Skip to main content

Advertisement

Table 5 Stages of evolution of the proposed RMR equation

From: Estimating the agreement between the metabolic rate calculated from prediction equations and from a portable indirect calorimetry device: an effort to develop a new equation for predicting resting metabolic rate

New equations in the initial form
log10(RMR) = 1.333–0.1522 log10(ΒΜΙ) or RMR (Kcal /24 h) = 21.53 X (BMI)-0.152
RMR equation for both sexes R2 = 98.9%, n = 383 (males = 106, females = 277), age = 10–77 y. BMI Individual multiplications
Normal Weight = 1 (1)-0.152 = 0.848 (21,53 Χ 0,848) =18.26
Overweight = 2 (2)-0.152 = 1.848 (21.53 X 1.848) = 39.79
Obesity class I = 3 (3)-0.152 = 2.848 (21.53 X 2.848) = 62.32
Obesity class II = 4 (4)-0.152 = 3.848 (21.53 X 3.848) = 82.85
Obesity class III = 5 (5)-0.152 = 4.848 (21.53 X 4.848) = 104.38
log10 (RMR) = 1.324–0.1786 x log10(ΒΜΙ) or RMR (Kcal/Kg BW/24 h) = 25.41 x (BMI)-0.2115
RMR equation for Males R2 = 97.8%, n = 105 males, Age = 10–77 y BMI Individual multiplications
Normal Weight = 1 (1)- 0.2115 = 0.7885 (25.41 × 0.7885) =20.3
Overweight = 2 (2)- 0.2115 = 1.7885 (25.41 × 1.7885) = 45.50
Obesity class I = 3 (3)- 0.2115 = 2.7885 (25.41 × 2.7885) = 70.85
Obesity class II = 4 (4)- 0.2115 = 3.7885 (25.41 × 3.7885) = 96.26
Obesity class III = 5 (5)- 0.2115 = 4.7885 (25.41 × 4.7885) = 121.67
log10(RMR) = 1.405–0.2115 x log10(ΒΜΙ) or RMR (Kcal/Kg BW/24 h) = 21.09 x (BMI)-0.1786
RMR equation for Females R2 = 91.9%, n = 278 females, Age = 10–77 y BMI Individual multiplications
Normal Weight = 1 (1) -0.1786 = 0.8214 (21.09 × 0.8214) =17.32
Overweight = 2 (2) -0.1786 = 1.8214 (21.09 × 1.8214) = 38.41
Obesity class I = 3 (3) -0.1786 = 2.8214 (21.09 × 2.8214) = 59.50
Obesity class II = 4 (4) -0.1786 = 3.8214 (21.09 × 3.8214) = 80.59
Obesity class III = 5 (5) -0.1786 = 4.8214 (21.09 × 4.8214) = 101.68