipid metabolism dysregulation is a prominent metabolic alteration in various cancers. The study aimed 
to explore the association of plasma lipid metabolism profiles with overall survival (OS) for gastric cancer (GC) patients 
who received gastrectomy.

Methods  GC patients who were treated with gastrectomy and measured with plasma lipid metabolism profiles 
using proton nuclear magnetic resonance (1H-NMR) spectroscopy in Nanfang Hospital between January 1, 2017, 
and October 31, 2018, were recruited. The Least Absolute Shrinkage and Selection Operator (LASSO) regression model 
was used to analyze variables selected by univariate analysis for OS. An index of plasma lipid metabolism profiles, 
named plasma lipid metabolism index (PLMI), was constructed by variables’ coefficients in LASSO regression to 
explore its association with OS and its role in the prediction model.

Results  A total of 158 GC patients were included in this study. Four of the 110 lipid profiles, including LDL-5 Apo-
B, LDL-4 Cholesterol, HDL-4 Apo-A2, and HDL-4 Free Cholesterol, were selected to construct the PLMI. The optimal 
cut-off value of PLMI for OS was used to classify the population into two subgroups, the high PLMI group (≥ − 0.163) 
and the low PLMI group (< − 0.163). The high PLMI group had a shorter OS (p = 0.0034) and was the independent 
risk factor for OS (Hazard Ratio = 2.13, 95% Confidence Interval (CI): 1.07–4.22, p = 0.031) after adjusting for perineural 
invasion and tumor stage. In subsets of the I–III stage and treating postoperative chemotherapy, high PLMI also had 
an unfavorable correlation with OS (p = 0.016 and p = 0.0086, respectively). The nomogram prediction models of both 
the training cohort and validation cohort showed good calibration and discrimination with the concordance indexes 
of 0.806 (95% CI, 0.732–0.880) in the training cohort and 0.794 (95% CI, 0.725–0.862) in the validation cohort.

Conclusions  This study found that the index derived from the LDL-5 Apo-B, LDL-4 Cholesterol, HDL-4 Apo-A2, and 
HDL-4 Free Cholesterol, was significantly associated with overall survival, suggesting that regulating lipid metabolisms 
might improve the prognosis for GC patients.
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Introduction
Lipid metabolism dysregulation is a significant altera-
tion in the development of cancer, involving proliferation, 
invasion, metastasis, and therapeutics in cancer due to 
cancer cells harnessing lipid metabolism to get the ele-
ments needed to make biological membranes, energy, as 
well as signaling molecules [1]. Current researches sug-
gest that lipid metabolism changes in cancer are capable 
of mediating antitumor drug resistance by up-regulat-
ing lipogenesis and lipolytic enzyme expression [2]. In 
a mouse model, tumor tissues were reported to be able 
to increase the expression of proteins involved in lipid 
metabolism in gastric cancer (GC) [3, 4]. Previous stud-
ies have mostly focused on the standard lipid risk mark-
ers, such as triglycerides, high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), and very low-density 
lipoprotein (VLDL) [5–8]. Numerous types of research 
have been published to date to clarify the roles of plasma 
lipid profiles in various cancers; however, inconsistent 
and conflicting results were found, indicating that more 
research is needed to fully understand the function of 
lipid metabolism in cancers [9–14]. Part of the conten-
tious findings can be attributed to the widely used clinical 
blood lipid profile test, which only measures total triglyc-
erides, total cholesterol, LDL, HDL, HDL-cholesterol, 
and LDL-cholesterol. A thorough understanding of the 
plasm lipid subfractions may contribute to better deci-
phering the intricate biochemical mechanisms of lipid 
metabolism dysregulation that occurs in GC patients.

Proton nuclear magnetic resonance (1H-NMR) detec-
tion is an advanced technology to analyze plasma lipid 
metabolism profile, enabling the distinction of differ-
ent lipid subfractions, which are dependent on differ-
ent densities, particle sizes, and chemical heterogeneity 
[15–18]. Currently, the technology of 1H-NMR spectros-
copy is gradually applied to investigate the development 
and clinical outcomes in the field of cancer research. 
Chan et  al. carried out a study by measuring various 
urinary metabolomic components among patients with 
GC utilizing 1H-NMR spectroscopy to exploit a dis-
criminatory urinary metabolomic profile to distinguish 
GC from healthy patients and benign gastric diseases, 
which constructed a discriminatory model that had a 
0.95 area under the receiver operator characteristic curve 
(ROC) [19]. Another study measured approximately 
1,000 plasma metabolites in patients with GC on an MS 
metabolomics platform, among which 11 lipid-associated 
metabolites were associated with GC risk [20]. Although 
the lipid metabolism profile has shown a significant role 
in diagnosis and predicting the risk of GC according to 
previous studies, the relationship between the survival 
outcomes and plasm lipid metabolism profiles based on 
1H-NMR spectroscopy remains unexplored.

In the present study, we retrospectively collected the 
blood samples from GC patients treated in Nanfang Hos-
pital between January 1, 2017, and October 31, 2018, and 
measured their plasm lipid metabolism profiles using 1H-
NMR spectroscopy. We sought to investigate the general 
and particular functions of comprehensive plasm lipid 
metabolism profiles in predicting the clinical outcomes 
in GC patients undergoing gastrectomy.

Methods and materials
Study population
This study retrospectively collected the key clinical infor-
mation of GC patients getting plasm 1H-NMR spectros-
copy detection between January 1, 2017, and October 31, 
2018, in Nanfang Hospital, Southern Medical University, 
Guangzhou, China.

Collection of clinical characteristic data
The information gathered for this investigation com-
prised gender, age, clinical characteristics including body 
mass index (BMI), Lauren type, tumor location, tumor 
differentiation, lymph node metastasis, depth of inva-
sion, distant  metastasis, immunohistochemical features 
including perineural invasion (S-100), lymphatic inva-
sion (D2-40), venous invasion (CD31), as well as human 
epidermal growth factor receptor 2 (HER2), serum 
tumor markers including preoperative carcinoembry-
onic antigen (CEA) and preoperative cancer antigen 19-9 
(CA19-9), serum lipid metabolomics data and follow-up 
information. The 8th edition of the AJCC Cancer Staging 
Manual of the American Joint Committee on Cancer was 
used to identify the pathological stage of gastric cancer 
[21]. The primary outcome, overall survival (OS), was 
calculated as the interval between the date of surgery and 
the date of all-cause death.

Plasma sample collection
Plasma was obtained from blood samples retrieved from 
GC patients. Blood samples were collected in 5  mL 
anticoagulant citrate dextrose tubes and centrifuged at 
1700 rpm for 13 min at 4 to 8 °C. About 400 μL of super-
natant plasma was collected to cryovials and then saved 
at − 80 °C waiting for 1H-NMR analysis.

1H‑NMR analyses of plasma lipid metabolism profiles
Plasma lipid metabolism profiles were measured by 1H-
NMR spectroscopy. Briefly, 350 μL of plasma samples 
after thawing were well mixed with an equal amount of 
sodium phosphate buffer. by vortexing for about 30  s 
before being transferred for NMR analysis. 1H-NMR 
spectroscopy was obtained by employing a 310  K and 
600.13 MHz proton Larmor frequency Bruker 600 MHz 
NMR spectrometer.
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The Bruker IVDr lipoprotein subclass analysis platform 
was used to quantify lipids and their subclassifications. 
The 110 lipid parameters include triglycerides, choles-
terol, Apo- B, Apo-A1, Apo-A2, HDL, LDL, VLDL, inter-
mediate-density lipoprotein (IDL), as well as subfractions 
of each lipoprotein, subdivided according to their den-
sity and their concentrations of triglycerides, cholesterol, 
phospholipids, free cholesterol, Apo-B, Apo-A1, and 
Apo-A2. HDL was divided into HDL 1-4, LDL into LDL 
1-6, and VLDL into VLDL 1-6 for each subfraction with 
increasing density (Additional file 3: Table S1) [17, 22].

Statistical analysis
The univariate analysis of Cox regression was first used to 
estimate the risk of 110 biomarkers of plasm lipid metab-
olism profiles for OS and the variables with p < 0.05 were 
included in the analysis of the Least Absolute Shrinkage 
and Selection Operator (LASSO) regression model with 
tenfold cross-validation, in which the selected variables 
underwent multicollinearity test before being used to 
construct a plasm lipid metabolism index (PLMI). We 
figured out the optimal cut-off value of PLMI for OS 
according to the Youden index. Based on the above opti-
mal cut-off value, patients were divided into two groups, 
high PLMI, and low PLMI groups. The Kaplan–Meier 
curve was applied to distinguish survival differences 
between the high PLMI group and the low PLMI group. 
Multivariate analysis was further used to adjust the con-
founding effects of clinical characteristics. Furthermore, 
we explored the association of PLMI with OS in sub-
groups of tumor stages and postoperative chemother-
apy. Finally, we estimated the role of PLMI in improving 
prediction models for OS. All the analyses were con-
ducted by SPSS version 25.0 (IBM), Graphpad prism 9.0, 
and R version 4.1.0. p < 0.05 was identified as statistical 
significance.

Results
Baseline data
The study flowchart is shown in Additional file  1:  Fig. 
S1. A total of 223 patients with GC underwent 1H-NMR 
measurement. One hundred and fifty-eight GC patients 
with gastrectomy were selected as the study cohort after 
excluding 20 patients who had not undergone surgery 
and 45 patients who underwent exploratory surgery but 
not gastrectomy.

The mean age of patients was 59  years and 54 (34%) 
were women and 104 (66%) were men. One hundred 
and forty-three had undergone radical gastrectomy and 
15 had undergone palliative gastrectomy. About half 
(47%) of them had the tumor at a lower part and about 
4% of them had tumors that invaded multiple locations. 
The rate of death in the cohort was 36.7% (58/158). The 

primary cause of death was cancer-related death. More 
details of these clinical features can be seen in Table 1.

The construction of PLMI
The Cox regression was firstly used to analyze the 
prognostic significance of each plasma lipid metabo-
lism biomarker (110 variables) for OS, among which 14 
variables (Additional file  3: Table  S1) including LDL-5 
Particle Number (p = 0.04), LDL-4 Particle Number 
(p = 0.03), LDL-5 Cholesterol (p = 0.04), LDL-4 Cho-
lesterol (p = 0.02), LDL-5 Free Cholesterol (p = 0.03), 
LDL-4 Free Cholesterol (p = 0.04), LDL-5 Phospholip-
ids (p = 0.04), LDL-4 Phospholipids (p = 0.02), LDL-5 
Apo-B (p = 0.04), HDL-4 Free Cholesterol (p = 0.02), 
LDL-4 Apo-B (p = 0.03), HDL-4 Cholesterol (p = 0.04), 
HDL-4 Apo-A1 (p = 0.03), and HDL-4 Apo-A2 (p = 0.02) 
showed a significant association. The heatmap of 14 lipid 
metabolism biomarkers normalized to z-score associated 
with tumor stage and OS status was shown in Fig.  1 a 
and they were selected to further analyze within LASSO 
Cox regression with tenfold cross-validation. Five vari-
ables were identified out of the 14 variables (Fig.  1b). 
Among the above 5 variables, the LDL-5 particle num-
ber was excluded after the multicollinearity test for OS 
(Additional file 3:  Table S2). The specific coefficients of 
the remaining 4 variables selected to construct the PLMI 
were shown in Additional file  2:  Fig. S2. A risk index 
of PLMI was calculated using a formula derived from 
the levels of the remaining 4 variables weighted by their 
regression coefficients. PLMI = (− 0.004 × LDL-4 Choles-
terol) + (− 0.000004 × LDL-5 Apo-B) + (− 0.003 × HDL-4 
Apo-A2) + (− 0.02 × HDL-4 Free Cholesterol).

Association of PLMI with OS
The optimal cut-off value of PLMI for OS was -0.163. The 
population was classified into two groups relying on the 
optimal cut-off value, the high PLMI group (≥ − 0.163) 
and the low PLMI group (< − 0.163). There was a huge 
difference in OS between the two groups (p = 0.0034, 
Fig.  2a), and in the subgroup of patients with the I–III 
stage (p = 0.016, Fig. 2b) while there was no difference in 
the subgroup of the IV stage patients (p = 0.88, Fig. 2c). In 
the subgroup of patients with postoperative chemother-
apy, the high PLMI group had a shorter OS (p = 0.0086, 
Fig.  2d), but in patients without postoperative chemo-
therapy, the difference between low PLMI and high PLMI 
in OS was not significant (p = 0.074, Fig. 2e).

To estimate the impact of demographic and clinical 
characteristics on PLMI, we further carried out univari-
ate and multivariate analyses (Table  2). In the univari-
ate analysis, across tumor location (HR = 3.90, 95% CI: 
1.76–8.64, p = 0.001), pTNM stage of the IV (HR = 4.50, 
95% CI: 2.37–8.57, p < 0.001), positive perineural invasion 
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(HR = 9.19, 95% CI: 3.32–25.44, p < 0.001), positive lym-
phatic invasion (HR = 2.69, 95% CI: 1.52–4.76, p = 0.001), 
positive venous invasion (HR = 2.32, 95% CI: 1.36–3.95, 
p = 0.002), preoperative CEA levels > 5 ug/L (HR = 2.88, 
95% CI: 1.45–5.73, p = 0.003), preoperative CA199 lev-
els > 37 U/ml (HR = 2.14, 95% CI: 1.17–3.91, p = 0.01), 
high PLMI (HR = 2.56, 95% CI: 1.33–4.95, p = 0.005) were 
risk factors for OS. Variables with p < 0.05 were included 
for multivariate analysis, in which high PLMI (HR = 2.13, 
95% CI: 1.07–4.22, p = 0.03), positive perineural invasion 
(HR = 6.01, 95% CI: 2.08–17.35, p = 0.001), pTNM stage 
of the IV (HR = 2.70, 95% CI: 1.30–5.63, p = 0.008) were 
identified as risk factors for OS in GC with gastrectomy.

The prediction models for OS
The statistically significant variables in multivari-
ate analysis including PLMI, perineural invasion, 
and tumor stage were applied to create a nomogram 
to predict the OS. Patients were randomly divided 
equally into two cohorts, the training cohort, and the 
validation cohort. There was no significant difference 
between the two cohorts (Additional file 3:  Table S3). 
The models of the nomogram for the training cohort 
and the validation cohort were shown in Fig. 3a and b, 
respectively. Model performance was validated for cali-
bration and discrimination using boot-strapping with 
1000 resamples. The calibration curves illustrated good 
consistency between observed and predicted outcomes 

Table 1  The clinical characteristics of GC patients with 
gastrectomy

Characteristics N %

Total 158 100

Age (years, mean ± standard deviation 
[SD])

59.06 ± 11.63

Gender

 Male 104 66

 Female 54 34

BMI (kg/m2, mean, SD) 22.20 ± 3.22

Tumor location

 Upper 45 28

 Middle 33 21

 Low 74 47

 Across 6 4

Lauren Type

 Intestinal 54 34

 Diffuse 75 16

 Mix 26 47

 Missing 3 2

Tumor Differentiation

 High 7 4

 Moderate 30 19

 Poor 119 75

 Missing 2 1

Depth of tumor invasion

 pT1 21 13

 pT2 28 18

 pT3 36 23

 pT4 73 46

Lymph node metastasis

 pN0 52 33

 pN1 23 15

 pN2 24 15

 pN3 59 37

Distant metastasis

 M0 143 91

 M1 15 9

Postoperative chemotherapy

 Yes 98 62

 No 60 38

pTNM stage

 I 36 23

 II 36 23

 III 71 45

 IV 15 9

Perineural invasion (S-100)

 Positive 101 64

 Negative 52 33

 Missing 5 3

Lymphatic invasion (D2-40)

 Positive 81 51

Table 1  (continued)

Characteristics N %

 Negative 72 46

 Missing 5 3

Venous invasion (CD31)

 Positive 68 43

 Negative 85 54

 Missing 5 3

HER2

 0 83 53

 1 +  41 26

 2 +  22 14

 3 +  8 5

 Missing 4 3

Preoperative CEA (ug/L)

 ≤ 5 130 82

 > 5 24 15

 Missing 4 3

Preoperative CA199 (U/ml)

 ≤ 37 139 88

 > 37 15 9

 Missing 4 3
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in both the training cohort (Fig. 4a) and the validation 
cohort (Fig. 4b). The model also resulted in a concord-
ance index (C-index) of 0.806 (95% CI, 0.732–0.880) 
and 0.794 (95% CI, 0.725–0.862) for the training and 
validation cohorts, respectively.

Discussion
The main findings of our study
In this study, a plasma lipid metabolism index, PLMI, was 
constructed by 4 lipid variables (LDL-5 Apo-B, LDL-4 
Cholesterol, HDL-4 Free Cholesterol, HDL-4 Apo-A2), 

Fig. 1  The analysis of 14 variables selected by univariate analysis for OS. a Heatmap of levels of 14 lipid metabolism biomarkers normalized to 
z-score associated with tumor stage and OS status. b LASSO Cox regression with tenfold cross-validation and 5 variables were identified out of the 
14 variables
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Fig. 2  The survival analysis. a The OS analysis of the low PLMI and high PLMI in the whole population. b The OS analysis of the low PLMI and high 
PLMI in the subgroup of the I-III stage. c The OS analysis of the low PLMI and high PLMI in the subgroup of the IV stage. d The OS analysis of the 
low PLMI and high PLMI in the subgroup of patients with postoperative chemotherapy. e The OS analysis of the low PLMI and high PLMI in the 
subgroup of patients without postoperative chemotherapy
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that was capable of predicting survival for GC patients 
with gastrectomy. Our results showed that high PLMI 
was associated with shorter OS and was an independ-
ent risk factor for OS. Especially patients with high PLMI 
seemed to benefit less from postoperative chemotherapy 
with worse OS. Furthermore, we found that the predic-
tion model based on PLMI, tumor stage, and perineural 
invasion for OS had great power.

Previous studies about HDL‑4 Free Cholesterol, LDL‑4 
Cholesterol, HDL‑4 Apo‑A2, and LDL‑5 Apo‑B
Rare researchers are investigating the role of HDL-4 
Free Cholesterol, LDL-4 Cholesterol, HDL-4 Apo-A2, 
and LDL-5 Apo-B in predicting prognosis for GC. It was 
reported that higher HDL cholesterol levels were linked 
both to a lower risk of developing cancer and to a bet-
ter likelihood of survival in colorectal cancer [23], simi-
larly to which high levels of HDL- Cholesterol indicated 
a better prognosis in GC [8, 24]. Although the study 
regarding the associations of HDL Free Cholesterol 
with GC has not been reported before, this biomarker 
was the most important factor in the construction of 

PLMI. Apo-A2, one of the apolipoproteins associated 
with HDL, was also studied in carcinoma, showing 
that plasma expressions of Apo-A2-AT/A and Apo-
A2-A/A, subfractions of Apo-A2, were related with a 
greater probability of developing pancreatic cancer, 
but no correlation with survival was investigated [25]. 
More studies are needed to further explore the associa-
tion of HDL Apo-A2 with GC. In addition, increased 
LDL Cholesterol levels are linked to the risk of gastric 
cancer but not OS [5]. Apo-B, the only apolipoprotein 
associated with LDL, is regarded to be linked to the risk 
of development and unfavorable prognosis in cancer 
[26, 27]. Although LDL—Cholesterol and LDL Apo-B 
seemed to be unfavorable biomarkers for cancer, LDL-4 
Cholesterol, and LDL-5 Apo-B, as subfractions of LDL 
Cholesterol and LDL Apo-B, respectively, were favora-
ble factors in our study, which indicates that differ-
ent densities of LDL Apo-B and LDL Cholesterol may 
play a different role in prognosis for GC. According to 
our results, while the general classifications of various 
lipids did not show robust relationships with survival 

Table 2  The univariate and multivariate analyses of OS

The variables with the significance of bold values in univariate analyses have p values < 0.05 and were included in multivariate analyses. The variables with the 
significance of bold values in multivariate analyses were independent risk factors for OS

Variables Univariate analysis Multivariate analysis

Hazard Ratio p value Hazard Ratio p value

Age (years) 1.00 (0.98–1.03) 0.75 – –

Gender (Male/Female) 1.32 (0.77–2.33) 0.34 – –

BMI (kg/m2) 0.95 (0.87–1.03) 0.23 – –

Tumor location (Across/others) 3.90 (1.76–8.64) 0.001 1.49 (0.58–3.88) 0.41

Lauren Type

 Intestinal ref

 Diffuse 1.43 (0.79–2.60) 0.24 – –

 Mix 1.51 (0.71–3.23) 0.28 – –

Tumor Differentiation

 High ref

 Moderate - 0.91 – –

 Poor - 0.91 – –

Postoperative chemotherapy

 Yes/No 1.49 (0.85–2.63) 0.17 – –

pTNM stage (IV/ I-III) 4.50 (2.37–8.57)  < 0.001 2.70 (1.30–5.63) 0.008
Perineural invasion (Positive/Negative) 9.19 (3.32–25.44)  < 0.001 6.01 (2.08–17.35) 0.001
Lymphatic invasion (Positive/Negative) 2.69 (1.52–4.76) 0.001 1.10 (0.49–2.47) 0.82

Venous invasion (Positive/Negative) 2.32 (1.36–3.95) 0.002 1.64 (0.78–3.45) 0.20

HER2 (3 + /0–2 +) 1.10 (0.34–3.50) 0.88 – –

Preoperative CEA (ug/L, > 5/ ≤ 5) 2.88 (1.45–5.73) 0.003 1.83 (0.83–4.02) 0.13

Preoperative CA199 (U/ml, > 37/ ≤ 37) 2.14 (1.17–3.91) 0.01 1.45 (0.73–2.85) 0.29

Group (High PLMI/Low PLMI) 2.56 (1.33–4.95) 0.005 2.13 (1.07–4.22) 0.03
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in GC, the PLMI constructed by the subfractions of 
lipoproteins showed a significant correlation with prog-
nosis for GC patients, which indicates that subfrac-
tions of lipoproteins may have great potential in cancer 
investigation.

The relationship between lipid metabolism and antitumor 
drug resistance in GC
Lipid metabolism has a significant relationship with 
antitumor drug resistance in GC. Cholesterol affects 
cancer cell signaling pathways, such as NF-kB [28], 

Fig. 3  Nomograms for OS prediction. a The nomogram for the training cohort in all populations; b The nomogram for the validation cohort in all 
populations
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oxysterol-binding protein-like protein three [29], R- Ras/
Akt [29], HMGCR [30], and Ar inhibitors [31], and so on, 
thus promoting chemotherapeutic drug resistance in GC. 
Furthermore, cholesterol can mediate the chemotherapy 
resistance under platinum-based chemotherapy by regu-
lating ABCG2 expression. Wu et al. revealed that patients 
who presented with quick chemoresistance had an 
increased level of plasma cholesterol and their tumor tis-
sue had enhanced ABCG2 expression in lung adenocar-
cinoma [32]. By targeting Akt/b-catenin and Ras/MEK/
ERK signaling pathways, phosphatidylcholine metabo-
lism also contributes to addressing medication resistance 
[33]. Notably, lipid reprogramming changes intercellu-
lar lipid metabolism and immune cells’ pharmaceutical 
resistance in the tumor microenvironment [2]. In present 
study, we interestingly discovered that GC patients with 
unfavorable plasma lipid metabolism profiles allowed 
by the 1H-NMR platform had a significantly shorter OS 
under postoperative chemotherapy, further supporting 
the hypothesis that lipid metabolism may play an impor-
tant role in antitumor drug resistance in GC.

The advantages of 1H‑NMR technology
1H-NMR technology and mass spectrometry (MS) are 
the two most successful methods of determining the 
metabolic profiles of an organic liquid [34]. 1H NMR 
spectroscopy has several advantages over MS for meta-
bolic applications, including easy preparation, non-
destructive analysis, in-vivo application, the ability to 
detect a variety of substances, and analysis of the struc-
ture of unknown compounds [35]. 1H-NMR is effective at 
tracing metabolic activities and fluxes with the usage of 
isotope labeling. 1H-NMR data provide a higher degree 

of repeatability over a larger dynamic range and have a 
track record of converting in-vitro results into Vivo clini-
cal applications [34]. In the present investigation, we uti-
lized the 1H-NMR spectroscopy to test blood samples 
extracted from GC patients and explored the associa-
tion of the lipid metabolism profiles with OS. Although 
the study about plasma lipid metabolism profiles based 
on 1H-NMR technology in GC has not been found yet, 
the application of 1H-NMR technology focusing on other 
metabolomic aspects in GC was reported previously. In 
a study, patients’ urine was collected to be measured by 
1H-NMR to identify whether GC has a unique urinary 
metabolomic profile compared with benign gastric dis-
ease and healthy patients, showing that a score based 
on 2-hydroxyisobutyrate, 3-indoxylsulfate, and alanine 
selected by LASSO regularised logistic regression pro-
duced a good discriminatory model with an area under 
the ROC of 0.95 [19]. The other study exerted the 1H-
NMR technology to detect metabolic profiling of tissues 
from GC patients and healthy patients, finding that PLS-
DA (partial least-squares discriminant analysis) mod-
els based on 48 endogenous distinguishing metabolites 
including glycolysis, glutaminolysis, amino acids, and 
choline showed adequate discrimination between cancer 
tissues and normal controls (36). Accordingly, previous 
studies involving 1H-NMR technology in GC research 
mainly focused on diagnostic value for GC by detect-
ing urine or tissue rather than blood, whereas the pre-
sent study especially explored the relationship between 
the plasma lipid metabolism profiles and GC prognosis, 
helping to further investigate the metabolomic potential 
in GC.

Fig. 4  Calibration curves of the Nomograms. a The calibration curve for the training cohort; b The calibration curve for the validation cohorts. (A 
perfect calibration model would have a dotted line at the 45-degree line, with predicted probability mirroring actual results.)
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Highlights
Our study has some highlights. Firstly, we applied an 
advanced technology of 1H-NMR spectroscopy in our 
study, with the help of which we were capable of testing 
110 parameters of lipids and their specific subfractions, 
enabling us to conduct more comprehensive research 
concerning plasma lipid metabolism profiles for GC 
patients with gastrectomy. Secondly, we construct a 
good index of PLMI that was capable of demonstrating 
the characteristics of plasm lipid metabolism profiles. 
Thirdly, while the previous research based on 1H-NMR 
mainly focused on the risk and diagnosis value for can-
cers, our study was exceptionally designed to explore the 
role of lipid metabolism profiles in prognosis for GC by 
including a total of 158 GC patients with gastrectomy 
with 5-year follow-up, which could be able to strongly 
support our conclusion.

Limitations
There are also some limitations in our study. Firstly, due 
to the study’s retrospective methodology, it was prone 
to some inherent biases, thus we would like to conduct 
a prospective, multicenter study to confirm our conclu-
sion further. Secondly, although the models including 
PLMI in our study had been validated in the internal vali-
dation cohort, it would be better if an external validation 
cohort were available, which is also the key we attempt to 
improve in our future research.

Conclusion
This study found that the index derived from the LDL-5 
Apo-B, LDL-4 Cholesterol, HDL-4 Apo-A2, and HDL-4 
Free Cholesterol, was significantly associated with over-
all survival, suggesting that regulating lipid metabolisms 
might improve the prognosis for GC patients.
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