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Abstract
Mammals have evolved complex regulatory systems that enable them to maintain energy
homeostasis despite constant environmental challenges that limit the availability of energy inputs
and their composition. Biological control relies upon intricate systems composed of multiple organs
and specialized cell types that regulate energy up-take, storage, and expenditure. Because these
systems simultaneously perform diverse functions and are highly integrated, they are extremely
difficult to understand in terms of their individual component contributions to energy homeostasis.
In order to provide improved treatments and clinical options, it is important to identify the
principle genetic and molecular components, as well as the systemic features of regulation. To
begin, many of these features can be discovered by integrating experimental technologies with
advanced methods of analysis. This review focuses on the analysis of transcriptional data derived
from microarrays and how it can complement other experimental techniques to study energy
homeostasis.

Background
Mammalian control of energy homeostasis is extremely
complex and integrates regulation at an organ level, cellu-
lar level, and ultimately a molecular level. In healthy
humans this results in a system that matches caloric intake
to energy expenditure within 0.17% during the course of
a year in which approximately one million calories are
consumed [1]. Understanding the genetic basis for this
regulation will provide the opportunity to develop treat-
ments for obesity and diabetes that are specifically tai-
lored to distinct patient groups [2].

Energy homeostasis is a genetically complex and quantita-
tive phenotype, whose molecular basis depends upon
pathways involving thousands of molecules. To date,
more than 600 genes, markers, and chromosomal regions
have been associated or linked to obesity phenotypes [3],

however, no single gene mutation can account for the var-
iance in patient responses to a dietary treatment.

To develop a molecular understanding of mammalian
energy homeostasis, the genes that underlie clinical obser-
vations must be identified. Although association studies
[4], linkage studies [5], admixture studies and others that
can identify quantitative trait loci (QTL, defined as any
region in the genome that contributes to a quantitatively
measured phenotype, such as height, weight, serum glu-
cose levels, etc.) will continue to discover new genetic
associations to weight and obesity, one complementary
technique that can rapidly identify new candidate genes is
transcriptional profiling. The advantage of transcriptional
profiling is that it can look at thousands of genes simulta-
neously, and unlike mapping techniques, it looks directly
at genes themselves and not just chromosomal regions.
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DNA microarrays provide an efficient route to finding
gene targets involved in quantitative traits and biological
processes associated with complex phenotypes, such as
energy homeostasis. The core concept is simple: genes that
are differentially expressed between control and experi-
mental samples may play a role in the observed differ-
ences in phenotypes. For example, C57/BL/6J mice treated
with a high-fat, high calorie diet are known to become
obese and insulin resistant [6,7]. Their evolving physiol-
ogy is related to changes in transcription of genes mediat-
ing or responding to the treatment. Conversely, AJ mice
fed the same diet are resistant to obesity and maintain glu-
cose levels [8]. Comparing transcriptional differences
between these two strains under the same conditions may
help identify genes that are related to their physiology [9],
if such transcriptional changes can be efficiently found
and experimentally tested.

Transcriptional profiling quantitatively determines which
genes are active or inactive in the environment from
which the samples are taken. Thus, as opposed to looking
for specific gene mutations that associate with energy
homeostasis phenotypes (such as obesity (resistance), or
insulin resistance), cellular responses from one treatment
or genotype are compared with the responses from a dif-
ferent treatment or genotype to determine which genes are
differentially expressed during phenotypic changes. This
information can then be used in more detailed studies to
screen for mutations and characterize relevant genes.

The advantages of using DNA microarrays for gene discov-
ery, particularly with respect to complex diseases, are that
they provide information on known or putative genes,
require fewer samples than are necessary to identify quan-
titative trait loci (QTLs), are highly parallel, and allow
direct, hypothesis based testing on a genomic scale. The
fact that microarrays can directly implicate specific genes
is a considerable advantage given the sample size required
for QTL analysis, which only identifies genomic regions.
So long as the variance in the array measurements can be
quantified, direct statistical comparisons of transcript lev-
els can be made with a moderate number of replicates.

The caveats of using DNA microarrays are that changes in
gene transcription alone may not be responsible for phe-
notypic changes, and analysis can be challenging when
confronted by 20,000 different transcript measurements.
It is often wrongly inferred that changes in transcript lev-
els correlate to changes in protein levels, or even worse,
changes in protein activity, which is not true in many
cases [10,11]. While increases or decreases in transcrip-
tion may alter protein levels, there is no single correlation
or function that tells how the concentration of mRNA is
linked to the concentration of protein. Since it is often
accepted that most phenotypes are the results of protein

activity, measuring transcript levels alone will not neces-
sarily define the genes underlying a given phenotype and
other data is often required.

Incorporating DNA microarrays and other genome-scale
technologies in studies of energy homeostasis promises to
provide information that will more thoroughly define
important molecular pathways. Despite the potential of
DNA microarrays, there are several challenges that
researchers often confront when beginning to use this
technology in their studies. The first is which system to use
given the multitude of existing systems and possible dif-
ferences. The second is how to extract the most relevant
information, when confronted with perhaps hundreds of
differentially expressed genes. The third is how to effec-
tively integrate other data so that the relevance of an
observed change in expression can be evaluated with
respect to the phenomena of interest. Each of these topics
will be discussed in this review.

Microarray systems and data acquisition
DNA microarrays rely upon labeling mRNA populations
and then rapidly separating them on the array to generate
signals that can be quantitatively compared. The first
attempts at transcription monitoring were rather modest:
Patrick Brown's initial report [12] measured the transcript
levels of only 45 genes simultaneously on one array.
Today, arrays containing more than 20,000 gene probes
are not uncommon [13,14].

There are currently two DNA microarray technologies that
are most commonly used for monitoring transcription.
One is a high density oligonucleotide system commer-
cially available through Affymetrix (Santa Clara, CA), the
other is typically referred to as a "cDNA system." While
there are substantial differences between the two types of
technologies [15], both quantify the distribution of tran-
scripts from a pool of RNA.

Although Affymetrix style arrays are becoming standard,
"spotted" microarrays are common in academia because
they provide flexibility in both the array design, and the
range of assays that can be conducted. On spotted arrays,
mRNA is linearly converted into a labeled cDNA, which
binds to its complementary probe during hybridization,
and then is quantified by measuring the label abundance
as shown in Figure 1. Standardization of the experimental
protocols used in RNA harvesting, purification, labeling,
and array hybridization, washing, and printing (when
using cDNA arrays) is critical to obtaining good data.
Numerous papers have been published on these topics
[12,16-19] and there are a variety of on-line resources to
help experimentalists optimize their protocols [20-24].
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Once the experimental protocols have been developed for
a given system, reliable data can be obtained that quanti-
tatively compares transcription levels for a vast number of
genes. This data usually comes in one of two forms: a nor-
malized intensity signal or a normalized ratio of signals.

Normalized signal intensities represent the absolute
amount of labeled RNA bound to an individual gene
probe of a specific sequence. Signals are usually normal-
ized for local background fluorescence, amount of RNA in
the sample, dye and labeling differences, and potentially
for array to array variance. Normalized signal ratios are
usually defined as the signal on one array (or in one fluo-
rescence channel when a two-dye spotted array is used)
divided by the signal on another array (or in the other flu-
orescence channel). In normalized ratios, one signal is
typically the control signal while the other is the signal
from an experimental treatment; thus a ratio of two might
represent twice as much mRNA for a gene in the experi-
mental sample compared to the control sample, while a

corresponding ratio of 0.5 would represent twice as much
mRNA in the control as in the experimental samples.

Ratios provide a slight problem in data analysis because
the variance in values for repressed genes (that is, genes
whose treatment signals are less than the control signals)
is bounded between zero and one, while values for over-
expressed genes are not bounded and could in principle
be any number greater than unity. To overcome this issue
researchers usually transform ratio data to a base two log-
arithmic scale (log2) such that a ratio of two would give a
log2 value of +1, while a ratio of 0.5 would give a log2
value of -1, thereby placing both domains in a range that
is amenable to linear data analysis techniques.

Data obtained are often validated using complementary
techniques for a subset of probes on the array. One com-
monly used technique to validate transcriptional differ-
ences in a statistically meaningful way is RT-PCR, for
which many varieties are available (SYBR-green based,

DNA microarrays work by exploiting the specificity of DNA base pairingFigure 1
DNA microarrays work by exploiting the specificity of DNA base pairing. The initial rules for hybridization were discovered by 
Erwin Chargaff and dictate that each guanine noncovalently pairs with a cytosine and each adenine is paired with a thymine 
[92]. The affinity and stability of the hybridized, double stranded DNA is therefore directly related to sequence complementa-
rity. In this figure the labeled "target" molecules, representing the mRNA transcripts, compete for binding to their complemen-
tary "probe" molecules immobilized on the array. Once equilibrium is achieved, the arrays are washed and scanned to measure 
the transcript abundance.
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TaqMan, etc.). This requires additional equipment, how-
ever, in recent years a number of companies have begun
to offer lower cost instruments making RT-PCR validation
amenable for many laboratories.

Experimental design and data analysis
In studying energy homeostasis, valuable information can
be extracted from microarray data by using statistical and
data mining methods. Statistical methods rigorously
quantify the reliability of differences in the microarray
data [25] and can objectively evaluate changes in gene
transcription ratios and derivative quantities [26]. Data
mining is particularly useful for uncovering patterns and
structure in microarray data that might have otherwise
been difficult to detect through manual inspection and
intuition [27,28]. Applying statistics and data mining
methods to microarray data in unison enables rapid and
reliable analysis without a priori assumptions that may
bias the conclusions.

Selection of a particular analysis method depends largely
on the experimental design and hypothesis being investi-
gated. In all cases, proper statistical rigor should be
employed, however, the significance level, correction for
multiple comparisons, and other parameters can be used
to arbitrarily increase or decrease the number of genes
identified as having a change in transcription. While these
parameters are rigorous values whose selection should be
explained in any investigation, they provide some level of
flexibility in selecting an overall gene set to be used subse-
quently in data mining.

Statistics
Many statistical methods have been used to analyze gene
transcription data [29-32]. Selection of any particular
method is highly dependent upon the experimental
design and type of microarray technology used.

To assess differential gene expression, a gene by gene t-test
[33-35] can be applied to evaluate statistically significant
expression differences in pairwise comparisons between
the control and experimental samples. A common ques-
tion that arises pertains to whether the Bonferroni-correc-
tion for multiple tests is appropriate [36]. Employing this
correction factor will decrease the number of false posi-
tives in the data set by dramatically increasing the accept-
able threshold for significance, however, it also
exaggerates the number of false negatives [25], which
defeats the principle advantage of using microarrays: con-
ducting many comparisons simultaneously in parallel.
One way to get around this is to employ more replicates
or to validate changes of interest using a complementary
method, such as RT-PCR or Northern Analysis.

Another useful method is Wilks-λ based ranking [37-39].
This technique is particularly appropriate for multi-class
comparisons, ranking genes on the basis of their within
group, and between group variances. Thus, a gene exhib-
iting a small variation within each of several groups, but
large variation between groups would rank highly; con-
versely a gene that had a high level of variation within a
group, and a low level of variation among the groups
would be ranked low. The Wilks-λ score can be trans-
formed into an F statistic, which is compared with the F
distribution to assess the statistical significance of the
observation [38].

Data mining
There are three general types of data mining analyses com-
monly used with microarrays:

• Sample Classification: In static experiments where sam-
ples are treated with different conditions (such as diets),
genes that can classify the treatments may be important in
the underlying biology and therefore interesting candi-
dates for further studies.

• Clustering: In experiments where each sample represents
either a timepoint or a single treatment, patterns in gene
transcription are observed and genes demonstrating simi-
lar responses may be co-regulated, which can lead to iden-
tifying regulatory sequences or molecular factors.

• Systems Identification: In experiments where it is desired
to discover other kinds of interactions, including putative
cause-effect relationships and relationships among differ-
ent data types, these methods can be used to create mod-
els that define statistically significant relationships, whose
features can be tested experimentally.

Sample classification
As opposed to statistical techniques that focus on the
mean and variance of one variable, or differences in pair-
wise comparisons, multivariate techniques focus on cov-
ariances or correlations [37,39]. These methods attempt
to uncover structure in the data set and identify what are
the most important variables. In analyzing transcriptional
data, multivariate techniques provide a way of quickly
classifying treatments based upon the gene expression.
For example, hypothalamic gene expression could be
compared among mice fed isocaloric diets composed of
normal chow, high-carbohydrate, high-fat, and high-pro-
tein. Changes in gene transcription that best predict the
different treatments could then be used to classify the
samples and the underlying genes would be good candi-
dates for genotyping and additional studies. There are
many different methods, however, Fisher Discriminant
Analysis (FD Analysis) and Principle Component Analysis
(PCA) are commonly used.
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Fisher Discriminant Analysis [39-41] (FD Analysis) is a
method that determines combinations of genes capable of
correctly classifying the experimental samples. Thus if
RNA samples were taken from normal mice, diabetic
mice, and diabetic mice treated with a thiazolidinedione,
FD Analysis could be used to find genes whose expression
classifies these mice according to their collective gene
transcription profiles. In this regard, FD Analysis is con-
sidered a supervised data analysis method because the sam-
ple classes are defined at the outset. FD Analysis identifies
genes that best place the samples into predefined treat-
ment classes by maximizing the distance between the
classes.

FD Analysis provides linear combinations of gene expressions
that are selected according to the discriminatory power of
gene groups as opposed to individual genes. Samples are
scored based on the weighted contributions of each gene
to a newly defined metric called a canonical variable.
Because each gene's contribution to a sample's score is
weighted by a coefficient called a "loading," genes with
very small loadings do not significantly contribute to the
sample's score and classification, and can therefore be
eliminated from further consideration. A score is thus
defined as

S = ∑ λ1g1 + λ2g2 + ... + λigi + ... + λngn  (1)

where S is the sample score, λi represents a gene's loading,
gi represents a gene transcription level (or ratio), and the
sum occurs over all discriminatory genes, n.

This technique can be used as a tool to visualize microar-
ray results in a lower dimensional space defined by the
canonical variables. The canonical variables are metrics
calculated as a weighted linear sum of the other variables,
in this case gene expressions, as shown in Equation 1. The
underlying principle is that if the scores accurately classify
the samples, then the genes selected to determine the
scores differentiate the treatments when sample classifica-
tion is used as a criterion.

In FD Analysis the canonical variables, V, are selected so
as to maximize class separation [40]. These variables are
determined as the eigenvectors of the inter-group vari-
ance, B, scaled by the intra-group variance, W, as

W-1 BV = VΛ  (2)

where

B = T - W  (3)

T = (X - 1 )T (X - 1 )  (4)

and the sum occurs over all of the sample classes. In this
formulation X represents the (n samples (rows) × g genes
(columns)) data matrix, T represents the total variation
among all the data, and the eigenvalues, Λ, indicate the
discriminatory power of the canonical variables.

Sample classification is often tested by dividing the sam-
ples into training and test sets to determine the statistical
significance of the findings. In these procedures, a subset
of the samples can be used as a training set to develop a
model that predicts the membership or other (test) sam-
ples. The membership of the training and test sets can be
varied in iterations of the analysis to determine the error
rate based upon false classification. Genes with large abso-
lute values for their loadings, which are most commonly
identified in successful classification models, become lead
candidates.

One way to think intuitively about eigenvectors is that
they represent the "factors" (variables; the genes in micro-
array data) that describe (that is, can be used to quantita-
tively predict most of) the data matrix. An eigenvector's
representation is based upon how it weights a variable or
"factor" within the data; variables with large absolute val-
ues in the eigenvector are important and those with values
close to zero can be discarded.

A nutritional analogy would be a data set that described
the caloric content of different meals based on their com-
position. Here, each sample would contain data on a dif-
ferent meal. This data would be defined by the number of
calories contained in each dietary component of the meal
(such as starch, cellulose, glucose, sucrose, lipids, choles-
terol, protein, etc., and are analogous to genes in microar-
ray data), which would define a sample vector such as:

Meal1 = [Starch, 10] + [Lipid, 2] + [Protein, 3] + ...  (6)

If the data set contained vectors for: ten meals that were
analyzed and considered high in carbohydrate, another
ten representing meals high in fat, and a third ten repre-
senting control meals, then FD Analysis could be used to
accurately classify these meals into the predefined groups
based upon the caloric content of their components. In
this example the original data matrix, X, would have 30
rows, one for each meal, and several dietary components,
g, whose caloric content was measured in each meal (30
meals × g dietary components). The eigenvectors selected
could be used to score each meal according to the caloric
content of its components, and it would be anticipated
that the components, or "factors", that were most heavily
weighted would be specific carbohydrate and fat compo-

XT XT

W X 1 X 1= − − ( )∑( ) ( )j j
T T

j j
TX X 5
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nents. By looking at the absolute value of the loadings for
each component, one can determine which components
are critical to classification of the meals into the high-car-
bohydrate, high-fat, and control meal groups. Further-
more, knowing the quantitative relationship between
components allows a researcher to explore new hypothe-
ses about the system: does decreasing glucose content and
increasing protein content change a high-carbohydrate
meal into a control meal, or can new meals be designed
that lie between the groups in the FD Analysis space, and
what are their properties? The gene data can be similarly
analyzed and viewed in terms of genetic contribution to
complex phenotypes.

We used FD Analysis to investigate hepatic gene regula-
tion in response to diet induced obesity and insulin resist-

ance [42]. In those studies whole genome microarrays
containing 17,280 gene probes were used to examine
transcription in three groups of C57/BL/6J mice: 1) the
"control group" received a normal diet for 10 weeks, 2)
the "high-fat group" received a high-fat diet for 10 weeks,
and 3) the "fasted/weight reduced group", which was fed
the same high-fat diet for ten weeks followed immediately
by 48 hours of caloric restriction, returning their weights
to baseline levels prior to tissue harvest. The resulting clas-
sification among these treatments is shown in Figure 2.

Principle component analysis (PCA) is similar to FD Anal-
ysis in that it can be used as a data reduction technique
and to find structure in a data matrix. It is a multivariate
classification method that, like FD Analysis, scores sam-
ples according to linear combinations of gene expressions.

Fisher discriminant analysis plot of mouse liver samplesFigure 2
Fisher discriminant analysis plot of mouse liver samples. Samples were scored according to the canonical variables determined 
by Fisher Discriminant Analysis (FD Analysis). Each canonical variable is defined as a weighted sum of 100 specific genes. To 
score a sample, the gene expression value is multiplied by an FD Analysis coefficient, called a loading, and the products from 
the 100 genes used in the analysis are summed to give the canonical variable score for the sample. F/WR: Fasting/Weight 
Reduced.
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The difference between FD Analysis and PCA is how they
choose which genes are used in the scoring procedure. For
this reason both techniques can be used to find different
sets of genes, some of which will be commonly identified
using both algorithms.

PCA reduces the original set of variables (in this case
genes) into a smaller, orthogonal set of variables that is
composed of linear combinations of gene expression data,
called principle components. It is the principle compo-
nents that define the sample scores in the same manner as
the FD Analysis canonical variables. Unlike FD Analysis,
PCA is unsupervised, that is, it does not assign the samples
to a specific class a priori. Instead the coordinates of the
smaller, orthogonal variable set are chosen such that they
capture as much of the total variance as possible in the
original data. In this way, it may be possible to identify
groups of genes or samples that show similar behavior.

The procedure for using PCA has been described previ-
ously [37,43,44] and the mathematics is briefly reviewed
here. For a given data matrix composed of n samples and
g genes, the data may be scaled and is usually transformed
into a covariance or correlation matrix. The principle
components are identified as the set of vectors, each con-
taining coefficients, y1, y2, ..., yi, ..., ym-1, ym, such that yT X
is maximized over all linear combinations of X with the
constraint yT y = 1 for all vectors. To find this set of vectors,
it has been shown that they must satisfy g simultaneous
equations of the form

(C - λiI)yi = 0  (7)

where C represents the correlation or covariance matrix,
depending upon which transformation was used to con-
vert the original data matrix.

This is the common eigenvalue, eigenvector problem.
Nontrivial solutions for the eigenvectors, yi, can be found
by solving for the eigenvalues, λi, of the determinant

|C - λiI| = 0  (8)

The determinant of these equations results in a polyno-
mial of order g; hence the g roots associated with the pol-
ynomial are the eigenvalues. From this set, the first
principle component can be identified by choosing the
largest eigenvalue (root of the polynomial) and then solv-
ing for the corresponding eigenvector. This eigenvector
gives the coefficients of the variables, genes in this case, of
the first principle component. The procedure is then
repeated for each of the subsequent g eigenvectors with
the constraint that the principle components must be
mutually orthogonal. Other methods of calculating the
principle components are possible such as orthogonal

decomposition of the input matrix or by using nonlinear
iterative partial least squares [45,46].

Because PCA is not scale invariant, using either the covar-
iance or correlation matrix will affect the solution
obtained, and the resulting solutions from the two differ-
ent matrix transformations will not be related. For this
reason it's prudent to conduct both transformations and
run the analyses in parallel.

Cluster analysis
Cluster analysis is used to find genes that are potentially
co-regulated. The concept is simple: if one gene is induced
or repressed in the same manner as another gene, across
many samples (either conditions or timepoints), then the
two genes may share similar regulation. While the biolog-
ical significance of such a relation still must be assessed,
cluster analysis provides targets for the discovery of new
transcriptional regulatory elements, factors, and mecha-
nisms.

There are numerous clustering algorithms [47-49], all of
which generally follow this procedure: 1) Data normaliza-
tion, 2) Data filtering, 3) Data clustering. Data normaliza-
tion is used to correct for artifacts that may influence the
data, such as differing dye incorporation rates, and has
been reviewed substantially in the literature [26,50,51].
The most commonly used normalization methods are
mean-centering and autoscaling. Mean centering reduces
the mean transcriptional value of any gene across all sam-
ples to zero by subtracting the gene's mean transcriptional
value from each sample value (across all samples in the
data set). This causes the clustering algorithm to focus on
the variance in each gene about its mean as opposed to the
absolute level of transcription for any given gene. Auto-
scaling transforms the data into a set that is mean centered
and has unit variance. This helps identify established pat-
terns that are independent of the mean and are well con-
served across the samples. Data filtering is usually used to
remove noise in the data set. Many different types of filters
exist and the choice of any given filter depends partially
on the experimental design. It is common to remove
genes that either do not have reliable values across all
samples, or genes that were not statistically different in a
minimum number of samples. Once the data is processed,
clustering can begin.

There are many different clustering algorithms, such as K-
means [52,53], nearest neighbor [54], self organizing
maps [55], and hierarchial [56]. These algorithms assem-
ble genes into groups that have similar patterns and there-
fore may be related. While they often will produce similar
results, there are nuances to each method that can cause
differences to arise and thus using multiple algorithms
with a single data set may be worthwhile. For example the
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degree of statistical correlation between gene transcription
profiles may be used as a criteria for clustering and chang-
ing the required statistical cut-off for correlation can vastly
affect group membership.

Clustering can also be used to look for specific patterns of
gene expression that correlate with a predefined molecu-
lar phenotype. Because the transcription data is usually
normalized, mean centered or autoscaled, and unitless
when it enters a clustering algorithm, other data types can
easily be incorporated if they are similarly processed. Thus
if the effect of a dietary treatment on adipose gene tran-
scription was being studied, and intracellular protein lev-
els were also measured for a set of specific proteins (via
Western Analysis, mass spectrometry, or IR-fluorescence),
the protein data could also be included in the data matrix.
In this case genes that were in clusters correlated or anti-
correlated with the proteins may be related. While the role
of the genes within a cluster must be subsequently
resolved, the ability of clustering to examine the relation-
ships between genes and other physiological data is an
important tool for future studies.

For example, we studied the effect glutamine concentra-
tion on hepatoma metabolism. It has been previously
reported that glutamine affects glucose up-take and glyco-
lytic flux [57,58], and can serve as a carbon source for glu-
coneogenesis [59] and de novo lipogenesis [60]. In our
experiments, the concentration of glutamine was oscil-
lated in the cells' medium causing changes in gene tran-
scription and glycolytic flux.

To identify genes that were either correlated or anti-corre-
lated with the flux measurement, we used Pearson corre-
lation [27] and Teiresias [49], which is a pattern discovery
algorithm. Teiresias converts the expression data into dis-
crete patterns by categorizing each transcription value into
one of several predefined bins. It then finds patterns in the
discretized profiles. Unlike other clustering algorithms,
Teiresias searches transcriptional data for all possible pat-
terns defined by several input parameters, including pat-
terns that are not "full." For example, if the gene
expression data is discretized into bins defined as
increased (I), unchanged (U), and decreased (D) expres-
sion, then for an expression profile with five samples,
Teiresias can find full patterns (such as "U D U I U") or
partially full patterns (such as "(U, I) D (D, U) I U" or "U
. U I ." where either value is permissable within the paren-
theses, and the period allows any value, I, U or D.). Figure
3 shows the result of using Teiresias to cluster genes based
on their relation to the glycolytic flux determined in the
experiment.

Clustering results in our hepatoma investigations showed
that increased transcription of some genes was required to

allow cells to respond to the changing glutamine concen-
tration. Most of the genes found to be correlated or anti-
correlated with flux were not known to be directly con-
nected to intermediary metabolism, thus highlighting
other genes and systems that are perturbed as a result of
glutamine changes in the medium.

Systems identification
Clustering and sample classification can detect genes that
are similarly expressed, whose expression levels match a
pattern of interest, or genes that can classify experimental
samples, however, they cannot easily relate gene transcrip-
tion to quantitative metrics that describe energy homeos-
tasis. Thus, some method of analysis is required to link
identified genes to environmental perturbations or meas-
urable changes in energy up-take, expenditure, and stor-
age. Because both microarray and physiological data can
possess many dimensions, regression methods that
reduce the dimensionality of these data sets and find cor-
relations between them are very important to integrating
microarray data with other data types. Methods of analy-
sis that can link expression data to other phenotypic
markers, or that can incorporate other types of data, pro-
vide tools for the investigation of system properties
[49,61-63].

One way to investigate these types of multivariate prob-
lems, where it is desired to correlate multiple inputs, rep-
resented by an "X-Block," (X), with multiple outputs,
represented by a "Y-Block," (Y), is to use a regression
method called partial least squares (PLS) [64]. PLS consid-
ers the collective contributions of the inputs to the outputs,
and thus utilizes multidimensional data as opposed to
other regression techniques that use data with a single
dimension. It is advantageous for large systems because
both X and Y are decomposed into a lower dimensional
space where their relationship is explored.

As an example, we explored the application of PLS to
microarray data by investigating how a murine hepatoma
cell line (Hepa1-6 cells) alters its gene expression to con-
trol glycolytic flux (unpublished data). In these experi-
ments [49], total RNA was isolated at each time point and
the microarray data was used for X; at the same time the
forward flux through phosphohexose isomerase was
measured using tritiated glucose (which generates labeled
water) and used for Y. Based on the experimental results a
PLS model was created, where the transcription data (11
samples × 3,185 genes) was related to the flux measure-
ments (11 samples × 1 flux measurement).

After autoscaling the data matrices, PLS was run to con-
struct the model. PLS decomposes the original data matri-
ces into a lower dimensional space and then builds a
correlation between the reduced matrices. The decompo-
Page 8 of 16
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sition of the original matrices is defined by their "outer"
relations, given by:

X = T PT + E =  + E  (9)

Y = U QT + F =  + F  (10)

Because it is possible to let the matrices T and U (referred
to as the "score" matrices) represent the variable matrices
X and Y, a mixed inner relation can be established using:

Y = T B QT + E  (11)

The resulting model is shown below in Figure 4.

In Figure 4, the PLS model prediction based upon gene
transcription data correlates with the flux measurements.

The resulting model selected 132 of the 3,185 genes in the
study to predict the glycolytic flux. Indeed, when the
model was recreated using random sets of genes, none of
the random gene sets predicted the data as well as our
model, nor did any of the resulting models capture as
much of the variance as our model [9].

Although PLS is a powerful correlation algorithm for link-
ing different types of multivariate data, care must be used
in its application. Because gene transcription data sets
often contain many more genes than samples, we con-
ducted a number of studies using random data to deter-
mine if statistically significant models could be derived
between unrelated data sets [9]. It was found that if the
number of genes is much greater than the number of sam-
ples, accurate model predictions could arise by chance
from random data. Thus to have relevant models, the
number of samples used must make the data matrix closer

t ph h
T∑

u qh h
T∑

Clustering of genes related to glycolytic flux from the Teiresias algorithmFigure 3
Clustering of genes related to glycolytic flux from the Teiresias algorithm. In this case Teire-sias was asked to find patterns of 
the type ". . -F -F -F F F F F F . . F", where "." represents any transcript value, "F" represents a transcript level that correlates 
with the flux, and "-F" represents a transcript level that is anticorrelated with the flux.
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to full rank than is typical in most microarray experi-
ments. For full genome arrays this would require thou-
sands of samples, which is prohibitive in most
experiments. Given these circumstances, PLS may not be a
suitable tool for discovering new relationships between
gene transcription data and other biochemical data con-
tained within the Y-block. This does not preclude the use-
ful application of PLS to either discovery, or for modeling
biological systems where full rank data may be obtained.
It does necessitate careful planning in the prudent use of
the technique.

Although there are usually many more genes than sam-
ples in microarray experiments, depending upon the
experiment there may be effective ways to limit the gene
domain. Most of these rely upon either rigorous computa-
tional selection methods (for example, tests for reliable
signals or differential expression), or biological hypothe-
ses that can be used to study a sub-set of the genes with
respect to the desired outputs (in which case measuring
transcript levels using RT-PCR may provide more accurate

data). In these cases the researcher is either assuming that
most of the relevant genes are in the model, or statistically
tests the gene set to try and find a relevant subset.

Another systems identification algorithm is called Time
Lagged Correlations (TLC) [63]. TLC is based upon clus-
tering, and therefore can incorporate any data type, how-
ever, it goes beyond identifying simple relationships to
identifying directional relationships.

The various forms of clustering [43,47,65] employed to
date have produced potential gene relationships and in
some cases have yielded the identity of transcription fac-
tor binding motifs. Despite their success, these methods
are limited in their ability to infer causality or directional
relationships between genes and other data types. The
results of clustering algorithms yield relations such as
"transcription of gene A predicts transcription of gene B,"
which is the same as saying "transcription of gene B pre-
dicts transcription of gene A." Neither Bayesian networks
[66], nor information theory based approaches [67] have

Partial Least Squares model prediction of glycolytic flux based upon gene transcription valuesFigure 4
Partial Least Squares model prediction of glycolytic flux based upon gene transcription values.
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made use of the sequential nature of time-series data in
current applications. When enough time points are avail-
able to prevent over fitting the data and find statistically
significant correlations, a discovery method to uncover
potential causal relationships among genes and other data
types may be attempted. Directionality is incorporated
into probabilistic networks by determining the temporal
order in which expression patterns are affected in a
sequence.

Transcriptional regulatory behavior can be examined by
probing the dynamics of gene expression in carefully
designed experiments covering a wide range of condi-
tions. Dynamic experiments that sequentially vary exter-
nal parameters (such as diet composition, amount, or
energy expenditure) offer insights into how cellular phys-
iology depends on changing environmental conditions.
TLC analysis can be used to identify putative causal rela-
tionships between system perturbations and responses.
TLC uses linear Pearson Correlations [27] by determining
the best correlations between transcript profiles shifted in
time. For a transcription profile representing n measure-
ments taken at equally spaced time points, the correlation
between genes i and j with a time lag, τ, is R(τ) = (rij(τ)),
defined as

Sij(τ) = �(xi(t) - )(xj (t + τ) - ) �  (12)

where xi(t) is the expression of gene i at time t,  is the

average expression value of gene i across all time points,
and the angled brackets represent the inner product
between the time-shifted profiles [63]. The matrix of

lagged correlations R(τ) can be used to rank the correla-
tion and anticorrelation between genes through conver-
sion to a Euclidean distance metric, dij:

dij = (cij - 2cij + cjj)1/2 = (1.0 - cij)1/2  (14)

cij = max|rij(τ)|  (15)

where, cij is the maximum absolute value of the correla-
tion between two genes at a time lag τ. If the value of τ that
gives the maximum correlation is zero, then the two genes
are best correlated with no time lag. The matrix D = (dij)
describes the correlation between two genes, i and j, in
terms of "distance" by making genes that are least corre-
lated (for any τ) the "farthest" apart [68]. Thus transform-
ing the correlation matrix, R, into a distance matrix, D,
allows anti-correlated genes to be included in the net-
work, in addition to correlated genes. By finding genes

that are closely related and then examining the corre-
sponding value of τ, an underlying network of potential
cause and effect relationships can be assembled. Some
caution is needed to ensure genes with high correlation
have been chosen using enough data points to give statis-
tical significance, otherwise all of the τ values used will
overfit the data. Such errors may be obvious if values for τ
are unreasonably long from a biological standpoint.

To demonstrate the application of TLC to transcriptional
data, we studied metabolism in the photosynthetic bacte-
rium, Synechocystis sp., that was exposed to different light
conditions [63]. Dynamic light perturbations were
induced to drive the transcriptional changes in the bacte-
ria, which were measured using DNA microarrays. The
gene transcription responses were then placed into a net-
work based upon their time lagged correlations to either
the input light signal or another gene cluster, providing a
set of putative causal relationships that could be subse-
quently test. After collecting transcriptional data from
over 47 time points, the network shown in Figure 5 was
constructed.

As other measurements such as protein and metabolite
data become available, TLC studies should allow for the
creation of hypothetical networks similar to that in Figure
5, but with greater degrees of mechanistic information.
Such approaches will hold new insights into the regula-
tion of energy homeostasis by linking various data sets in
maps that show putative directional connections.

Integrating complementary data types to study energy 
homeostasis
Once a transcriptional study has been conducted and
important genes have been identified, further verification
of the genetic contributions to the underlying phenotype
is necessary. The type of studies that are included depend
largely on the experimental hypothesis, phenotype under
investigation, and model system. Many of these verifica-
tion studies may at least begin in silico by additional anal-
ysis of the identified genes across a number of databases
[69]. Today databases are available that list common bio-
logical pathways in which the gene product may partici-
pate, mutations, single nucleotide polymorphisms
(SNPs), and mutant animals that are available for many
genes. In addition, a number of specific resources exist,
particularly for phenotypes related to energy homeostasis
[3].

Despite the experiment-specific nature of continued stud-
ies, a few tools have recently been developed that contrib-
ute to a systematic approach for additional gene
verification studies. These include the use of RNA interfer-
ence (RNAi), synthetic gene construction, and analysis
techniques that link mutations to phenotypes.

xi x j
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S Sij
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ii jj
( )

( )
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One of the most effective ways to investigate how a gene
influences a phenotype is to disrupt or eliminate the gene
product and then observe changes in the phenotype.
Although in vivo manipulation of genes can be very time
consuming and high-through put evaluation is currently
prohibitive for most laboratories, RNAi has been effec-
tively used to silence genes and generate "functional" gene
knock-outs in cellular models [2,70] and whole animals
[71-73]. RNAi can therefore be used to screen loss of func-
tion gene effects on phenotypes of interest.

RNAi works by transfecting cells with double stranded
RNAs. Delivery of the RNA may be transient, relying on
direct transfection of synthesized RNAs, or stable, by
transfecting viral vectors that expression double stranded

RNAs [74]. Once inside the cell, the double stranded RNA
activates a protein catalyzed pathway through which spe-
cific natively transcribed RNAs are degraded or not trans-
lated [75]. RNAi has already been employed in numerous
investigations that study energy homeostasis [76-79].
When combined with microarray experiments, RNAi can
be used to rapidly screen individual or groups of genes
that are identified in the analysis. For example, the gene
network described in Figure 5 postulates a number of acti-
vation (solid lines in the figures) and repressive relation-
ships (dotted lines in the figures). Genes that reside in
group 5, which are proposed to activate genes in groups
39 and 41, can be silenced iteratively in subsequent exper-
iments and the network reconfigured to see if gene mem-
bership in the network remains the same and whether the

Gene interaction network derived from time lagged correlation analysis using gene transcription dataFigure 5
Gene interaction network derived from time lagged correlation analysis using gene transcription data. Solid lines represent 
gene groups with correlation at the indicated time lag, while broken lines represent gene groups that are anticorrelated. The 
final network comprises 50 gene groups containing 259 genes.
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genes in groups 39 and 41 are not activated in response to
silencing of genes in group 5 (as is proposed by the fig-
ure).

Experiments using RNAi based screening can be con-
ducted in a high-through put manner in cellular systems
and some more complex experimental models [80,81]. In
our laboratory we rapidly screened 15 overexpressed
genes for their effects on hepatic insulin resistance using a
combinatorial approach in which genes are silenced
simultaneously as described in Figure 6. Using this strat-
egy we were able to identify three genes that had an effect
on hepatic glucose output in primary cells using seven
experiments as opposed to 15 (unpublished data). While

a powerful tool for rapidly finding relevant genes, it must
be practiced with some care: interactions that occur from
silencing genes simultaneously may be hidden and diffi-
cult to detect. Despite the drawbacks, this approach sacri-
fices detailed observations on all individual effects for
rapid screening, which is often preferred if the gene set
under investigation is large.

Similarly, modern gene synthesis provides a complemen-
tary approach to gene silencing by enabling overexpres-
sion studies. Again referring to Figure 5, repression of
group 4 genes appears to subsequently activate group 33
and group 35 genes. In this case the relationship could be
tested by synthesizing expression vectors for the genes

Combinatorial siRNA screening strategy for 15 genesFigure 6
Combinatorial siRNA screening strategy for 15 genes. Using this approach the primary effects of a single gene could be discov-
ered using a limited number of experiments. In this case cells were exposed to groups of siRNAs, as opposed to individual 
sequences. In this example, siRNA groups highlighted in gray have the primary effect on the phenotype, which can be mapped 
down to the single gene, either gene B or gene C, using a binary search.
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within group 4 and seeing if their overexpression leads to
continued repression of genes in groups 33 and 35 under
the same experimental conditions.

Gene synthesis has a number of other useful applications.
Another strategy for investigating cellular network archi-
tecture would be to overexpress transcription factors that
are hypothesized to drive transcription of an identified
cluster of genes. In this type of experiment, one would
look to see which genes in the cluster were up-regulated in
the presence of transcription factor overexpression. Addi-
tionally, gene synthesis could be used to study the effects
of various mutants, and characterize recombinant pro-
teins in vitro to determine how mutations affect their bio-
chemistry. Because the cost of gene synthesis has rapidly
decreased in recent years [82,83], these types of experi-
ments are becoming more amenable for most laboratories
to perform.

Finally, in the 1990's it became possible to systematically
map quantitative trait loci (QTLs) and over 2,000 differ-
ent QTLs have been identified in a range of rodent pheno-
types including obesity [84,85] and diabetes [86]. Despite
the improving feasibility of association studies [4], link-
age studies [5], admixture studies and others that can
identify QTLs, less than 1% of these QTLs have been char-
acterized at the molecular level [87]; that is, an important
region of the genome has been identified, but the actual
gene(s) or genetic element (s) contributing to the QTL
remain unknown.

The value of QTL analysis to discovering disease genes is
in reducing the region of the genome under investigation.
Once this has been done, other techniques such as DNA
sequencing, array based SNP identification, positional
cloning, and transgenic knockouts can be used to search
for genes within the identified locus. By the end of 2001,
this approach had resulted in the discovery of 29 disease
genes, eight of which were involved in diabetes or obesity
[88]. Genes discovered through QTL analysis are often
highly penetrant (Penetrance is the number of individuals
within a population that have a specific genotype and the
corresponding phenotype), with a large effect size (Effect
size is the amount, or percentage, of phenotypic variation
that is attributable to a QTL). This is a major drawback to
finding all relevant genes to a particular phenotype
through QTL analysis alone. QTL analysis requires time
consuming experiments and a large number of samples:
1,000 animals will only map a QTL contributing 5% of
the phenotype variation onto a 10 centimorgan (cM)
interval with 50% power [89]. Because it is a mapping
technique, the gene or genetic element must still be iden-
tified, which can be challenging particularly if the element
is relatively small (with low information content) or
resides is a region with many polymorphisms.

Combining QTL analysis with DNA microarray results is a
complementary approach that has already resulted in the
identification of two disease-related genes [88], one of
which is involved in insulin-mediated glucose uptake in
rats [90]. Cross-referencing genes identified in microarray
experiments with genomic regions identified in QTL stud-
ies may help single out specific genes for more detailed
work. Considering DNA microarray analysis does not nec-
essarily require 100's of samples, combining these results
with QTL analysis and other techniques such as multiple
linear regression [91], which relate genomic regions or
SNPs to phenotypes of interest, promises to further our
understanding of the genetic regulation of energy home-
ostasis.

Conclusion
Effectively employing genome scale technologies, such as
DNA microarrays, has thus far provided unique chal-
lenges in experimental design, data analysis, and data
integration. Many of these problems are particularly chal-
lenging for clinical researchers who would like to incorpo-
rate larger amounts of molecular data into their
investigations, but have not previously dealt with multi-
variate problems at a similar scale. DNA microarrays,
when used in carefully designed experiments can enable
systems identification and gene discovery, which is critical
to defining the molecular basis of energy homeostasis.
Combining this technology with other complementary
methods of analysis and experimental tools should help
define the most relevant molecular pathways and holds
the promise of providing new clinical insights.
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