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The impact of phospholipid transfer protein
(PLTP) on lipoprotein metabolism
Xian-Cheng Jiang*, Weijun Jin and Mahmood M Hussain
Abstract

It has been reported that phospholipid transfer protein (PLTP) is an independent risk factor for human coronary
artery disease. In mouse models, it has been demonstrated that PLTP overexpression induces atherosclerosis, while
its deficiency reduces it. PLTP is considered a promising target for pharmacological intervention to treat
atherosclerosis. However, we must still answer a number of questions before its pharmaceutical potential can be
fully explored. In this review, we summarized the recent progresses made in the PLTP research field and focused on
its effect on apoB-containing- triglyceride-rich particle and HDL metabolism.
Phospholipid transfer protein (PLTP)
PLTP belongs to a family of lipid transfer/lipopolysaccharide-
binding proteins, including cholesterol ester transfer protein
(CETP), lipopolysaccharide-binding protein (LBP) and bac-
tericidal/permeability increasing protein (BPI) [1]. It is a
monomeric protein of 81 kDa [2]. Besides phospholipids,
PLTP efficiently transfers diacylglycerol, α-tocopherol, cere-
broside, and lipopolysaccharides [3]. Therefore, plasma PLTP
is also a nonspecific lipid transfer protein. It has also been
reported that there are two forms of lipoprotein-associated
PLTP proteins. Active plasma PLTP is associated with
apoA-I- containing lipoproteins (about 160 kDa in size) and
inactive one is associated with apoE-containing lipoproteins
(about 520 kDa in size) [4-6]. However, we still do not know
why there are two forms of PLTP in the circulation?
PLTP is expressed ubiquitously [2,7]. The highest ex-

pression levels in human tissues were observed in ovary,
thymus, placenta, and lung [2]. Taking into account the
organ size involved, liver and small intestine appear to
be important sites of PLTP expression. It was also shown
that PLTP is highly expressed in macrophages [8-10]
and in atherosclerotic lesions [11,12].
The liver is one of the major sites of lipoprotein pro-

duction and degradation, as well as of PLTP expression.
To address the impact of liver-expressed PLTP on lipo-
protein metabolism, we created a mouse model that
expresses PLTP in the liver acutely and specifically, with
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a PLTP-null background. We found liver expressed
PLTP mice have about 25 % plasma PLTP activity com-
pared to that of WT mice [13]. We also created liver-
specific KO mice and found that the KO mice have 25 %
less plasma PLTP activity than that of controls (Yazda-
nyar and Jiang, unpublished observation). These results
indicated that liver-generated-PLTP makes about 25 %
contributions to the PLTP activity in the circulation.

PLTP regulation
PLTP activity and mRNA can be regulated by many fac-
tors. A high-fat high-cholesterol diet causes a significant
increase in PLTP activity and in mRNA levels [7]. After
lipopolysaccharide injection, plasma PLTP activity is sig-
nificantly decreased, and this is associated with a similar
decrease in PLTP mRNA levels in the liver and adipose
tissues [7]. PLTP expression and activity can be upregu-
lated by glucose [14] and down regulated by insulin
[15,16]. It has been reported that diacylglyceride can also
regulate PLTP activity [17].
PLTP promoter contains farnesoid X-activated recep-

tor (FXR) and peroxisome proliferator-activated receptor
(PPAR) binding motifs. The promoters of human and
mouse PLTP genes show five consensus sequences for
the transcription factors Sp1 and AP2 that are necessary
for PLTP transcription [18,19]. The transcriptional activ-
ity of PLTP gene was significantly increased by cheno-
deoxycholic acid and fenofibrate, suggesting that FXR
and PPAR are probably involved in the process [18]. We
[8] and another group [20] independently showed that
PLTP expression can also be upregulated by liver X
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receptor (LXR). The PLTP promoter contains a high-
affinity LXR response element that is bound by LXR/
RXR heterodimers in vitro, and is activated by LXR/RXR
in transient-transfection studies [21]. A previous report
indicated that LXR agonists activate triglyceride synthe-
sis and PLTP transcription by activating SREBP-1c [22].
PLTP and cholestery ester transfer protein (CETP)
Although PLTP and CETP show moderate homology of
sequence [2] and similar structural features [1,23], they
show no overlap in their in vivo functions. This was
demonstrated in our study by preparing CETP trans-
genic/PLTP KO mice; the expression of CETP did not
rescue the low HDL phenotype of PLTP deficiency. In
fact the phenotypes were additive, resulting in markedly
reduced HDL levels in the CETPTg/PLTP KO mouse
[24]. However, there is an interaction between PLTP and
CETP. It has been reported that purified PLTP enhances
cholestery ester transfer from HDL3 to VLDL [25], even
though PLTP has no such transfer activity of its own.
Moreover, CETP transgenic/PLTP KO mice has signifi-
cantly lower CETP activity than that of CETP transgenic
mice [24].
PLTP and HDL metabolism
Plasma PLTP mediates net transfer of phospholipids
from apoB-containing-triglyceride-rich lipoprotein into
HDL, and also exchanges phospholipids between lipo-
proteins [26,27]. Additionally, it has been shown that
PLTP can act like a putative fusion factor to enlarge
HDL particles [28]. Huuskonen et al. reported that
phospholipid transfer activity is a prerequisite for effi-
cient PLTP-mediated HDL enlargement [29]. Rye et al.
reported that enrichment of triglyceride in the HDL core
could promote such fusion [30].
Overexpression of PLTP in mice using adenovirus and

adenovirus-associated virus resulted in a 10- to 40-fold
increase in plasma PLTP activity [31,32]. These mice
were characterized by increased preβ-HDL levels but
decreased α-HDL cholesterol levels. PLTP expression
mediated by adenovirus-associated virus (AAV) showed
a prolonged pattern of overexpression that resulted in a
significant decrease in total cholesterol and HDL choles-
terol in C57BL/6 mice [32]. We prepared PLTP trans-
genic mice and found that the preβ HDL is significantly
increased [33]. Transgenic mice that overexpress human
PLTP at high levels were also generated. Compared with
WT mice, they showed a 2.5- to 4.5-fold increase in
PLTP activity in plasma. This resulted in a 30 to 40% re-
duction of plasma HDL cholesterol levels, but a 2- to 3-
fold increase in the formation of PreB-HDL [34]. Over-
all, PLTP overexpression causes a significant reduction
in plasma HDL levels but increases preβ-HDL.
So far, no PLTP deficiency has been found in humans.
The most useful information about PLTP deficiency was
obtained from PLTP gene knockout (KO) mice. These
mice show a complete loss of phosphatidylcholine (PC),
phosphatidylethanolamine, phosphatidylinositol, sphingo-
myelin but a partial loss of free cholesterol transfer activ-
ities [35]. Moreover, the in vivo transfer of [3H]
phosphatidylcholine from VLDL to HDL does not occur
in PLTP KO mice. On a chow diet, these mice showed a
marked decrease in HDL-PL, HDL-FC, and apoA-I, dem-
onstrating the important role of PLTP-mediated transfer
of surface components of triglyceride-rich lipoprotein in
the maintenance of HDL levels [35]. Additionally, the
HDL from the PLTP KO mice was enriched in protein but
was deficient in PC. Turnover studies showed a 4-fold in-
crease in the catabolism of HDL protein and cholesterol
in PLTP KO mice compared with WT mice [36,37]. Over-
all, PLTP deficiency causes a significant reduction in
plasma HDL cholesterol levels.
Recently, we compared HDL isolated from transgenic,

wild type and knockout mice and found that: 1) HDLs
isolated from different mice have different sizes, the
order being as follows: PLTP transgenic >WT>PLTP
KO; 2) the HDLs have different inflammatory index, the
order being as follows: PLTP transgenic >WT>PLTP
KO; and 3) the HDLs have different lipid compositions.
The order of HDL- cholesterol levels is WT>PLTP
transgenic > PLTP KO; the order of HDL total phospho-
lipids is WT>PLTP Transgenic = PLTP; the order of tri-
glyceride is WT>PLTP transgenic > PLTP KO (Yeang,
Navab, and Jiang, unpublished observation). These stud-
ies indicate that PLTP might play an important role in
determining plasma HDL size, inflammatory index and
lipid composition. We also found that liver-specific
PLTP deficiency significantly decreases HDL and apoA-I
levels (Yazdanyar and Jiang, unpublished observation).

PLTP in cholesterol efflux/reverse cholesterol
transport
PLTP is highly expressed and regulated in macrophage
cells and this suggests its potential involvement in lipid
efflux. However, the role of PLTP in reverse cholesterol
transport (RCT) (most of the studies were based on
mouse macrophage cholesterol efflux model) is contro-
versial. There are reports which indicate that PLTP
might promote [38] [39] or inhibit [40] [41] or have no
effect [8] on cell cholesterol efflux. Differences in various
published reports might be because these studies did not
compare same amounts of HDL.
Oram et al. reported that exogenous PLTP can pro-

mote HDL-mediated cholesterol efflux through ABCA1
pathway [38]. We also found that recombinant PLTP
(50 ng/ml) together with 0.8 nmole/ml HDL promotes
HDL mediated cholesterol efflux (Yeang and Jiang,
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unpublished observation). PLTP appears to function as
an intermediary in the transfer of excess cellular lipids
to lipoproteins through its interaction with ABCA1 [38].
It was also indicated that an amphipathic helical region
of the N-terminal barrel of PLTP is critical for ABCA1-
dependent cholesterol efflux [39]. Furthermore, Lee-
Rueckert et al. studied the ABCA1-dependent efflux of
cholesterol from peritoneal macrophages derived from
PLTP-deficient mice and compared it with cholesterol
efflux from wild-type macrophages. They found that
cholesterol efflux from PLTP-deficient macrophage foam
cells is defective and that the defect can be corrected by
robust stimulation of the ABCA1-dependent pathway.
These results support an intracellular role for endogen-
ous macrophage PLTP in ABCA1-mediated cholesterol
efflux from macrophage foam cells [10]. As mentioned
previously, PLTP is present in plasma as two forms, a
highly active (HA-PLTP) and a lowly active (LA-PLTP)
form [4,21]. Vikstedt et al. reported that incubation of
HDL in the presence of HA-PLTP resulted in the forma-
tion of preβ-HDL and caused a 42% increase in macro-
phage cholesterol, while LA-PLTP neither formed preβ-
HDL nor increased cholesterol efflux. However, neither
HA- nor LA-PLTP enhanced cholesterol efflux to lipid-
free apoA-I [42]. Based on the above results, PLTP may
promote macrophage cholesterol efflux.
On the other hand, Moerland et al. reported that in

cholesterol efflux studies from macrophages, HDL iso-
lated from human PLTP/ human apoA-I double trans-
genic mice was less efficient than HDL isolated from
human apoA-I transgenic mice[40]. Furthermore, it was
found that the largest subfraction of the HDL particles
present in the double transgenic mice was markedly in-
ferior as a cholesterol acceptor, as no labeled cholesterol
was transferred to this fraction. These data demonstrate
that the action of human PLTP in the presence of
human apoA-I results in the formation of a dysfunc-
tional HDL subfraction, which is less efficient in the up-
take of cholesterol from cholesterol-laden macrophages
[43]. The same group of researchers investigated the role
of systemic and peripheral PLTP in macrophage choles-
terol efflux and reverse cholesterol transport in vivo.
They found that macrophage cholesterol efflux and re-
verse cholesterol transport to feces is impaired in PLTP
transgenic mice, and that elevation of macrophage-PLTP
does not affect reverse cholesterol transport, indicating
that higher systemic PLTP levels may promote athero-
sclerosis development by decreasing the rate of reverse
cholesterol transport [41]. The same experiment needs
to be performed in PLTP deficient mice. Based on the
above results, PLTP may inhibit macrophage cholesterol
efflux.
Contradictory results are also observed in human stud-

ies. De Vries et al. reported that cholesterol efflux from
fibroblasts to the HDL from normotriglyceridemic
diabetic plasma is unchanged, while efflux to HDL by
the source of hypertriglyceridemic diabetic plasma is en-
hanced, with concomitant increased plasma PLTP acti-
vity [44]. However, Attia et al. indicated that in diabetic
patients with or without CHD, PLTP activity was con-
sistently increased in comparison with the control group
[45].
Apolipoprotein F (ApoF) is known as lipid transfer in-

hibitor protein (LTIP) based on its ability to inhibit lipid
transfer between lipoproteins ex vivo. ApoF overexpres-
sion reduces HDL cholesterol levels in mice by increas-
ing clearance of HDL-CE [46], however, whether PLTP
is involved in this process is still unknown.

PLTP and apoB-containing lipoprotein (BLp)
metabolism
ApoB is the major protein component of VLDL and chy-
lomicrons (CM), which transport triglyceride from the
liver and intestine, respectively, into the bloodstream
[47]. ApoB exists in two forms, apoB48 and apoB100
[48,49]. Increased hepatic BLp synthesis is the principal
defect in subjects with familial combined hyperlipidemia
[50,51], and is also an important component of the dysli-
pidemia of diabetes and obesity [52,53]. Accumulating
evidence suggests that the formation of apoB100-BLp
[54] and apoB48-BLp [55,56] is accomplished sequen-
tially. The "two-step" model postulates that the initial
product is a primordial particle, formed during apoB
translation in the endoplasmic reticulum (ER). It is clear
that MTP is involved in the early stage (1st step) of apoB
lipidation. However, the mechanism involved in the later
stage (2nd step) in which the apoB-containing primor-
dial particle fuses with apoB-free/triglyceride-rich lipid
droplets is still not well understood [57]. Abundant tri-
glyceride availability is essential, but it alone is not suffi-
cient to drive BLp assembly. This is exemplified by
studies using hepatic cells treated with n-3 fatty acids
[58,59] or insulin [60], in which active triglyceride syn-
thesis does not result in VLDL production. In certain
hepatoma cell lines (e.g., HepG2 cells), triglyceride syn-
thesis can be effectively stimulated by oleate, but forma-
tion of VLDL is not achieved [61].
We unexpectedly found that PLTP deficiency causes a

significant impairment in hepatic secretion of VLDL
[62]. Likewise, it has been reported that animals overex-
pressing PLTP exhibit hepatic VLDL over-production
[63]. Associations of plasma PLTP activity with elevated
apoB levels have been found in humans as well [64]. In a
recent study, Dr. Lagrost’s group found that human
PLTP transgenic rabbits showed a significant increase of
BLp but not of HDL cholesterol in the circulation [65].
This might reflect the real situation in humans, since
rabbits, like humans, are LDL mammals. Nevertheless,
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the surprising finding that PLTP affects BLp secretion
from the liver has remained unexplained.
The contribution of hepatic synthesis of PLTP on

plasma apoB-lipoproteins was investigated in several
murine models that specifically expresses PLTP in the
liver on a PLTP-null background, hepatic overexpression
of PLTP was responsible for increased plasma PLTP ac-
tivity, and increased VLDL production and circulating
concentrations of apoB-containing lipoproteins, but had
marginal effect on HDL and apoA-I levels [13]. Recently,
we also found that liver-specific PLTP KO mice secrete
significantly less apoB-containing particles from the liver
compared with controls (Yazdanyar and Jiang, unpub-
lished observation).
We have found that mouse small intestine expresses

PLTP (Jiang XC, unpublished observation). We have also
found a significant reduction in BLp-cholesterol secre-
tion from enterocytes obtained from PLTP KO mice,
compared with controls [66]. There are similarities be-
tween VLDL and chylomicron production in the liver
and small intestine, respectively [57]. We believe that
PLTP activity is involved in promoting 2nd step of BLp
lipidation, since PLTP activity and triglyceride enrich-
ment are two factors for PLTP-mediated HDL enlarge-
ment [29,30], a process similar to the 2nd step of BLp
lipidation [57]. We proposed a model for this. We
hypothesize that although PLTP has no triglyceride
transfer activity, PLTP-mediated phospholipid transfer
or exchange on the surface of primordial BLp and apoB-
free/TG-rich lipid droplets would fuse two particles.
PLTP has vitamin E transfer activity that is important

to maintain tissue and plasma vitamin E levels. It is
known that vitamin E-enriched LDL from PLTP defi-
cient mice is resistant to oxidation and also is much less
active to induce monocyte chemotactic activity [37,67].
Over expression of PLTP decreases vitamin E content in
LDL and increases its oxidation [32]. Therefore, PLTP
deposits vitamin E from plasma to cells. Accumulating
data suggest that the function of PLTP in tissues is dif-
ferent from its role in plasma. Studies on macrophage-
derived PLTP has demonstrated that PLTP deficient
macrophages have more basal cholesterol level and accu-
mulate more cholesterol in the presence of LDL [68].
Supplementation of vitamin E in these animals nor-
malizes the cholesterol phenotype [68]. We have shown
that PLTP deficient hepatocytes secrete less apoB-
containing lipoproteins and this is related to premature
degradation caused by lacking vitamin E and increasing
oxidation stress [69]. Hence, a major effect of PLTP on
cellular physiology might be due to changes in cellular
vitamin E levels and oxidative stress.
Overproduction of VLDL may be beneficial for pre-

venting nonalcoholic fatty liver disease (NAFLD). How-
ever, plasma PLTP activity is positively associated with
serum alanine aminotransferase and aspartate amino-
transferase, two enzymes considered as predicts for
NAFLD, in diabetes patients, and it has been suggested
that PLTP may be a marker for NAFLD[70]. More im-
portantly, PLTP deficiency does not cause lipid accumu-
lation in the liver [62].
PLTP in the innate immune system
Lipopolysaccharides (LPS) are amphipathic molecules
that are localized in the outer leaflet of the outer mem-
branes of gram-negative bacteria. They activate the in-
nate immune system through a complex process
involving Toll-like receptors (TLRs) and the MD-2,
CD14, and lipopolysaccharide-binding protein (LBP)
accessory proteins [71]. PLTP can transfer and neutralize
LPS [72]. Based on PLTP KO mouse study, it has been
shown that PLTP plays a physiologically relevant role in
the disaggregation, binding, and transfer of LPS to lipo-
proteins [73]. Recently, it has been further shown that
PLTP is essential in mediating the association of triacyl
lipid A of LPS with lipoproteins, leading to extension of
its residence time and to magnification of its proinflam-
matory and anticancer properties [72].
PLTP and atherosclerosis
Genome-wide association studies (GWAS) have made
spectacular advances in identifying genes associated with
dyslipidemia and coronary heart disease (CHD) [74-77].
However, GWAS reports on PLTP are contradictory. It
has been reported that two PLTP single-nucleotide poly-
morphisms (SNPs) are associated with lower PLTP activ-
ity, higher HDL levels, and a decreased risk of CHD
[78]. On the other hand, SNPs near the PLTP gene are
associated with higher PLTP activity, higher HDL, and
lower TG levels [79].
PLTP expression is increased in different pathologies

associated with increasing risk of CHD, such as obesity,
insulin resistance, and types I and II diabetes [80]. We
have found that serum PLTP activity is increased in
CHD patients [81]. Moreover, PLTP activity is positively
correlated with heart failure due to coronary artery is-
chemia [82] and low HDL levels [83]. Contradictorily,
one study has shown that low PLTP is a risk factor for
peripheral atherosclerosis [84]. It has been reported that
immunoreactive PLTP was discovered in histological
sections of human carotid artery [11,12]. It was coloca-
lized with CD-68 positive macrophages, suggesting its
production in situ. Synthesis of PLTP was further
demonstrated in cultured macrophages and its expres-
sion was upregulated by acetylated LDL treatment
[10,20]. Moreover, in the atherosclerotic segments, PLTP
accumulated in extracellular matrixes, colocalizing with
apoA-I, apoE, and biglycan [12].
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In mouse models, it has been demonstrated that PLTP
overexpression induces atherosclerosis [32,85], while its
deficiency shows the opposite effect [62]. Two bone
marrow transplantation studies indicated that PLTP ex-
pression by bone marrow derived cells increases LDL re-
ceptor KO mouse atherosclerotic lesion size [86,87].
However, other bone marrow transplantation studies
indicated that local PLTP expression in macrophages
could be protective as long as systemic PLTP levels are
not markedly elevated [86,88,89]. In rabbits, PLTP over-
expression increases atherosclerotic lesions after a high-
fat diet feeding, compared with controls [65]. In general,
elevation of systemic PLTP is a risk factor for athero-
sclerosis in animal models. Therefore, reductions in
plasma PLTP might be beneficial.

Conclusion
Plasma PLTP activity influences apoB-containing lipo-
protein and HDL metabolism. Cellular PLTP activity
influences apoB-containing lipoprotein production.
PLTP activity may or may not have an effect on reverse
cholesterol transport. Importantly, PLTP clearly has a
notable role in the development of atherosclerosis. How-
ever, our knowledge about PLTP activity, especially in-
side the cells, is very limited. To better understand the
role of PLTP in atherogenecity, we still need to explore
PLTP-mediated lipoprotein metabolism. Further, more
epidemiological studies are needed to gain insights into
the role of PLTP in atherosclerosis. Lastly, discovery
of humans with genetic PLTP deficiency would be a
major step toward the elucidation of the role of this
transfer protein in human lipoprotein metabolism and
atherosclerosis.
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lipoprotein; VLDL: Very low density lipoprotein.
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