Skip to main content
Fig. 4 | Nutrition & Metabolism

Fig. 4

From: Dietary n-3 long-chain polyunsaturated fatty acids upregulate energy dissipating metabolic pathways conveying anti-obesogenic effects in mice

Fig. 4

Gene and protein expression of markers involved in lipolysis in iBAT. All data are means ± SEM and were collected from mice after 12-week feeding either control (C), HFD (HF), or n-3 long-chain polyunsaturated fatty acid (LCPUFA)-enriched HFD (HF/n-3). a Gene expression data of the β-adrenergic receptors Adrb3 and Adrb1, which convey the signals from catecholamines to stimulate lipolysis, in iBAT (n = 10–12). RT-qPCR data were normalised to Cypb and Hsp90αb1, and calculated relative to controls. b, c Western blot analyses of (b) hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) and (c) representative phosphorylations of HSL in iBAT (n = 5–6). Separate gels were run for quantification of total HSL (81 and 83 kDa) and p-HSL (Ser660), p-HSL (Ser563) and p-HSL (Ser565; each 81 and 83 kDa), respectively, whereby the blotting membrane of p-HSL (Ser565) was reincubated for the detection of ATGL (54 kDa). Shown are the protein expression levels relative to controls and, for HSL, the ratios for the phosphorylated forms to total protein expression levels (normalised values were used). β-ACTIN (42 kDa) was used for protein normalisation. *p < 0.05, **p < 0.01, ***p < 0.001, significant differences compared to control or between groups as indicated

Back to article page