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Abstract

Background: Recent data suggest that an increased level of high-density lipoprotein cholesterol (HDL-C) is not causally
protective against heart disease, shifting focus to other sub-phenotypes of HDL. Prior work on the effects of dietary
intakes has focused largely on HDL-C. The goal of this study was to identify the dietary intakes that affect HDL-related
measures: HDL-C, HDL-2, HDL-3, and apoA1 using data from a carotid artery disease case–control cohort.

Methods: A subset of 1,566 participants with extensive lipid phenotype data completed the Harvard Standardized
Food Frequency Questionnaire to determine their daily micronutrient intake over the past year. Stepwise linear
regression was used to separately evaluate the effects of dietary covariates on adjusted levels of HDL-C, HDL-2, HDL-3,
and apoA1.

Results: Dietary folate intake was positively associated with HDL-C (p = 0.007), HDL-2 (p = 0.0011), HDL-3 (p = 0.0022),
and apoA1 (p = 0.001). Alcohol intake and myristic acid (14:0), a saturated fat, were each significantly associated with
increased levels of all HDL-related measures studied. Dietary carbohydrate and iron intake were significantly associated
with decreased levels of all HDL-related measures. Magnesium intake was positively associated with HDL-C, HDL-2, and
HDL-3 levels, but not apoA1 levels, while vitamin C was only associated with apoA1 levels. Dietary fiber and protein
intake were both associated with HDL-3 levels alone.

Conclusions: This study is the first to report that dietary folate intake is associated with HDL-C, HDL-2, HDL-3, and
apoA1 levels in humans. We further identify numerous dietary intake associations with apoA1, HDL-2, and HDL-3 levels.
Given the shifting focus away from HDL-C, these data will prove valuable for future epidemiologic investigation of the
role of diet and multiple HDL phenotypes in heart disease.

Keywords: HDL, HDL-C, HDL-2, HDL-3, Apolipoprotein A1, HDL subfractions, Folate, Alcohol, Fatty acids, Magnesium,
Food frequency questionnaire, Cardiovascular disease
Background
The strong inverse association between measures of high
density lipoprotein cholesterol (HDL-C) and cardiovas-
cular disease risk [1] has recently prompted several stud-
ies to establish the role of HDL-C in the causal pathway
of atherosclerosis and its resulting end-organ damage.
However, in both clinical trials [2,3] and Mendelian
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randomization analyses [4], increasing HDL-C levels has
failed to demonstrate a significant decrease in cardiovas-
cular disease, raising doubts as to the cardioprotective
nature of the HDL-C and the high density lipoprotein
particle (HDL-P) in its entirety.
However, recent evidence from the Multi Ethnic Study

of Atherosclerosis (MESA) suggests that aspects of the
HDL-P not measured by HDL-C may be responsible for
the cardioprotective effects of HDL [5]. In this work,
Mackey et al. studied a cohort of 5,598 participants,
measured both HDL-P (which reflects the total quantity
of HDL and its associated proteins) and HDL-C, and
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performed multivariate regression on the outcomes of
incident coronary heart disease (CHD) and carotid in-
tima media thickening (cIMT). From these analyses,
Mackey et al. found that when HDL-P was already in-
cluded in the model, HDL-C measures no longer were
protective against cardiovascular disease risk. This find-
ing suggested that there were elements of HDL likely re-
sponsible for its cardioprotective nature that were better
reflected by HDL-P than HDL-C.
HDL is broadly composed of two sub-species, HDL-2

and HDL-3, each of which have distinct biochemical,
physiologic, and metabolic functions [6]. HDL-2 has a
much higher density of apolipoprotein A1 (apoA1),
whose levels have been consistently associated with car-
dioprotection [7,8]. HDL-3 is the smaller, denser, and
more lipid-poor of the two sub-fractions of HDL. How-
ever, HDL-3 is strongly antioxidant [9] and also is closely
associated with the glycoprotein enzyme, paraoxonase-1
(PON1) [10]. PON1 is itself atheroprotective [11-14] and
can prevent LDL [15,16] and HDL oxidation [17] (other
functions of PON1 are summarized in a recent review
article [18]).
We have previously determined that HDL-3 was a su-

perior predictor of carotid artery disease (CAAD) com-
pared with HDL-C, HDL-2 or apoA1, considering 1,725
participants in a CAAD case–control cohort [19]. When
HDL-3 was included in the model, none of the other
measures of HDL were significantly associated with
CAAD [19]. Moreover, the CAAD-protective effects of
HDL-3 were independent of its closely associated en-
zyme, (PON1) [9] which is itself inversely associated
with CAAD [14,20,21], suggesting that unmeasured ele-
ments of HDL-3 may be responsible for cardioprotective
effects in our data [6].
Diet is one of the key behavioral targets for preventing

cardiovascular disease [22,23]. Specific diets, such as the
Mediterranean [24] and DASH [25] diets have been as-
sociated with lower incidence of CHD. These favorable
results are largely attributed to improved biomarker pro-
files, including increases in HDL-C [26]. However, stud-
ies have not generally analyzed the effects of diet on the
more specific measures of HDL [24-26], such as HDL-2,
HDL-3, and apoA1, all of which may be more closely as-
sociated with the cardioprotective elements of HDL [19].
We previously have used food frequency questionnaire

data in our data to identify novel dietary micronutrient
intakes that affect PON1 enzyme activity [27-29]. In this
work we have leveraged our large and well-characterized
Carotid Lesion Epidemiology And Risk (CLEAR) study
in conjunction with thorough dietary intake data to de-
termine the micronutrient determinants of each specific
measure of HDL. Specifically, we sought to determine
what specific dietary micronutrients are associated with
HDL-C, HDL-2, HDL-3, and apoA1, and how these
dietary associations differ across the various measures
of HDL.

Methods
Ethics statement
Institutional review boards at the University of Washington,
Virginia Mason Medical Center, and Veterans Affairs Puget
Sound approved the CLEAR study. Written, informed con-
sent was obtained from each participant of the study.

Sample
The CLEAR study is a Seattle-based prevalent CAAD
case–control study, composed primarily of veterans, with
controls matched by age at diagnosis (for CAAD cases)
and current unaffected age (for controls). Exclusion cri-
teria included familial hypercholesterolemia, total fasting
cholesterol greater than 400 mg/dl, hypocoagulable state
and/or the use of anticoagulant medication, post-organ
transplant, or the inability to consent. The study popula-
tion for this analysis was a subset (n = 1,566) of the previ-
ously described CLEAR study [14,20] with both dietary
intake and HDL data. All participants in the studied subset
presented had complete covariate data. The studied subset
consisted of 433 participants with CAAD as determined
by ultrasound (>50% stenosis in either carotid artery), 70
participants with moderate obstruction (15-49% obstruc-
tion in at least one carotid artery), 3 subjects with other
phenotypes, including peripheral artery disease (PAD) and
coronary artery disease (CHD), and 1060 controls (<15%
carotid stenosis bilaterally and absence of PAD and CHD).
Of the 1,566 outpatients enrolled in this subset of the
CLEAR study, 60% were recruited from Veterans Affairs
Puget Sound, 22% from the University of Washington,
and 18% from Virginia Mason Medical Center. Current
smoking status and reported ancestry were obtained by
self-report. For the purposes of our analyses, diabetes was
defined by hemoglobin A1C ≥ 6.5% and/or hypoglycemic
medication or insulin use, which was determined via self-
report matched to hospital pharmacy records.

Lipid measurements
Standard methods were used to determine total choles-
terol, triglycerides, and HDL in fasting whole plasma
using an Abbott Spectrum analyzer. HDL fractions 2
and 3 were determined by precipitating HDL-2 from iso-
lated total HDL, measuring HDL-3 in the supernatant,
and subtracting this from total HDL to obtain HDL-2
[30]. Apolipoprotein A-I was measured as previously de-
scribed [31]. All lipid measurements had approximate
standard distributions.

Food-frequency questionnaire
At enrollment, participants were asked to complete the
standardized Harvard food frequency questionnaire (FFQ)
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developed by the Health Professionals Follow-Up Study
(https://regepi.bwh.harvard.edu/health/nutrition.html).
The FFQ asked about i) the average frequency of intake
over the previous year of specified portions of 131 foods
and ii) the use of vitamins and mineral supplements, in-
cluding the dose and duration of use. Questions regarding
brand of multivitamins and cereal used were asked to clar-
ify the quantities of specific vitamin supplementation. All
vitamin usage was energy-adjusted to 2,000 kcal/day. The
surveys were then returned to Harvard School of Public
Health and the Brigham and Women’s Hospital, where
they underwent quantitative analysis to return the inferred
average intake of 162 specific and unique dietary nutrient
intakes. Of the 162 returned dietary nutrient intakes, 53
non-redundant intakes with complete data across all par-
ticipants with FFQ diet and plasma lipid data were carried
forward to analysis. The Harvard Food Frequency Ques-
tionnaire has been validated against two, in-depth, 1-week
diet records taken approximately six months apart [32].
Additionally, the inferred intake of dietary fatty acids and
cholesterol have been validated against plasma lipid mea-
surements [33,34].

Statistical methods
Natural log transformation was performed for each of
the 53 specific dietary micronutrient intake variables.
Extreme observations were Winsorized [35] to 3 stand-
ard deviations from the mean before natural log trans-
formation. For food frequency data, participants were
excluded if their caloric intake was <800 calories/day or
>4000 calories/day. Additionally, participants were ex-
cluded if the returned survey had ≥70 missing items.
We performed separate stepwise linear regression

models on the individual lipid phenotypes of apo-A1,
HDL-C, HDL-2, and HDL-3, with all 53 natural-log
transformed dietary intakes included in the model. Model
comparison was performed using Akaike’s information cri-
terion (AIC), beginning with a base model comprised of
age, sex, diabetes status, current smoking, and dummy
variables for self-reported African, Asian, or Hispanic an-
cestry, with genetically-confirmed [36] European ancestry
participants (the largest subgroup) serving as the reference
group. Only measurements that improved model predic-
tion of the specific lipid phenotype were retained in the
final model.
Due to the high degree of correlation among the

dietary fatty acid (DFA) measures, only those we had
previously determined [29] to not be highly correlated
with each other (pairwise correlation coefficient < 0.8)
were included in this study. These DFA measures were:
myristic acid (14:0), oleic acid (18:1), gadoleic acid
(20:1), linolenic acid (18:3, a ω-3 DFA), arachidonic acid
(20:4, an ω-6 DFA), and eicosapentaenoic acid (20:5, an
ω-3 DFA).
Alcohol has previously been reported to increase
HDL-C and its associated proteins; however, heavy alco-
hol use has also been reported to have the opposite ef-
fect [37]. Therefore, we created five groups of alcohol
intake: 0 g/day, 0–12 g/day, 12–24 g/day, 24–60 g/day,
and >60 g/day, as previously described by Framingham
Heart Study investigators using the same food frequency
questionnaire [38,39]. Alcohol intake was then treated as
a dummy variable compared to the reference of non-
drinkers for stepwise linear regression analyses.

Results
Demographic, clinical, selected dietary intakes, and lipid
values are presented in Table 1. Participants of European
ancestry comprised the majority of the cohort (77.1%),
while participants of Asian (12.6%), African (8.2%), and
Hispanic (2.1%) comprised the remainder of the selected
subset of the CLEAR study. Males accounted for ap-
proximately two-thirds (63.3%) of the population. Of the
studied subset, 32.9% were taking statins, 17.6% were
diabetic, and 10.3% were current smokers. The average
age of all participants was 65.3 years. All lipid pheno-
types (apoA1, HDL-C, HDL-2, and HDL-3) showed ap-
proximate standard distributions.
In addition to the demographic and clinical variables

included in the base model, numerous dietary intakes in-
creased total HDL-C variance explained in a stepwise
linear regression model (see Table 2). All alcohol intake
levels were positively associated with HDL-C. In addition,
magnesium, folate, and the saturated fat, myristic acid
(14:0), were all positively and independently associated
with HDL-C. Carbohydrate intake, iron, and % of fat de-
rived from animal sources were each negatively additive
for HDL-C.
Similar effects from dietary intakes were observed for

HDL-2: all alcohol intakes, magnesium, folate, and myr-
istic acid (14:0) were each positively and independently
associated with HDL-2 levels, while carbohydrate and
iron intakes were both negatively associated with HDL-2
(see Table 3). Unique to HDL-2, arachidonic acid (20:4,
an ω-6 DFA) was also negatively associated with HDL-2,
while eicosapentaenoic acid (20:5, a ω-3 DFA) was posi-
tively associated with HDL-2.
In the dietary models explaining HDL-3 variance, all

alcohol intakes, magnesium, folate, and myristic acid
(14:0) were positively associated with HDL-3 levels (see
Table 4). Similar to HDL-C and HDL-2, HDL-3 levels
decreased with increasing carbohydrate and iron intakes.
Unique to HDL-3, increasing protein intake was associ-
ated with decreased HDL-3 levels, while dietary fiber
was associated with increased HDL-3 levels.
Finally, stepwise linear regression models considering

dietary covariates to explain apoA1 variance identified
similar trends: all alcohol intakes, folate, and myristic

https://regepi.bwh.harvard.edu/health/nutrition.html


Table 1 Baseline characteristics of CLEAR study
participants (n = 1566)

Baseline characteristics CLEAR cohort
(N = 1566)

Ethnicity, n (%)

European ancestry, not Hispanic 1207 (77.1)

Hispanic ancestry 33 (2.1)

African ancestry 128 (8.2)

Asian/Pacific Islander ancestry 198 (12.6)

Gender, n (%)

Female 575 (36.7)

Male 991 (63.3)

Age, mean ± SD, years 65.3 ± 9.55

Current smoker, n (%) 161 (10.3)

Diabetic, n (%) 275 (17.6)

Statin Use, n (%) 515 (32.9)

Alcohol Intake

0 = 0 g/day, n (%) 641 (40.9)

1 = 0 – 12 g/day, n (%) 588 (37.5)

2 = 12 – 24 g/day, n (%) 178 (11.4)

3 = 24 – 60 g/day, n (%) 126 (8.1)

4 = >60 g/day, n (%) 33 (2.1)

Dietary Micronutrient Intake

Ln(Vitamin C intake), mg, mean ± SD 5.43 ± 1.00

Ln(Folate intake), μg, mean ± SD 6.71 ± 0.71

Ln(Iron intake), mg, mean ± SD 14.6 ± 6.53

Ln(Magnesium intake), mg, mean ± SD 5.79 ± 0.44

Ln(Carbohydrate intake), g, mean ± SD 5.26 ± 0.46

Ln(Protein intake), g, mean ± SD 4.36 ± 0.41

Ln(Dietary fiber intake), g, mean ± SD 2.92 ± 0.49

Ln(Myristic acid (14:0) intake), g, mean ± SD 1.01 ± 0.36

Ln(Arachidonic acid (20:4) intake), g, mean ± SD 0.14 ± 0.075

Ln(Eicosapentaenoic acid (20:5) intake), g,
mean ± SD

0.14 ± 0.13

Fat Intake Composition

Animal-based fat (of total fat intake), mean ± SD, % 37.4 ± 21.1

Vegetable-based fat (of total fat intake),
mean ± SD, %

32.5 ± 18.8

Plasma Lipid Measures

ApoA1, mean ± SD, mg/dl 150.5 ± 28.8

HDL-C, mean ± SD, mg/dl 54.4 ± 17.2

HDL-2, mean ± SD, mg/dl 11.1 ± 6.75

HDL-3, mean ± SD, mg/dl 43.3 ± 11.6

Table 2 Best-fit model from stepwise linear regression
predicting HDL-C levels using dietary intake data

Coefficient ± SE %HDL-C
variation

P

(Intercept) 33.8 ± 7.78 - -

Current age, years 0.15 ± 0.04 0.15% 0.00016

Male gender −13.6 ± 0.81 17.8% <2×10−16

Current smoker −2.25 ± 1.25 0.64% 0.067

Diabetic −8.06 ± 1.00 4.42% 1.12×10−15

Statin Use 2.36 ± 0.82 0.63% 0.0039

Hispanic ancestry −1.25 ± 2.53 0.072% 0.62

African ancestry 9.18 ± 1.44 0.51% 2.60×10−10

Asian ancestry 2.65 ± 1.16 0.0031% 0.022

24-60 g alcohol/day 11.3 ± 1.42 1.79% 2.99×10−15

12-24 g alcohol/day 7.23 ± 1.23 0.89% 4.98×10−9

0-12 g alcohol/day 5.19 ± 0.83 1.76% 4.73×1010

>60 g alcohol/day 11.0 ± 2.57 1.02% 1.95×10−5

Ln(Magnesium intake), mg 4.79 ± 1.45 0.12% 0.0010

Ln(Carbohydrate intake), g −7.98 ± 1.35 1.22% 5.22×10−9

Ln(Folate intake), μg 5.25 ± 1.56 0.24% 0.00081

Ln(Iron intake), mg −0.17 ± 0.10 0.32% 0.042

Ln(Myristic acid (14:0) intake), g 6.47 ± 2.08 0.12% 0.0018

Animal fat, % −0.10 ± 0.04 0.29% 0.004
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acid (14:0) were each positively and additively associated,
while carbohydrate and iron intakes were negatively as-
sociated with apoA1 levels (see Table 5). Unique to
apoA1, vitamin C intake was both positively associated
with apoA1 levels. In addition to the aforementioned
micronutrient intakes, increasing the percentage of fat
derived from animal sources was associated with de-
creased apoA1 levels.
A summary table of all the identified dietary micronu-

trient intakes and their respective associations to the
studied lipid phenotypes (HDL-C, HDL-2, HDL-3, and
apoA1) is presented in Table 6. All alcohol intakes, myr-
istic acid (14:0), and folate were each positively and
independently associated with all of the studied lipid phe-
notypes. Carbohydrate and iron intakes were both nega-
tively and additively associated with all of the studied
lipid phenotypes. Magnesium was positively associated
with all HDL-specific (HDL-C, HDL-2, and HDL-3) mea-
sures. Percentage of fat from animal sources was nega-
tively associated with both HDL-C and apoA1 levels.
Unique to HDL-2, arachidonic acid (20:4, an ω-6 DFA)
was negatively associated, while eicosapentaenoic acid
(20:5, an ω-3 DFA) was positively associated with HDL-2
levels. For HDL-3 alone, dietary protein and dietary fiber
intake were negatively associated. Finally, for apoA1 only,
vitamin C was positively associated with apoA1 levels.
Sensitivity analyses by CAAD status and gender

showed consistent effects of all the dietary covariates for
all studied lipid phenotypes, suggesting that these factors
were not affecting the relationship between the identified
dietary covariates and their respective lipid measures.



Table 3 Best-fit model from stepwise linear regression predicting HDL-2 levels using dietary intake data

Coefficient ± SE %HDL-2 variation P

(Intercept) 2.95 ± 3.14 - -

Current age, years 0.070 ± 0.016 0.023% 1.53×10−5

Male gender −5.18 ± 0.33 16.9% <2×10−16

Current smoker −0.022 ± 0.50 0.18% 0.96

Diabetic −2.42 ± 0.40 2.82% 2.61×10−9

Statin Use 1.11 ± 0.33 0.76% 0.00086

Hispanic ancestry −0.95 ± 1.03 0.096% 0.36

African ancestry 2.93 ± 0.58 0.43% 5.69×10−7

Asian ancestry −0.24 ± 0.47 0.11% 0.61

24-60 g alcohol/day 3.39 ± 0.58 1.09% 5.33×10−9

12-24 g alcohol/day 1.78 ± 0.34 0.87% 1.38×10−7

0-12 g alcohol/day 1.88 ± 0.49 0.93% 0.00017

>60 g alcohol/day 2.63 ± 1.04 0.43% 0.012

Ln(Eicosapentaenoic acid (20:5) intake), g 3.52 ± 1.23 0.41% 0.0045

Ln(Magnesium intake), mg 1.43 ± 0.61 0.028% 0.018

Ln(Arachidonic acid (20:4) intake), g −7.27 ± 2.54 0.37% 0.0043

Ln(Carbohydrate intake), g −2.62 ± 0.55 0.81% 2.13×10−6

Ln(Folate intake), μg 2.07 ± 0.63 0.30% 0.0010

Ln(Myristic acid (14:0) intake), g 1.18 ± 0.51 0.18% 0.035

Ln(Iron intake), mg −0.067 ± 0.041 0.13% 0.041

Table 4 Best-fit model from stepwise linear regression
predicting HDL-3 levels using dietary intake data

Coefficient ± SE %HDL-3
variation

P

(Intercept) 41.2 ± 6.44 - -

Current age, years 0.072 ± 0.27 0.24% 0.0089

Male gender −8.29 ± 0.55 15.1% <2×10−16

Current smoker −2.03 ± 0.84 0.89% 0.015

Diabetic −5.69 ± 0.68 4.64% <2×10−16

Statin Use 1.22 ± 0.56 0.46% 0.029

Hispanic ancestry −0.47 ± 1.73 0.048% 0.79

African ancestry 6.04 ± 0.98 0.46% 7.97×10−10

Asian ancestry 2.72 ± 0.79 0.075% 0.00056

24-60 g alcohol/day 8.06 ± 0.98 1.91% 3.13×10−16

12-24 g alcohol/day 5.31 ± 0.84 1.12% 2.95×10−10

0-12 g alcohol/day 3.51 ± 0.57 1.64% 6.73×10−10

>60 g alcohol/day 8.48 ± 1.76 1.26% 1.56×10−6

Ln(Magnesium intake), mg 2.98 ± 1.20 0.085% 0.013

Ln(Carbohydrate intake), g −5.52 ± 0.95 1.18% 7.34×10−9

Ln(Folate intake), μg 3.18 ± 1.11 0.19% 0.0044

Ln(Iron intake), mg −0.15 ± 0.066 0.29% 0.025

Ln(Myristic acid (14:0) intake), g 3.48 ± 1.01 0.13% 0.00032

Ln(Protein intake), g −3.35 ± 1.19 0.31% 0.0033

Ln(Dietary fiber intake), g 2.54 ± 1.10 0.23% 0.049
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Discussion
Prior nutritional studies have generally focused on HDL-
C alone. However, as measured HDL-C does not appear
to be in the causative pathway for atherosclerotic disease
[2-4], there is a growing recognition that any cardiopro-
tective elements of HDL may be better captured by dif-
ferent measures of HDL [5]. In the current study, we
have leveraged extensive dietary intake data within a
large and well-characterized CAAD case–control cohort
to identify the previously unreported predictors of HDL-
2, HDL-3 and apoA1, and also validate numerous past
associations with HDL-C. All of the HDL-related mea-
sures are highly correlated; thus, trends are seen in the
dietary micronutrients and their associations with each
of the lipid phenotypes. However, unique dietary associa-
tions were also elucidated for HDL-2, HDL-3, and apoA1
measures, which may reflect the differences among these
HDL measures.
Low intakes of folate have previously been reported to

be associated with higher incidence of CHD [40] and
stroke [41] in prospective studies. One postulated mech-
anism for the observed cardioprotective properties of
folate is through the folate-mediated lowering of homo-
cysteine levels [42]. High levels of homocysteine are con-
sidered a modest and independent risk factor for heart
disease and stroke [43]. In this study, we have what is, to
the best of our knowledge, a novel finding: that dietary



Table 5 Best-fit model from stepwise linear regression
predicting apoA1 levels using dietary intake data

Coefficient ± SE %apoA1
variation

P

(Intercept) 140.4 ± 13.8 - -

Current age, years 0.23 ± 0.067 0.16% 0.00054

Male gender −24.3 ± 1.38 18.8% <2×10−16

Current smoker −4.24 ± 2.08 0.52% 0.041

Diabetic −13.59 ± 1.67 3.77% 1.03×10−15

Statin Use 0.34 ± 1.38 0.89% 0.81

Hispanic ancestry 1.87 ± 4.28 0.0096% 0.66

African ancestry 13.9 ± 2.41 0.39% 8.67×10−9

Asian ancestry 6.53 ± 1.96 0.019% 0.00088

24-60 g alcohol/day 19.6 ± 2.39 1.72% 4.87×10−16

12-24 g alcohol/day 12.9 ± 2.07 0.92% 5.46×10−10

0-12 g alcohol/day 8.84 ± 1.39 1.66% 2.63×10−10

>60 g alcohol/day 21.5 ± 4.33 1.21% 7.95×10−7

Ln(Carbohydrate intake), g −12.2 ± 2.44 0.31% 6.32×10−7

Ln(Myristic acid (14:0) intake), g 13.5 ± 3.54 0.64% 0.00014

Ln(Vitamin C intake), mg 1.21 ± 0.66 0.32% 0.048

Animal fat, % −0.14 ± 0.068 0.24% 0.043

Ln(Folate intake), μg 6.69 ± 2.72 0.32% 0.014

Ln(Iron intake), mg −0.42 ± 0.18 0.22% 0.017

Table 6 Summary of dietary intake associations with
specific measures of the HDL-associated proteome

Dietary intake HDL-C HDL-2 HDL-3 apoA1

0-12 g alcohol/day ++ ++ ++ ++

12-24 g alcohol/day ++ ++ ++ +++

24-60 g alcohol/day +++ ++ ++ +++

>60 g alcohol/day +++ ++ ++ +++

Ln(Carbohydrate intake), g — – – —

Ln(Folate intake), μg ++ ++ ++ ++

Ln(Iron intake), mg - - - -

Ln(Magnesium intake), mg ++ ++ ++

Ln(Protein intake), g –

Ln(Dietary fiber intake), g ++

Ln(Vitamin C intake), mg ++

Ln(Myristic acid (14:0) intake), g ++ ++ ++ +++

Ln(Oleic acid (18:1) intake), g

Ln(Arachidonic acid (20:4) intake), g –

Ln(Eicosapentaenoic acid (20:5) intake), g ++

Animal fat % - -

+ = between 0 and 1. ++ = between 1 and 10. +++ = greater than 10.
- = between 0 and −1. – = between −1 and −10. –- = less than −10.
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folate intake is also associated with favorable increases
in HDL-related measures in humans. Prior epidemio-
logic evidence has positively linked plasma measures of
folate with HDL-C [44] and apoA1 [45] levels. Although
the increases in HDL-C, HDL-2, HDL-3, and apoA1 by
folate intake are modest, they do represent a significant
and consistent trend in our data and may represent a
separate or complementary pathway through which fol-
ate mediates its cardioprotective effects.
All alcohol intake categories relative to non-drinkers

were associated with an increase in all HDL-related
measures. Gaziano et al. were one of the first to convin-
cingly demonstrate that alcohol intake increased HDL-
C, HDL-2, and HDL-3 levels, which they posited as a
possible mechanism for decreased myocardial infarction
among drinkers [46]. In addition, Gaziano et al. also re-
ported that moderate (between 13.2 and 39.6 g/day) al-
cohol intake caused the greatest increase in HDL-2,
while at heavy drinking (>39.6 g/day) HDL-2 levels de-
creased; HDL-C and HDL-3 continued to rise with in-
creasing intake of alcohol [46]. We observed similar
trends in our present work, as HDL-C and HDL-2 levels
both decreased with heavy alcohol intake (>60 g/day);
similarly, though HDL-3 and apoA1 increased at the
highest levels of alcohol consumption, the gains were
more modest in comparison to the subgroups with lower
levels of alcohol intake. Interestingly, in a prospective
study of 80,082 women, Rimm et al. reported that the
cardioprotective effects of folate were most pronounced
in women who consumed alcohol [40]. Though under-
powered, we did not find evidence of an interaction be-
tween alcohol and folate intake on any measured HDL
phenotype in our data (data not shown).
Both dietary carbohydrate and iron intakes were nega-

tively associated with all measured HDL phenotypes.
Dietary carbohydrates have previously been reported to
decrease HDL-C levels [47,48]. However, many of the
studies were small (n = 10 and n = 8, respectively for the
cited works), did not measure HDL-2 or HDL-3, and
were short-term dietary intervention studies. In the work
presented here, we have identified a strong, consistent,
and negative association between carbohydrate intake
and all HDL-measures (HDL-C, HDL-2, HDL-3, and
apoA1) that reflects dietary intake over the past year, ra-
ther than a period of days. Similarly, high body stores of
iron and dietary iron intake have been associated with
increased risk of CHD in 1,931 Finnish men [49]. In
addition, ferritin levels were negatively correlated with
HDL-2 levels in that cohort of men [49]. Our findings
are consistent with past reports of a negative association
between HDL-2 and iron levels, and also show a consist-
ent and negative effect of dietary iron on all HDL-
related measures.
Dietary magnesium intake was positively associated with

HDL-C, HDL-2, and HDL-3 levels, but not associated
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with apoA1 in our data. Singh et al. first reported
from a randomized clinical trial of 430 patients that a
magnesium-rich diet increased HDL-C levels at 12 weeks
of follow-up [50]. Although the mechanism through which
magnesium influences HDL-C levels is yet unknown, the
positive association of dietary magnesium intake and
HDL-C has been validated in a subsequent prospective
study of 4,637 participants [51]. Here we expand on these
findings and report that magnesium also increases levels
of HDL-2 and HDL-3, but not apoA1. Further work will
be needed to determine why magnesium affects levels of
HDL, but not its closely related protein, apoA1.
Prior work on DFAs and lipid profiles have largely fo-

cused on the ω-3 polyunsaturated fatty acids commonly
found in fish [23,52,53]. In this work we have found that
the most significant and consistent DFA intake impact-
ing HDL-related measures was that of the saturated fat,
myristic acid (14:0). Saturated fats, including myristic
acid, have been previously been reported to increase
HDL-C [54]; however, they also have been reported to
simultaneously increase low-density lipoprotein choles-
terol levels [54,55]. We did observe potentially protective
effects of an ω-3 fatty acid, eicosapentaenoic acid (20:5),
through its positive association with HDL-2 levels. We
also noted a negative association of HDL-2 and arachi-
donic acid (20:4, ω-6). Arachidonic acid is most com-
monly found in meat and dairy.
Several limitations of this study should be considered.

First, this cohort was composed of a majority of European
Ancestry and participants selected for the presence or ab-
sence of CAAD, limiting the generalizability of our find-
ings. Second, trans-fatty acids could not be included in
analyses due to a high proportion of missing data. Unsat-
urated trans fatty acids have previously been associated
with higher risk of CHD [56]; therefore, future analyses
should consider the effect of trans fatty acids on the HDL
proteome. Third, the dietary data analyzed in this study
was limited to what was measured by the Harvard Stan-
dardized FFQ. As a result, it was not possible to evaluate
other micronutrients, such as the flavonoids (e.g., quer-
cetin), which have also been linked to favorable alterations
to cardiovascular and neurodegenerative risk factors
[57,58]. Strengths of this study include the large sample
size, extensive lipid phenotyping, and detailed demo-
graphic, clinical, and pharmacologic information coupled
with a well-validated food frequency questionnaire.
In conclusion, we present the first known report of

dietary folate intake affecting HDL-related phenotypes
(HDL-C, HDL-2, HDL-3, and apoA1) in humans, thereby
offering another potential mechanism independent of
homocysteine through which folate mediates its cardio-
protective effects. This study is also the first to report and
validate numerous associations of dietary micronutrients
with the more specific measures of HDL: HDL-2 and
HDL-3. Given the recent failures of HDL-C to demon-
strate cardioprotection, this work improves knowledge
of how dietary factors influence the more specific mea-
sures of HDL (HDL-2, HDL-3, and apoA1). Future
work should investigate the biologic mechanisms and
pathways through which these micronutrients affect
HDL and how specific micronutrients, such as vitamin
C, might affect apoA1 but not any of the other mea-
sures of HDL.
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