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Abstract 

Background  Dietary fat intake affects brain composition and function. Different types of dietary fatty acids alter 
species and abundance of brain lipids in mice. The aim of this study is to explore whether the changes are effective 
through gut microbiota.

Methods  In our study, 8-week-old male C57BL/6 mice were randomly divided into 7 groups and fed with high-fat 
diet (HFD) with different fatty acid compositions, control (CON) group, long-chain saturated fatty acid (LCSFA) group, 
medium-chain saturated fatty acid (MCSFA) group, n-3 polyunsaturated fatty acid (n-3 PUFA) group, n-6 polyunsatu-
rated fatty acid (n-6 PUFA) group, monounsaturated fatty acid (MUFA) group and trans fatty acid (TFA) group. Then, 
the fecal microbiota transplant (FMT) was performed in other pseudo germ-free mice after antibiotic treatment. The 
experimental groups were orally perfused with gut microbiota that induced by HFD with different types of dietary 
fatty acids. The mice were fed with regular fodder before and after FMT. High-performance liquid chromatography-
mass spectrometry (LC-MS) was used to analysis the composition of fatty acids in the brain of HFD-fed mice and 
hippocampus of mice treated with FMT which was collected from HFD-fed mice.

Results  The content of acyl-carnitines (AcCa) increased and lysophosphatidylgylcerol (LPG) decreased in all kinds of 
HFD groups. phosphatidic acids (PA), phosphatidylethanolamine (PE) and sphingomyelin (SM) contents were signifi-
cantly increased in the n-6 PUFA-fed HFD group. The HFD elevated the saturation of brain fatty acyl (FA). Lysophos-
phatidylcholine (LPC), lysodi-methylphosphatidylethanolamine (LdMePE), monolysocardiolipin (MLCL), dihexosylcera-
mides (Hex2Cer), and wax ester (WE) significantly increased after LCSFA-fed FMT. MLCL reduced and cardiolipin (CL) 
raised significantly after n-3 PUFA-fed FMT.

Conclusions  The study revealed, HFD and FMT in mice had certain effects on the content and composition of fatty 
acids in the brain, especially on glycerol phospholipid (GP). The change of AcCa content in FA was a good indicator of 
dietary fatty acid intake. By altering the fecal microbiota, dietary fatty acids might affect brain lipids.
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Introduction
Dietary fatty acids regulate brain lipid composition [1]. 
Brain lipids in turn exert their effects on the brain physi-
ological function through participating in biochemical 
reactions. It has been reported that high-fat diet (HFD) 
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could reduce the contents of phosphatidylserine (PS) 
and phosphatidylethanolamine (PE) significantly [2]. 
Meanwhile, docosahexaenoic acid (DHA)-containing 
phosphatidylcholine (PC) and DHA-containing PS have 
restored lipid homeostasis in dementia mice [3]. Etha-
nolamine plasmalogen is the main component of plas-
malogen in the brain [3]. Sun et al. [4] have found that 
DHA-enriched diet could increase species of n-3 poly-
unsaturated fatty acid (n-3 PUFA) and decrease n-6 
polyunsaturated fatty acid (n-6 PUFA) in all major phos-
pholipid classes stored in the hippocampus, including 
PC, diacyl-phosphatidylethanolamine (dPE), alkenyla-
cyl-phosphatidylethanolamine or phosphatidylethan-
olamine plasmalogen (PE-pl), phosphatidylinositol (PI) 
and PS. Evidence showed that eicosapentaenoic acid 
(EPA)-enriched PC and PE could restore lipid homeosta-
sis in dementia mice, dietary EPA-PC and EPA-PE could 
increase the amount of choline plasmalogen, lysophos-
phatidylethanolamine (LPE), arachidonic acid (AA)-con-
taining PE and PS as well as decrease docosapentaenoic 
acid (DPA)-containing PS in the cerebral cortex of senes-
cence accelerated mouse prone-8 mice fed with HFD [5]. 
It has been reported that HFD elevated most kinds of 
lipids such as diacylglycerol lysophosphatidylserine and 
ceramide (Cer) in brain regions while PS species were 
decreased, the changes played a role in insulin resistance 
and oxidative stress [6].

In addition, the obese mice fed with HFD exhibited 
brain hypofunction and depression phenotype in behav-
ioral experiments via the molecular signaling cascades, 
related enzymes and genes in the hypothalamus [7]. 
Results from our previous study based on 8-week-old 
male C57BL/6 mice indicated that HFD enriched in n-3 
PUFA might impact cognition favorably, by contrast, 
HFD riched in long-chain saturated fatty acid (LCSFA), 
medium-chain saturated fatty acid (MCSFA), n-6 PUFA, 
monounsaturated fatty acid (MUFA) or trans fatty acid 
(TFA) exerted adverse effects on cognitive performance 
[8].

Accordingly, lipids and their metabolism are essential 
components for normal structure and function in brain. 
Disorders of brain lipids have been strongly implicated in 
the neurodegenerative disorders. Sulfatide (ST), a kind of 
sulfated galactocerebrosides synthesized by the oligoden-
drocytes in central nervous system, was depleted in early 
Alzheimer’s disease (AD), while Cer as degradation prod-
ucts of ST was elevated leading to neuronal dysfunction 
and neurodegeneration [9]. PS is the main category of 
acidic phospholipid class which stimulates neuronal sur-
vival and growth and participates in signal transmission 
[10]. Furthermore, abnormal PS asymmetry was found 
in synaptic membrane in patients with mild cognitive 
impairment and AD [11].

Diets rich in different dietary fatty acids exhibit impacts 
on the diversity of gut microbiota. Garcia et al. [12] 
found that the genus Dorea and Lactobacillus were over-
represented in diets with a high PUFA/saturated fatty 
acid (SFA) ratio in adults without pathology. A study in 
nonhuman primates showed that participants consuming 
a high MUFA diet had a more diverse microbiome than 
participants on a high-SFA diet, with increases in Oscil-
lospira, Fecalibacterium, Clostridium, and Lactobacillus 
and decreases in Coprococcus and Ruminococcus found 
in the gut [13]. Mice fed with the SFA-rich diet showed 
a greater decrease in Bacteroidetes proportion than did 
either the n-3 PUFA or the n-6 PUFA-rich diet treat-
ment, and significant decreases of Porphyromonadaceae 
and Lachnospiraceae were observed at the family level in 
n-6 PUFA and the SFA supplements, respectively [14].

Thus, the change in brain lipidomics might be an 
important factor related to energy metabolism [15], 
mitochondrial function [16], inflammatory response [17], 
and cognitive function [18]. Therefore, it is sufficient to 
understand the effect of dietary fat on brain lipidomics 
to prevent and manage nervous system disease as well as 
later life consequences. In the present study, we investi-
gated the effects of different dietary fatty acids on brain 
lipidomics followed by the intervention of dietary fatty 
acids and fecal microbiota transplant (FMT) in mice. Our 
study provides dietary fatty acids and altered gut micro-
biota as possible targets for further brain dysfunction 
research exploration.

Material and methods
Animals and diets
Orally feed intervention
Healthy male specific pathogen free (SPF) grade 8-week-
old C57BL/6 mice were used in the experiment [8]. A 
total of 70 mice were under permit number SCXK (Bei-
jing) 2016-0006. The animal experiments were approved 
by the Animal Ethics Committee of Capital Medical Uni-
versity (No. AEEI-2018-061). During the experiment, the 
mice were housed in the SPF environment under condi-
tions of controlled temperature (20–23 °C), natural light-
ing, and humidity (50–55%) with free access to food and 
water ad  libitum. The mice were randomly divided into 
7 groups according to their body mass, with 10 mice in 
each group. The fat energy supply ratio of the basic feed 
was 10%, and the carbohydrate energy supply ratio was 
70% for control (CON) group. The obesity mouse model 
was established by using 45% fat energy supply ratio and 
35% carbohydrate energy supply ratio in experimental 
group. The detailed feed nutritional composition could 
be found in our published research [19]. The specific 
HFD-fed mice groups were as follows: (1) CON group: 
fed with basic diet for 19  weeks; (2) LCSFA group: fed 
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with lard HFD for 19 weeks; (3) MCSFA group: fed with 
coconut oil HFD for 19 weeks; (4) n-3 PUFA group: fed 
with flaxseed oil HFD for 19 weeks; (5) n-6 PUFA group: 
fed with soybean oil HFD for 19 weeks; (6) MUFA group: 
fed with olive oil HFD for 19 weeks; (7) TFA group: fed 
with 8% hydrogenated soybean oil HFD for 19 weeks. All 
feeds were prepared and provided by Beijing Keao Xieli 
Feed Co., Ltd.

After 19  weeks of intervention, mice were fasted for 
12  h and sacrificed. The brains were quickly separated 
then frozen and stored at −80 °C.

FMT intervention
Mice were reared in the SPF Laboratory Animal Center 
under permit number SCXK (Beijing) 2016-0011. In our 
experiment, the mice were disposed of strictly according 
to the Ethical Committees on Animal Research (Animal 
Experimental Ethical Inspection Form Number: AEEI-
2018-131). The SPF grade 3-week-old C57BL/6J mice 
(n = 90) were used for this study. The mice were fed with 
autoclaved feed (D12450H with a fat content of 10%) 
and water. After 2 weeks of adaptive feeding, mice were 
randomly separated into 9 groups based on their initial 
body weight with 10 mice in each group, mice with FMT 
were grouped as follows: (1) + CON-0 group: perfused 
with only normal saline without antibiotic treatment; 
(2) + CON-1 group: perfused with normal saline after 
antibiotic treatment; (3) + CON group: FMT from basic 
feed mice after antibiotic treatment; (4) + LCSFA group: 
FMT from LCSFA feed mice after antibiotic treatment; 
(5) + MCSFA group: FMT from MCSFA feed mice after 
antibiotic treatment; (6) + n-3 PUFA group: FMT from 
n-3 PUFA feed mice after antibiotic treatment; (7) + n-6 
PUFA group: FMT from n-6 PUFA feed mice after anti-
biotic treatment; (8) + MUFA group: FMT from MUFA 
feed mice after antibiotic treatment; (9) + TFA group: 

FMT from TFA feed mice after antibiotic treatment. 
Antibiotic treatment: mice were treated with broad 
spectrum antibiotics (ampicillin 1 g/L, neomycin sulfate 
1 g/L, metronidazole 1 g/L, and vancomycin 0.5 g/L) in 
their drinking water, which was replaced every two days 
for 4 weeks [20].

Based on the prior experiment, fresh fecal pellets were 
collected for fecal bacteria preservation solution [21]. The 
percentage of preservation solution was calculated by the 
weight as follows: preservation solution was consisted of 
sodium chloride (0.9%), Vitamin C (0.5% – 2.0%), glycerol 
(30%) and sterile purified water. Fresh fecal samples were 
resuspended in a  preservation solution (50  g/100  ml) 
and then stored at −80  °C [21]. Aliquots were thawed 
on ice and performed with a total volume of 250 ml ster-
ile normal saline. After centrifugation at 4  °C, 800r/min 
for 3 min, the supernatant was taken as lavage fluid [22]. 
Each mouse received 200 μl by oral gavage once a week 
for 10 weeks. We used different gavage needles between 
groups and cleaned gavage needles with 70% ethanol 
within a group [23]. All equipment was autoclaved after 
experiments every day.

All mice were fasted for 12 h and sacrificed, the brain 
tissues were isolated, then the hippocampal tissues were 
extracted. Samples were stored at −80 °C for subsequent 
experiment. Flow chart of the study was presented in 
Fig. 1. The data of body weight and body fat mass of mice 
was detailed in our published research [8].

Lipidomic analysis
Sample processing
Total lipids were extracted from brain and hippocam-
pus by using a 2:5 mixture of methanol and pure water. 
Extracts were dried under vacuum and then redissolved 

Fig. 1  Flow diagram of the study
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in acetonitrile/isopropanol (1:1). 80 μl of supernatant was 
injected into the sample injection bottle for UPLC-MS/MS 
analysis.

High‑performance liquid chromatography‑mass 
spectrometry (LC‑MS) of brain tissue lipid extracts
After sample processing, LC-MS was performed on a 
Thermo UHPLC-Q Exactive system. Chromatographic 
separation was performed at 25  °C on a BEH C18 -col-
umn (100  mm × 2.1  mm i.d., 1.7  μm; Waters, Milford, 
USA). Solvent A was 10 mM CH3COONH4 in ACN/H2O 
(1/1) (0.1% (v/v) formic acid) and Solvent B was 2  mM 
CH3COONH4 in ACN/IPA/H2O (10/88/2) (0.02% (v/v) 
formic acid). Injection volume was 2.0  μl, flow rate was 
0.4 ml/min, and column temperature was set at 40 °C.

The Thermo UHPLC-Q Exactive Mass Spectrometer 
equipped with an electrospray ionization positive and neg-
ative ion modes was used for mass spectrometer detection.

Quality controlling
To analyze the stability of the treatment method, The qual-
ity control samples were prepared by mixing the experi-
mental sample extracts in equal amounts to ensure the 
reliability of the experimental results. Samples treatment 
and data preprocessing were performed by Shanghai 
Majorbio Bio-pharm Technology Co., Ltd.

Statistical analysis
The raw data were imported into the LipidSearch software 
for baseline filtering, peak detection, integration, time cor-
rection and peak alignment. The obtained data matrix 
of retention time, mass-to-charge ratio and peak area 
were used for data preprocessing: (1) The variables with 
non-zero expression in at least 80% of the samples were 
retained. (2) Missing values were filled up in the raw data. 
(3) Peaks were normalized and variables having relative 
standard deviation higher than 30% in quality control sam-
ples were excluded for further analysis. (4) All data were 
log10 transformed before quantitative assays.

Statistical analyses were performed using R software 
(Version 1.6.2). Log-transformation was applied to approx-
imate log-normality of the data and one-way analysis of 
variance (ANOVA). Kruskal-Wallis test was performed if 
the normality test is not satisfied. Results were presented as 
mean and standard deviation (SD) in tables and figures. A 
two-sided p < 0.05 was considered statistically significant.

Results
The variations in the abundance of glycerol phospholipid 
(GP) in brain of HFD‑fed mice
GP, such as PE and PI, is one of the most abundant lipids 
in the cerebral cortex. In Fig. 2, results showed the con-
tent and types changes of GP in the mice brain after a 

19-week fatty acids dietary intervention. High intake of 
n-6 PUFA elevated the content of PE in the mice brain 
(p < 0.05) (Fig. 2A).

The expression of PS indicated almost no difference 
between experimental groups and CON group (p > 0.05) 
(Fig. 2I), in the meanwhile, compared with CON group, 
PE, methylphosphocholine (MePC), BisMePA, phos-
phatidic acids (PA) showed a highlight rise in n-6 PUFA 
group (p < 0.05) (Fig.  2A–D). However, dimethylphos-
phatidylethanolamine (dMePE) and biotinyl-phosphati-
dylethanolamine (BiotinylPE) were significantly reduced 
in n-3 PUFA group compared to CON group (p < 0.05) 
(Fig. 2E, H). MePC was sensitive to the dietary fatty acid 
composition and capable of reflecting the type changes: 
the MePC content was significantly increased in MUFA, 
n-3 PUFA and n-6 PUFA groups versus the CON group 
(p < 0.05) (Fig. 2B). The increase of dietary MCSFA intake 
was reflected by the reduction of dilyso-cardiolipin 
(DLCL) content in the brain (p < 0.05) (Fig. 2F).

Although at  the main class level, PE increased sig-
nificantly only in n-6 PUFA group (p < 0.05) (Fig.  2A). 
But under the condition of high LCSFA intake, the spe-
cific metabolites in PE: PE (16:1/22:5), PE (16:0e/22:6), 
PE (20:4e/18:2), PE (18:2p/20:4), PE (16:1/22:6), PE 
(20:5/20:5), PE (18:2p/22:6) and PE (18:3/22:6) were still 
significantly higher than those in the normal diet CON 
group (p < 0.05) (see Additional file  1: Table  S1). And 
under the condition of high MCSFA intake, the spe-
cific metabolites in PE: PE (16:0p/16:1), PE (14:0/20:4), 
PE (16:1p/20:4) and PE (14:0/22:6) were still signifi-
cantly higher than those in the normal diet CON group 
(p < 0.05) (see Additional file 1: Table S1).

The content of lysophosphatidylgylcerol (LPG) 
decreased in all LCSFA, MCSFA, MUFA, n-3 PUFA, 
n-6 PUFA and TFA groups compared with CON group 
(p < 0.05) (Fig. 2G). Compared to the types of dietary fatty 
acids, the high total content of dietary fatty acids had 
more effect on the content of LPG in mice brains.

The variations in the abundance of fatty acyl (FA) in brain 
of HFD‑fed mice
The results revealed that high-content of dietary fatty 
acids had a large effect on the content of acyl-carnitines 
(AcCa) in the brain. Compared with the CON group, the 
increase of AcCa expression was indicated in all experi-
mental groups, and the increases were statistically signifi-
cant (p < 0.05) except in n-3 PUFA group (Fig. 3).

Data were displayed in Table 1. Compared with CON 
group, the main metabolites in AcCa class increased 
obviously (p < 0.05), including AcCa (12:0), AcCa (13:0), 
AcCa (14:0), AcCa (14:1), AcCa (15:0), AcCa (16:0), 
AcCa (16:1), AcCa (17:1), AcCa (18:0), AcCa (18:1), 
AcCa (18:2), AcCa (18:3), AcCa (19:1), AcCa (20:1), 
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Fig. 2  Relative abundance of GP in brain of mice fed with HFD. A–I: GP as a main class can be subdivided into classes: PE, MePC, BisMePA, PA, 
dMePE, DLCL, LPG, BiotinylPE and PS (Mean ± SD, n = 6). a: p < 0.05, compared to CON group; b: p < 0.05, compared to LCSFA group; c: p < 0.05, 
compared to MCSFA group; d: p < 0.05, compared to MUFA group; e: p < 0.05, compared to n-3 PUFA group; f: p < 0.05, compared to n-6 PUFA 
group. Mean ± SD, n = 6
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AcCa (20:3), AcCa (20:4), AcCa (22:4) and AcCa (22:6) 
in most experimental groups. In the whole class of AcCa, 
the increase of molecular contents more than 12 carbon 
accounted for the main position. Compared with high 
SFA and high MUFA diet, the effect of high n-3 PUFA 
intake on the contents of AcCa (20:1), AcCa (20:4) and 
AcCa (22:1) in hippocampus was completely consistent 
with the decrease of total AcCa (p < 0.05). The increased 
content of AcCa implied the accumulation of medium 
and long chain fatty acids, which might be attributed to 
the HFD.

Overall, the intake of different kinds of dietary fatty 
acids had a great effect on the saturation of FA in the 
brain. Majority of lipids were polyunsaturated with either 
4 or 6 double bonds. Lipids with the 4 unsaturated bonds 
were the most abundant, and fully saturated lipids were 
the third. Compared with the CON group, the increase 
in the intake of fatty acids elevated the saturation of brain 
lipids and the proportion of lipids with low unsatura-
tion. Among them, the lipids saturation of MUFA group 
showed an upward trend: the contents of lipids with high 
unsaturation decreased, the proportion of lipids contain-
ing 0, 1 and 3 unsaturated bond increased (p < 0.05), the 
lipids containing 6 to 7 unsaturated bonds decreased 
(p < 0.05), and the highest proportion of unsaturated 
lipids was the one containing 4 double bonds. As whole, 
the saturation and the proportion of saturated lipids 
(p < 0.05) increased in MCSFA group (Fig. 4).

Corresponding to the number of double bonds, major-
ity of FA found in the brain of mice carry 16 or more total 
carbons and most of them were even 20 and 22 carbons, 

whereas < 13C and 23–44C length lipids were less abun-
dant in all groups. The levels of lipid molecules with 
12–19 carbon atoms showed a significantly higher trend 
in most of LCSFA, MCSFA, MUFA, n-6 PUFA and TFA 
groups compared to CON group (p < 0.05) (Fig.  5), and 
this trend was no longer significant with the extension of 
the carbon chain.

The variations in the abundance of sphingolipids (SP) 
in brain of HFD‑fed mice
The intake of n-6 PUFA increased the contents of sphin-
gomyelin (SM) and ST in the brain of mice compared 
with CON group significantly (p < 0.05) (Fig. 6). This was 
consistent with the change trend of SP content in mice 
with FMT.

The variations in the abundance of GP in hippocampus 
of mice with FMT
Dietary fatty acid intake of fecal donor mice was essen-
tial for lipid types and contents in hippocampal tis-
sue of mice following FMT. Compared with + CON-1 
and + CON groups the contents of lysophosphatidyl-
choline (LPC), lysodi-methylphosphatidylethanolamine 
(LdMePE), and monolysocardiolipin (MLCL) increased 
in + LCSFA group (p < 0.05) (Fig.  7C, E, F). Feces from 
mice fed with MCSFA also drove up the content of car-
diolipin (CL) and PEt in the hippocampus of recipient 
mice (p < 0.05) (Fig.  7B, G). FMT from mice fed with 
n-3 PUFA, n-6 PUFA and TFA increased the content of 
CL compared with + CON-0 groups (p < 0.05) (Fig.  7B). 
When compared with + CON-0, + CON-1, + LSCFA 
and + MSCFA groups, the content of LPMe, LdMePE 
and MLCL decreased in the hippocampus of recipient 
mice after n-6 PUFA-fed FMT (p < 0.05) (Fig. 7D–F).

CL level in hippocampus of recipient mice was elevated 
in + n-3 PUFA group compared with + CON-0, + CON-1 
or + LSCFA groups (p < 0.05) (Fig.  7B). In contrast, the 
FMT from n-3 PUFA diet mice reduced the contents of 
cPA, LPC, MLCL and PEt (p < 0.05) (Fig. 7A, C, F, G).

The variations in the abundance of FA in hippocampus 
of mice with FMT
An increase in wax ester (WE) content was observed at 
the + LCSFA group compared to + CON, + CON-1, + n-3 
PUFA, + n-6 PUFA, and + TFA groups (p < 0.05) (Fig. 8).

The variations in the abundance of SP in hippocampus 
of mice with FMT
FMT from HFD feeding mice made recipient mice 
exhibit different degrees of increase in Hex2Cer con-
tent, but none reached significance in + MUFA, + n-6 
PUFA and + TFA groups (p > 0.05) (Fig.  9A). Compared 
to the + CON-1 group, the amount of SM was reduced 

Fig. 3  Relative abundance of the AcCa class in FA main class in brain 
of mice fed with HFD. a: p < 0.05, compared to CON group; b: p < 0.05, 
compared to LCSFA group; c: p < 0.05, compared to MCSFA group; d: 
p < 0.05, compared to MUFA group; e: p < 0.05, compared to n-3 PUFA 
group; f: p < 0.05, compared to n-6 PUFA group. Mean ± SD, n = 6



Page 7 of 15Li et al. Nutrition & Metabolism           (2023) 20:12 	

Table 1  AcCa expression in the brain of mice fed with different dietary fatty acids (Mean ± SD, n = 6)

*, **, ***denotes a statistically significant difference (p < 0.05, 0.01, 0.001) in all groups
a p < 0.05, compared to CON group
b p < 0.05, compared to LCSFA group
c p < 0.05, compared to MCSFA group
d p < 0.05, compared to MUFA group
e p < 0.05, compared to n-3 PUFA group
f p < 0.05, compared to n-6 PUFA group

Expression CON LCSFA MCSFA MUFA n-3 PUFA n-6 PUFA TFA p value

AcCa (12:0) 6.706 ± 0.142 7.021 ± 0.093a 7.943 ± 0.085ab 7.031 ± 0.151ac 6.967 ± 0.116ac 7.075 ± 0.098ac 7.035 ± 0.137ac  < 0.001***

AcCa (13:0) 5.957 ± 0.108 6.226 ± 0.083a 6.289 ± 0.057a 6.173 ± 0.090a 6.094 ± 0.111c 6.228 ± 0.068a 6.230 ± 0.087a  < 0.001***

AcCa (14:0) 8.087 ± 0.151 8.302 ± 0.073a 8.499 ± 0.052ab 8.293 ± 0.088ac 8.247 ± 0.091c 8.328 ± 0.071ac 8.350 ± 0.073a  < 0.001***

AcCa (14:1) 6.857 ± 0.159 7.131 ± 0.064a 7.304 ± 0.066a 7.192 ± 0.121a 6.987 ± 0.139 cd 7.190 ± 0.071ae 7.277 ± 0.069ae  < 0.001***

AcCa (15:0) 6.698 ± 0.134 6.926 ± 0.077a 6.947 ± 0.119a 6.849 ± 0.212 6.819 ± 0.095 6.937 ± 0.104a 6.944 ± 0.078ae 0.028*

AcCa (16:0) 8.720 ± 0.108 8.904 ± 0.051a 8.893 ± 0.045a 8.871 ± 0.079a 8.789 ± 0.065 8.892 ± 0.075a 8.875 ± 0.047a  < 0.001***

AcCa (16:1) 7.744 ± 0.168 7.981 ± 0.076a 8.042 ± 0.051a 7.967 ± 0.090a 7.838 ± 0.102c 7.941 ± 0.092a 8.050 ± 0.063ae  < 0.001***

AcCa (17:1) 6.470 ± 0.154 6.766 ± 0.071a 6.680 ± 0.056a 6.694 ± 0.072a 6.579 ± 0.101b 6.737 ± 0.101a 6.757 ± 0.085ae  < 0.001***

AcCa (18:0) 8.298 ± 0.093 8.463 ± 0.032a 8.453 ± 0.045a 8.407 ± 0.054 8.303 ± 0.046bc 8.458 ± 0.104ae 8.348 ± 0.054  < 0.001***

AcCa (18:1) 8.572 ± 0.120 8.822 ± 0.054a 8.784 ± 0.087a 8.805 ± 0.088a 8.636 ± 0.101bd 8.742 ± 0.095a 8.802 ± 0.061ae  < 0.001***

AcCa (18:2) 6.709 ± 0.118 7.200 ± 0.091a 6.907 ± 0.122b 6.968 ± 0.099ab 7.209 ± 0.143acd 7.588 ± 0.137abcde 7.056 ± 0.198af  < 0.001***

AcCa (18:3) 5.263 ± 0.734 6.116 ± 0.086a 5.790 ± 0.341 6.026 ± 0.369 7.133 ± 0.201abcd 6.685 ± 0.124abcde 6.171 ± 0.244acef  < 0.001***

AcCa (19:1) 6.368 ± 0.110 6.558 ± 0.101a 6.517 ± 0.091 6.558 ± 0.097a 6.394 ± 0.099 6.558 ± 0.097a 6.507 ± 0.082 0.003**

AcCa (20:0) 7.117 ± 0.173 7.262 ± 0.108 7.169 ± 0.172 7.139 ± 0.054b 6.995 ± 0.071bd 7.187 ± 0.073e 7.073 ± 0.097bf 0.010**

AcCa (20:1) 7.564 ± 0.121 7.769 ± 0.065a 7.744 ± 0.130a 7.745 ± 0.076a 7.460 ± 0.100bcd 7.684 ± 0.072e 7.677 ± 0.055e  < 0.001***

AcCa (20:3) 6.356 ± 0.168 6.631 ± 0.054a 6.623 ± 0.034a 6.710 ± 0.054abc 6.822 ± 0.124abc 6.766 ± 0.123ac 6.564 ± 0.046acdef  < 0.001***

AcCa (20:4) 8.367 ± 0.082 8.526 ± 0.067a 8.608 ± 0.056a 8.587 ± 0.043a 8.260 ± 0.105bcd 8.517 ± 0.095ae 8.520 ± 0.075ae  < 0.001***

AcCa (21:0) 6.215 ± 0.117 6.325 ± 0.143 6.378 ± 0.138 6.343 ± 0.103 6.137 ± 0.189 6.322 ± 0.224 6.241 ± 0.147 0.174

AcCa (22:0) 6.284 ± 0.270 6.515 ± 0.192 6.540 ± 0.237 6.495 ± 0.108 6.254 ± 0.250 6.463 ± 0.251 6.232 ± 0.182 0.059

AcCa (22:1) 7.077 ± 0.106 7.233 ± 0.153 7.202 ± 0.199 7.250 ± 0.120 6.860 ± 0.214bcd 7.104 ± 0.170 7.062 ± 0.140 0.003**

AcCa (22:4) 6.906 ± 0.264 7.143 ± 0.051 7.178 ± 0.076a 7.066 ± 0.144 6.574 ± 0.156abcd 7.040 ± 0.267e 7.033 ± 0.208e 0.005**

AcCa (22:6) 7.308 ± 0.138 7.423 ± 0.108 7.488 ± 0.082a 7.519 ± 0.063a 7.248 ± 0.134 cd 7.413 ± 0.124 7.422 ± 0.167 0.010**

AcCa (24:1) 6.640 ± 0.190 6.794 ± 0.176 6.855 ± 0.236 6.847 ± 0.173 6.540 ± 0.300 6.710 ± 0.314 6.590 ± 0.168 0.118

Fig. 4  Unsaturation degree of total FA in brain of mice fed with HFD. *, **, ***denotes a statistically significant difference (p < 0.05, 0.01, 0.001) 
compared to the CON group, the lipid contents were indicated in the figure in % (Mean ± SD, n = 6)
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in + LCSFA, + MCSFA and + n-3 PUFA groups (p < 0.05) 
(Fig. 9B).

Discussion
The brain lipidome determines the location and function 
of proteins on the neuronal cell membrane [24]. Lipids 
act as neurotransmitters or other signaling molecules 
[25]. The composition of brain lipids is influenced by 

certain factors, such as nutrition, environmental factor 
and behavioral activity [26].

Studies have shown that HFD could damage neuro-
genesis through lipid peroxidation and reduce brain-
derived neurotrophic factor [27]. HFD has been also 
associated with reduced hippocampal volume, which 
regulates learning ability, memory and mood [28]. 
Although the effect of HFD on brain health has been 

Fig. 5  The carbon atom numbers of FA in brain of mice fed with HFD. *, **, ***denotes a statistically significant difference (p < 0.05, 0.01, 0.001) 
compared to the CON group, the lipid contents were indicated in the figure in % (Mean ± SD, n = 6)

Fig. 6  Relative abundance of the ST and SM class in SP main class in brain of mice fed with HFD. a: p < 0.05, compared to CON group; b: p < 0.05, 
compared to LCSFA group; c: p < 0.05, compared to MCSFA group; d: p < 0.05, compared to MUFA group; e: p < 0.05, compared to n-3 PUFA group; f: 
p < 0.05, compared to n-6 PUFA group. Mean ± SD, n = 6



Page 9 of 15Li et al. Nutrition & Metabolism           (2023) 20:12 	

studied in pathogenesis, the relationship between HFD 
and brain fat changes has not been widely studied. 
Higher lipid saturation may impair cell proliferation 
[29] and membrane fluidity [30]. Overall, our LCSFA, 
MCSFA, MUFA, n-6 PUFA, TFA supplements have ele-
vated lipid saturation in brain. In addition, the increase 
of acyl chain lengths in brain were observed in AD 
patients and transgenic familial AD mice [18]. These 
findings were consistent with our results.

In mammals, phospholipase D (PLD)-mediated PA 
can resist apoptosis and promote mitophagy [31]. The 
increased expression and activity of PLD occur in many 
human cancer cells [32]. PLD also causes damage to cells 
by activating nicotinamide adenine dinucleotide phos-
phate to overproduce reactive oxygen species [33, 34]. It 
can be considered that PA has a pro-oncogenic role and 
cell oxidative damage effects. In addition, study also has 
shown that, elevated plasma PE levels are positively cor-
related with the incidence rate of type II diabetes (T2D) 

Fig. 7  Relative abundance of GP in brain of mice with FMT. A–G: GP as a main class can be subdivided into classes: cPA, CL, LPC, LPMe, LdMePE, 
MLCL and PEt. a: p < 0.05, compared to + CON-0 group; b: p < 0.05, compared to + CON-1 group; c: p < 0.05, compared to + CON group; d: p < 0.05, 
compared to + LCSFA group; e: p < 0.05, compared to + MCSFA group; f: p < 0.05, compared to + MUFA group; g: p < 0.05, compared to + n-3 
PUFA group; h: p < 0.05, compared to + n-6 PUFA group. Mean ± SD, n = 3–5
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and metabolic syndrome [35]. ST might be involved in 
the regulation of inflammatory factors which decreased 
the activation of nuclear factor kappa-B translocation 
into the nucleus, ST hindered the localization of toll-
like receptor 4 within lipid rafts, thereby diminishing 
the TLR4 signaling pathway, ST also had anti-inflam-
matory effects in the peripheral immune system [36]. 
ST downregulated systemic inflammation through a the 
Cluster of Differentiation 1D Glycoprotein dependent 
pathway mediated by type II Natural killer T cells [17]. 
However, it has also been shown that ST could induce 

pathological inflammatory responses in glial and brain-
resident immune cells within the brain [37]. In our study, 
we found that HFD with n-6 PUFA increased the content 
of PE, PA and ST in the brain of mice, which indicated 
that excessive n-6 PUFA intake might exacerbate cell oxi-
dative damage and metabolic impairment, but the effects 
on inflammatory response were inconclusive.

The high-fat diet might facilitate inflammatory 
responses, LPG might be mediated by formyl peptide 
receptor  like-1 as cell responses regulator so that might 
show a potential anti-inflammatory effect [16]. A uni-
form decrease in LPG expression was observed in the 
experimental groups in our study, which might be a 
possible mechanism of HFD-fed intracerebral inflam-
mation. The converse was seen with the AcCa, ris-
ing in its expression level caused by diet had a positive 
effect on the brain. It was consistent with our research: 
except for n-3 PUFA group, the content of AcCa in all 
HFD groups increased significantly compared with CON 
group (p < 0.05). That is, HFD could increase the content 
of AcCa in the brain regardless of the types of fatty acids 
intake. In the form of AcCa, carnitine carried activated 
long-chain fatty acids from cytoplasm into the mitochon-
dria for subsequent oxidation and energy production, so 
it was essential for fatty acid oxidation and energy sup-
ply. Functionally, AcCa might alter the composition of 
cell membrane, stabilize cellular membrane, improve 
mitochondrial function and increase antioxidant activ-
ity in the brain [38]. The increase of AcCa content in the 
brain was associated with antidepressant effects. Carni-
tine also helped to remove the medium and short chain 
fatty acids which came from normal metabolic processes. 
And evidence derived from clinical populations indicated 

Fig. 8  Relative abundance of WE class in FA main class in brain of 
mice with FMT. a: p < 0.05, compared to + CON-0 group; b: p < 0.05, 
compared to + CON-1 group; c: p < 0.05, compared to + CON group; 
d: p < 0.05, compared to + LCSFA group; e: p < 0.05, compared to 
+ MCSFA group; f: p < 0.05, compared to + MUFA group; g: p < 0.05, 
compared to + n-3 PUFA group; h: p < 0.05, compared to + n-6 PUFA 
group. Mean ± SD, n = 3–5

Fig. 9  Relative abundance of SP in brain of mice with FMT. A, B: SP as a main class can be subdivided into classes: Hex2Cer and SM. a: p < 0.05, 
compared to + CON-0 group; b: p < 0.05, compared to + CON-1 group; c: p < 0.05, compared to + CON group; d: p < 0.05, compared to + LCSFA 
group; e: p < 0.05, compared to + MCSFA group; f: p < 0.05, compared to + MUFA group; g: p < 0.05, compared to + n-3 PUFA group; h: p < 0.05, 
compared to + n-6 PUFA group. Mean ± SD, n = 3–5
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demonstrated elevations in plasma acylcarnitine con-
centrations in obese [39]. Since long-chain AcCa might 
inhibit or disrupt the intracellular stage of insulin signal-
ing [40], patients with T2D and insulin resistance often 
appeared AcCa perturbations [41].

SM was abundant in the myelin sheath which also is an 
important SP in the brain [42]. By nuclear magnetic reso-
nance, the study has been found an increased SM concen-
tration in brain of patients diagnosed with AD. Targeted 
metabolomics analyses of brain tissue in AD cases 
showed that, the higher SM concentration, the more 
severe pathological changes, the higher abnormal cog-
nition risk [43]. Accumulation of SM in brain impaired 
the enzymolysis of amyloid precursor protein C-terminal 
fragments, thus promoting the formation of characteris-
tic amyloid beta peptide (Aβ) in AD [44]. Grimm et al. 
[45] have pointed out that Aβ42 could downregulate SM 
through sphingomyelinases activation. Both results thus 
mutually corroborated each other. Alternatively, SM lev-
els seem to play an important role in regulating inflam-
mation. SM was synthesized by sphingomyelin synthase 
(SMS), and sphingomyelin synthase 2 (SMS2) deficiency 
could reduce plasma membrane SM levels and attenuate 
nuclear factor kappa-B activation in macrophages and 
human embryonic kidney 293 cells [46]. Previous study 
has found a correlation between plasma SM and interleu-
kin-6 [47]. Interestingly, the increase of SM (d18:1/24:0) 
or SM (d18:1/16:0) strongly induced intercellular adhe-
sion molecule 1 and inducible nitric oxide synthase 
expression in macrophages, suggesting that SM was reg-
ulating macrophage activation and inflammation [48]. In 
our research, result suggested that high n-6 PUFA intake 
could increase SM expression which might be harmful to 
cognitive function with pro-inflammatory effect.

Foreign and domestic studies have shown that gut 
microbiota can be involved in the bidirectional regula-
tion of the gastrointestinal tract and central nervous 
system through four pathways: nerve, metabolism, neu-
roendocrine and immunity, that is, the "gut microbiota-
gut-brain axis" [49, 50]. Chronic consumption of HFD 
increased the ratio of Firmicutes to Bacteroidetes in adult 
(25 to 45 years old) compared with other age groups [51]. 
Animal study has suggested that a certain dose of n-3 
PUFA could regulate the diversity, and abundance of gut 
microbiota, increase beneficial Mycoplasmataceae and 
Firmicutes levels in the gut and decrease gram-positive 
Clostridium levels in Kunming mice [52]. Our previous 
finding has shown that rats feeding with 1% and 8% TFA 
for 8 weeks significantly induced obesity, and the abun-
dance of Bacteroides increased as well as Muribaculaceae 
decreased [53]. It has been shown that the gut micro-
biota can be independently involved in some organis-
mal responses and can transmit certain properties of the 

donor into the recipient host [54, 55]. FMT is the per-
suasive way to explore the functions and specific mecha-
nisms of the gut microbiota in dietary factors and brain 
lipids metabolites.

CL oxidation is involved in aging and mitochondrial 
bioenergetics change contributing to brain mitochondrial 
dysfunction caused by aging. Cerebral aging correlated 
with the occurrence  of senile neurodegenerative condi-
tions [56]. It was reported that both quantity and quality 
of the dietary fatty acid, including CL [57], altered lipids 
compositions in the mitochondrial membrane. MLCL, 
the three-tailed variant of CL, was predominantly dis-
tributed in the mitochondria. CL was remodeled from 
MLCL by the enzyme tafazzin. Tafazzin mutations had an 
impact on the transition from MLCL to CL and affected 
the function of mitochondria which was known as Barth 
syndrome. Barth syndrome included symptoms of cog-
nitive deficits and hippocampus might serve as a poten-
tial treatment target for this disease [58]. MLCL was not 
typically detected in healthy tissues [59], an increase in 
MLCL indicated the remodeling of CL in brain mito-
chondrial was subjected to interference. In our study, 
LCSFA-fed fecal microbiota decreased CL and increased 
MLCL, in contrast, PUFA-fed fecal microbiota decreased 
MLCL and increased CL. Fecal microbiota fed with high 
SFA intake might alter energy metabolism and mitochon-
drial functional status, and might even inhibit the transi-
tion from MLCL to CL and thus impair cognition.

The digestion of WE released unsaturated fatty acids 
in the colon and activated G-protein-coupled receptor 
120 in immune cells, which secreted hormones that con-
trolled sugar and fat metabolism [60], reduced fat depo-
sition in the liver and abdomen, and provided increased 
insulin sensitivity [61]. Supplementation of WE had 
significant anti-obesity effect, reduced obesity-related 
inflammation, and improved glucose tolerance and aero-
bic capacity [62]. WE as dominant energy storage lipid 
has been found in nervous system of other mammals 
[15]. In the meanwhile, as an endogenous inflammation-
regulatory phospholipid, LPC has been associated with 
immunomodulatory functions of central nervous system 
glia. Saturated (LPC (16:0) and LPC (18:0)) and monoun-
saturated (LPC (18:1)) LPC had certain pro-inflammatory 
effects, such as the expression of adhesion molecules, the 
release of chemokines and the increase of reactive oxygen 
species production [63]. Unsaturated LPC (20:4) and LPC 
(22:6) exerted anti-inflammatory property by counter-
acting LPC (16:0)-induced inflammation and promoting 
formation of anti-inflammatory factors including inter-
leukin-4 and interleukin-10 [64]. Our results showed that 
LCSFA-fed fecal microbiota up-regulated the expression 
of anti-obesity related WE and inflammation related LPC 
in mice brain.
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Moreover, there was a strong positive correlation 
between inflammatory markers and hexanoylceramide 
(HexCer) species containing C16:0, C20:0 and C24:1 
fatty acids [65]. There were strong correlations between 
adenosine triphosphate binding cassette transporter A7 
genotype which was associated with an increased risk 
of AD and Hex2Cer [66]. Hex2Cer could induces insulin 
resistance [67]. Compared with normal mice, the content 
of Hex2Cer in the liver of obese T2D mice was increased 
[68]. Meanwhile, among overweight and obese popula-
tions, Hex2Cer was in positive correlation with the inter-
leukin-10 [69]. In our findings, fact that the intake of a 
high SFA diet was associated with increase of Hex2Cer. 
This result was also confirmed in human study [70].

The gut microbiota comprises a large and diverse com-
munity that plays an important regulatory role in host 
physiological metabolism [71]. Dietary composition 
was known to alter the composition of the gut microbi-
ome which in turn modified the local or systemic effects 
produced by the microbial community on the host [72]. 
Both SFA and TFA could lead to endothelial dysfunction, 
contribute to gut barrier injury, reduce the expression 
of tight junction proteins, then cause inflammatory cell 
infiltrates and eventually induce imbalances in gut micro-
biota [73, 74]. In addition, gut microbiota is the key to the 
mechanism of diet-induced cognitive impairment [49]. 
Wu et al. [75] found decline and disorganization of neu-
rons in hippocampus of diet-fed mice accompanied by 
varying degrees of damage [75]. In our study, FMT was 
used to elucidate the effect of different types of dietary 
fatty acids mediated by gut microbiota on brain lipids 
metabolism of recipient mice. There were significant dif-
ferences in the composition and structure of brain tis-
sue in + LCSFA, + MCSFA, + MUFA, + n-3 PUFA, + n-6 
PUFA and + TFA groups of mice with FMT. Although the 
lipid metabolic characteristics of donors were not com-
pletely replicated in recipients through gut microbiota 
fed with different types of dietary fatty acids, the dis-
ordered flora still had a negative effect on the brain tis-
sue composition and central nervous system function of 
recipient mice. Our results suggest that gut microbiota 
and its metabolites played a vital role in brain lipidomics, 
providing new evidence and ideas for the specific path-
way of the "gut microbiota-gut-brain axis".

Conclusions
The study dealt with the impact of different types of fatty 
acids on lipid composition and lipid proportion of brain. 
Our results suggested that dietary n-3 PUFA, n-6 PUFA 
and LCSFA have a greater effect on brain lipids such as 
LPG and AcCa. Dietary fatty acids-fed gut microbiota 
could also have effects on lipid composition in the brain. 
SFA-fed gut microbiota up-regulated LPC, WE, and 

Hex2Cer levels in the brain. SFA-fed and PUFA-fed gut 
microbiota could regulate the interconversion between 
MLCL and CL. The content changes of these lipids 
might further affect the physiological functions they are 
involved in.
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compared to CON group; b: p < 0.05, compared to LCSFA group; c: p < 
0.05, compared to MCSFA group; d: p < 0.05, compared to MUFA group; e: 
p < 0.05, compared to n-3 PUFA group; f: p < 0.05, compared to n-6 PUFA 
group.
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