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Abstract

Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of
aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of
certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays
a pivotal role in relaying various extracellular and intracellular regulatory signals critical to cell growth, survival,
regeneration, or death. The main signaling pathway regulating GSK3 activity through serine-phosphorylation is the
phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/Akt relay that catalyzes serine-
phosphorylation and thus inactivation of GSK3. In addition, perilipin 2 (PLIN2) has recently been shown to regulate
GSK3 activation through direct association with GSK3. This review summarizes current understanding on environmental
and nutritional factors contributing to GSK3 regulation (or dysregulation) through the PI3K/PDK1/Akt/GSK3 axis, and
highlights the newly discovered role that PLIN2 plays in regulating GSK3 activity and GSK3 downstream pathways.

Background
Glycogen synthase kinase 3 (GSK3) is a serine/threonine
protein kinase [1] and catalyzes phosphorylation of
perhaps more than 100 substrates [2]. A unique feature
associated with GSK3 regulation is that the enzyme is
“constitutively” activated (i.e. always in the “on” stage”) in
cells [3], probably due to a recently identified phosphoryl-
ation of GSK3 catalyzed by protein kinase (PK) Cζ [4].
Physiological inhibitors of GSK3 include phosphoinositide
3-kinase (PI3K)/phosphoinositide-dependent kinase-1
(PDK1)/Akt relay [5], as well as the newly identified lipid-
binding protein perilipin 2 (PLIN2), also known as adi-
pose differentiation-related protein (ADRP) [6]. In the
PI3K/PDK1/Akt relay, Akt is activated by PDK1 [7],
and PDK1 in turn is activated by PI3K-generated 3-
phosphorylated phosphoinositides [8]. In this review,
the PI3K/PDK1/Akt axis involved in GSK3 inhibition
is abbreviated as PI3K/Akt pathway. Because PI3K ac-
tivities are modulated by a variety of factors,
including hormones, lipid, drugs, food components
and food metabolic products through their respective
receptors [9], the PI3K/Akt/GSK3 axis represents a
major regulatory pathway that relays extracellular and

intracellular signals critical to cell growth, survival,
regeneration, or death.
It is thus generally believed that negative regulation of

GSK3, through PI3K/Akt-mediated phosphorylation,
keeps GSK3 activity at “off” or “low” stages [2]. Under
disease conditions, either genetic abnormalities or
unhealthy environmental factors (such as life style,
habits, psychology, and medication) can break cellular
homeostasis and lead to increased GSK3 activity and/or
unbridled GSK3 activation. Overly activated GSK3 in
disease stages, interestingly, can occur when PI3K/Akt is
either repressed (resulting from exogenous or endo-
genous inhibitors or lack of stimuli) or over-stimulated
(resulting from high levels of stimuli). High GSK3
activity has been implicated in Bipolar Disorder [9],
Parkinson’s disease [1], Alzheimer’s disease, and Type 2
diabetes (T2D) [10]. Locally low GSK3 activity yet
systemically high GSK3 activity may associate with
cancer [5, 6, 10]. Moreover, GSK3 can promote infla-
mmation [11] and has been suggested to play a role in
aging and age-related macular degeneration [5]. Many of
these chronic abnormalities are considered as degener-
ation diseases. High GSK3 activity perhaps is also linked
with several other chronic diseases, such as acquired
immune deficiency syndrome (AIDS), cardiovascular
diseases (CVD), liver diseases, lung diseases, and renal
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failure, which are associated with age, inflammation,
and/or T2D [5, 6].
In addition to the PI3K/Akt/GSK3 axis, the GSK3

activity can also be attenuated by PLIN2 via its direct
binding to GSK3 [6]. Serine phosphorylation of GSK3
(pSGSK3), catalyzed by Akt, renders GSK3 inactivation
[5], whereas tyrosine phosphorylation of GSK3 (pYGSK3)
results in an active form of the enzyme. GSK3 can be
serine-phosphorylated by a number of kinases, including
PKA [12], PKB (Akt) [5], and PKCα [13], even though in
most studies only the Akt activity is measured. The
increase in GSK3 activity can be achieved through at least
three mechanisms, (i) tyrosine-phosphorylation (pYGSK3)
[6], (ii) dissociation from PLIN2 [6], and (iii) lowered
serine-phosphorylation (pSGSK3) [5]; all of which exert
similar impacts on cell growth/survival [5, 6]. High GSK3
activity is invariably associated with increased cell apop-
tosis [14–16], causing abnormal cell death as well as cell
regeneration [5].
High intracellular lipid levels for different time periods

appear to modulate PLIN2 binding to GSK3 and to
GSK3 substrates, thus impacting the GSK3 activity and
GSK3 downstream pathways, in turn, cell survival/
growth [6]. High and low GSK3 activities in the body
may underlie the biological mechanisms due to hyperlip-
idemia and obesity [6]. Elevated intracellular lipid
concentrations mimic the body cells under hyperlipidemia
and obesity circumstances [6], and obesity is closely asso-
ciated with increased risks of chronic diseases, including
Alzheimer’s disease [17], cancer, CVD, T2D [18], and
hyperlipidemia [17].
Loss of cellular response to hormonal regulation in

maintaining metabolic homeostasis is common in the
process of aging [5]. Chronic over-nutrition creates an
environment that overly stimulates certain signaling
pathways (e.g. PI3K/Akt), which can render cells insensi-
tive to hormonal stimulation. This “overstimulation-in-
duced insensitivity” phenomenon is commonly present
in almost all of the metabolic disorders. This review fo-
cuses on overstimulation-induced insensitivity of GSK3,
particularly on the signaling pathways that negatively
modulate GSK3 activity and on the environmental and
nutritional factors contributing to GSK3 regulation
through the PI3K/PDK1/Akt/GSK3 axis. Current under-
standings on the newly discovered role that PLIN2
plays in regulating GSK3 activity and GSK3 down-
stream pathways are also highlighted. Although changes
in the PI3K/Akt activities may also crosstalk to PLIN2-
mediated GSK3 regulation, there is no such informa-
tion reported in the literature. Therefore, the two
aspects of GSK3 regulation are presented separately in
this review. The well-described negative regulation of
GSK3 activity by the Wnt signaling pathway is not
discussed in this review.

Regulation of GSK3 through phosphorylation/
de-phosphorylation
Because GSK3 is constitutively activated [3], regulation
of GSK3 is achieved mainly through the inhibitory
serine-phosphorylation; namely, phosphorylation of serine-
21 in GSK3α and phosphorylation of serine-9 in GSK3β in
mammals. GSK3 is connected to extracellular environment
primarily via PI3K/Akt, and thus maintenance of those
kinase activities is essential for GSK3 inhibition. Activation
of PI3K is achieved by various types of cell receptor signal-
ing that in succession is modulated by alteration of environ-
mental and/or genetic factors.
Although normal repression of GSK3 activity is

controlled by consecutive PI3K/PDK1/Akt activations,
overstimulation of receptors, the upstream of PI3K under
many disease conditions can cause insensitivity of the
PI3K/Akt/GSK3 pathway and result in uninhibited GSK3
activity [5]. For instance, long-term treatment with
hormones that are members of the growth hormone
family, such as vascular endothelial growth factor (VEGF)
can cause GSK3/Akt/PI3K insensitivity and activate GSK3
in cultured cells [5], whereas repeatedly administrating
growth hormone, approximately equating to long-term
hormone treatment is often associated with adverse effects
such as diabetes and glucose intolerance in humans [19],
which is attributable to possible high GSK3 activity.
Likewise, persistent existence of a stimulus, such as high
expression of interleukin 17 receptor C (IL17RC) in eyes
and peripheral blood cells in age-related macular deg-
eneration, is also associated with increased GSK3 activity
[5, 20]. Endogenous ligands such as thyroxine [21] and
growth hormone can also activate Akt and PI3K/Akt
pathway [22, 23]. Decrease in sensitivity towards such
ligands in aged cells [19, 21] is probably associated with
diminished PI3K/Akt activation, which in turn contributes
to uncontrolled GSK3 activity [5].
Therefore, release of GSK3 activity, a hallmark of PI3K/

Akt/GSK3 pathway insensitivity can happen under disease
conditions as a consequence of any of the following events:
(i) overstimulation of PI3K/Akt, (ii) reduction of using
native PI3K/Akt stimuli, and (iii) inhibition of PI3K/Akt.
Animal and cell culture studies combined have suggested

that release of GSK3 activity can occur under different
stages of PI3K/Akt/GSK3 pathway insensitivity. Based on
immunoblot analysis of the phosphorylation status of the
kinases, we have postulated that there are four stages (stage
0 through stage 3) of PI3K/Akt/GSK3 insensitivity [5]. Of
those, the overstimulation-induced GSK3 insensitivity and
activity are developed stage-wise, i.e. GSK3 insensitivity
occurs first, which precedes Akt insensitivity and in turn
PI3K insensitivity [5]. In stage 1, high GSK3 activity
coincides with high PI3K and Akt activities; in stage 2: high
GSK3 activity occurs where PI3K activity is high yet Akt
activity is unchanged or low; in stage 3, high GSK3 activity
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coexists with low PI3K and Akt activities (Table 1). Thus,
the higher the stage is, the more damages of the kinases
sensitivity; moreover, the longer stimulus of the same sys-
tem, the higher stage of the kinases insensitivity [5], which
suggests that the highest stage can be reached in any sys-
tem as long as a stimulation lasts sufficiently long. The
overstimulation-induced insensitivity of PI3K/Akt/GSK3
can be pathway specific, as for example, IL17RC overex-
pression has little impact on the sensitivity of extracellular
signal-regulated kinases (ERK) or Wnt signaling [5]. At
stage 0, the kinases do not lose their sensitivity for normal
regulation of phosphorylation, despite manifestation of dis-
eases such as insulin resistance [24].

Regulation of GSK3 through PLIN2
The perilipin (PLIN) family consists of a group of cyto-
plasmic proteins with sequence homology and character-
istic binding to cytosolic lipid droplets [25]. A typical
PLIN protein consists of a two-domain structure; the N-
terminal lipid-binding domain and the C-terminal α-
helix bundle, resembling some of the exchangeable
apolipoproteins [26, 27]. While some PLIN proteins (e.g.
PLIN1 and PLIN2) appear exclusively in association with
lipid droplets, other PLIN proteins (e.g. PLIN3 or Tip47)
can bind to subcellular organelles in addition to lipid
droplets [28]. Mechanisms that regulate the PLIN pro-
tein partitioning between lipid droplets and organellar
membranes are not defined.
Although it is generally believed that PLIN proteins

are important for the metabolism (especially catabolism)
of intracellular lipids [29], the exact role that PLIN plays
in cellular lipid homeostasis remains largely unclear. At-
tempts were made to determine PLIN2 function using
genetic manipulation approaches, such as antisense oligo
[30], gene-knockout [31, 32], or siRNA in mice [33] or
cultured cell lines [6]. Although data obtained from
gene-knockout studies were confounded by the presence
of a truncated PLIN2 segment in the mouse model [34],
it is apparent that PLIN2 depletion in mice, even though
the ablation may not be complete, is associated with
amelioration of diet-induced hepatosteatosis, obesity,
and adipocyte inflammation [32]. On the other hand,
forced overexpression of PLIN2 in macrophages [35],
hepatic stellate cells [36], HEK293 cells [37], or skeletal

muscle C2C12 cells [33] could result in increased cyto-
solic lipid droplet content. The increase in cellular lipids,
upon PLIN2 expression, cannot be predominantly attrib-
uted to increased lipid synthesis; rather, it is likely due to
decrease in lipid turnover.
A potential role of PLIN2 overexpression in glucose

uptake has been recently demonstrated using transfected
mouse fibroblast L cells and differentiated 3T3-L1
adipocytes [38]. In these cells, a negative correlation
between PLIN2 expression and glucose uptake was
observed; thus, overexpression of PLIN2 in these cells
results in markedly decreased glucose uptake, whereas
PLIN2 knock-down is associated with manifold increase
in glucose uptake [38]. The exact mechanism whereby
PLIN2 expression could attenuate cellular glucose up-
take is uncertain. It was assumed that PLIN2 might se-
quester SNAP27, a protein component of the SNARE
complex that is required for the glucose transporter 1
trafficking to and from the plasma membranes [38].
Overexpression of PLIN2 alleviates insulin resistance in
skeletal muscle cells [33].
We have recently obtained experimental evidence that

PLIN2 is a GSK3-associated protein playing an obliga-
tory role in the Wnt/Frizzled pathway, probably through
acting as an intermediate between Dishevelled 2 (Dvl2)
and the axin/GSK3β/β-catenin complex (AGβC) [6]. In
3T3-L1 and HEK293 cells, PLIN2 is required for Wnt-
regulated disruption of axin/GSK3 complexes; upon
Wnt-3α stimulation, the association of Dvl2/PLIN2 is
decreased and concomitantly the association between
AGβC and PLIN2 is increased within 15–30 min [6].
Importantly, this PLIN2-dependent AGβC disassembly
appears to be independent of pSGSK3 levels, because its
levels are unchanged upon Wnt stimulation [6]. The
effect also appears to be specific to PLIN2, because
silencing PLIN3 has no effect on Wnt-induced β-catenin
stability [6]. The role played by PLIN2 as a relay between
Dvl2 and AGβC in the canonical Wnt signaling was
further authenticated by experiments in which Gαo/q
were silenced; silencing Gαo and Gαq abolished the
Wnt-decreased Dvl2/PLIN2 association and Wnt-
increased GSK3β/PLIN2 association [6].
It is known that Wnt stimulation can inhibit GSK3-

mediated β-catenin phosphorylation through either

Table 1 Stages of the kinases insensitivity under disease conditions

Stage Model system PI3K activity Akt activity GSK3 activity Insensitive kinase Phenotype

0 Male Sprague Dawley (SD) Rats High High Low None Early insulin
resistance

1 Human retinal pigment epithelial
cells (HRPE) treated with VEGF

High High High GSK3 Low growth

2 Human monocytes overexpressing
IL17RC or treated with VEGF

High Unchanged
or low

High GSK3, Akt Low growth

3 HRPE overexpressing IL17RC Low Low High GSK3, Akt, PI3K Low growth
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disruption or else alteration of the AGβCs [39]. How-
ever, disassembly of the AGβCs is not associated with
changes in GSK3 serine-phosphorylation. For instance,
Wnt-induced, PLIN2-dependent AGβC disassembly in
3T3-L1 and HEK293 cells, as mentioned above, is unre-
lated to changes in pSGSK3 levels [5]. It is also known
that β-catenin phosphorylation by the activity of GSK3
coupled to the AGβC is not controlled by the GSK3
serine-phosphorylation mechanism [2].
PLIN2 expression levels also exert an impact on cell

growth; forced expression of PLIN2 in 3T3-L1 cells results
in accelerated cell growth, which is associated with in-
creased expression of GSK3 substrates including β-
catenin, CCAAT enhancing binding protein α (c/EBPα),
c-Myc, and cyclin D1 [6]. Conversely, silencing PLIN2 in
the cells leads to a reduced expression of these GSK3 sub-
strates. PLIN2 depletion also results in dropped pSGSK3
levels, indicative of attenuated GSK3 inhibition [6].
Showing that temporary PLIN2 depletion can decrease

Wnt signaling including stabilization of β-catenin, a co-
transcription factor, and expression of transcription activa-
tors (c/EBPα and c-Myc) and a cell-survival factor (cyclin
D1), the above cell culture studies [6] suggest a develop-
mental role of PLIN2, since regulated Wnt-signaling is
essential for development [39]. The decreased cell growth/
survival upon PLIN2 depletion is linked with decreased
expression of the aforementioned substrates and increased
GSK3 activity [6], which are known to induce cell apop-
tosis [14–16]. These cell culture PLIN2 silencing data
apparently are in discord with the PLIN2 knockout mouse
data, because homozygotes for a targeted PLIN2 mutation
did not display discernible growth retardation [32]. It was
found that a truncated PLIN2 protein, representing the C-
terminal 80 % of the full-length PLIN2, was expressed in
some tissues of the PLIN2 knockout mice [34]. The
residual expression of this truncated PLIN2 protein (miss-
ing a region encoded by exons 2 and 3 of murine PLIN2)
may still support normal mouse development, whereas
animal models entirely devoid of PLIN2 may not survive
in vertebrates [6, 31].
It has been well documented that cellular PLIN2

concentration is positively correlated with intracellular
lipid contents [40]. Thus, treatment of cells with fatty
acids, such as oleic acid, to stimulate cytosolic lipid
droplet formation invariably generates increased cellular
PLIN2 concentrations [40]. Remarkably, treatment of
cells with oleic acid not only attenuated the Wnt-3α-
induced associations between PLIN2 and AGβC compo-
nents, in the face of elevated PLIN2 concentrations, but
also inhibited β-catenin/T-Cell Factor (TCF) signaling
[6]. Presumably, PLIN2 in oleic acid-treated cells is
sequestered by cytosolic lipid droplets via PLIN2 strong
lipid-binding affinity and therefore is unable to partici-
pate in mediating Wnt signaling [6]. The mechanism of

oleic acid treatment suppressing Wnt-signaling is further
confirmed by the treatment causing reduction of Wnt-
induced AGβC/PLIN2 associations, whereas the treatment
generates low levels of Dvl2/PLIN2 association similar to
that under mere Wnt treatment [6].
Obesity increases the risks of many chronic diseases,

including T2D, Alzheimer’s disease, cancer, CVD and
hyperlipidemia [17, 18]. Diet-induced obesity and hyperlip-
idemia are often revealed by increases of both extracellular
and intracellular lipid contents in human body [33, 41].
Data obtained from cell culture studies [6] suggest that the
effects of intracellular lipid on GSK3 activity are time-
dependent. Thus, the short-term oleic acid treatment actu-
ally significantly stimulates GSK3/PLIN2 association, sug-
gesting that lower GSK3 activity at this stage raises the
expression of c-Myc and cyclin D1 as well as cell growth/
survival [6]. These data are consistent with studies show-
ing that the cytosolic lipid droplets enhance TCF activity
and carcinogenesis in colorectal cancer stem cells [42].
The short-term oleic acid treatment engenders intensified
associations of GSK3/PLIN2 and PLIN2/GSK3 substrates
at least in one cell line studied [6]. Thus, the increase in
cell growth, upon short-term oleic acid treatment, is likely
due to low GSK3 activity and high expression of c-Myc
and cyclin D1, a Wnt-like effect mediated by PLIN2 [6].
These studies support the possibility that low GSK3 activ-
ity increases the risks of cancer [10].
On the other hand, in long-term oleic acid treatment,

GSK3/PLIN2 association is lowered but GSK3 activity is
increased. Thus, under this condition, association of
GSK3/PLIN2 is inversely related to GSK3 activity that
inhibits the expression of GSK3 substrates (e.g. c-Myc,
cyclin D1, and insulin receptor substrate 1 (IRS1)) and
cell growth/survival [6]. Presumably, dissociation of
GSK3/PLIN2 may allow GSK3 to contact its substrates
and synergistically to augment GSK3 activity in addition
to lipid-induced pYGSK3 activity [6]. In this case,
increase in intracellular lipids is functionally equivalent
to PLIN2 depletion, bringing in increased degradation
and/or phosphorylation of GSK3 substrates.
High levels of GSK3 activity under long-term oleic acid

treatment conditions are associated with decreased c-Myc
and cyclin D1 expression. Consequently, the cell growth/
survival is reduced [6]. The influence of oleic acid
treatment on GSK3 activity suggests a potential regulatory
role of PLIN2 during the interplay of intracellular lipid
metabolism and cell functionality, which may support a
biological mechanism of diseases risks associated with
increased hyperlipidemia and obesity. Indeed, high levels
of GSK3 activity are detected in Alzheimer’s disease and
T2D [10], and increased apoptosis has been observed
[14–16]. An unrestricted high-fat diet generates increased
GSK3 activity in the brain of a mouse model for
Alzheimer’s disease study [43]. Detection of high levels of
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GSK3 activity in T2D [10] is probably linked with GSK3-
mediated IRS1 phosphorylation [44] and degradation [45].
In this regard, the discovery that PLIN2 can interact with
IRS1 and that PLIN2 expression exerts a major impact on
IRS1 expression [6] is of particularly important signifi-
cance because IRS1 is also a GSK3 substrate. Therefore,
under long-term oleic acid treatment conditions, both
high GSK3 activity and dissociation of PLIN2/IRS1 are
suggested to promote IRS1 degradation [6], which is a
contributing factor to T2D.
To sum up, PLIN2 mediates GSK3 activity in short-

term and long-term oleic acid treatment conditions. If
the in vitro cell culture data can be extrapolated to in
vivo situation such as hyperlipidemia/obesity (since
GSK3 and PLIN2 are ubiquitously expressed), both acute
and chronic lipid effects may generate over-suppressed
and uncontrolled GSK3 activity, potentially causing di-
vergent damages [5, 6, 10]. Although the mode of GSK3
regulation differs between the PI3K/Akt-mediated mech-
anism (i.e. serine-phosphorylation) and lipid/PLIN2-me-
diated mechanism (i.e. tyrosine-phosphorylation and
PLIN2/GSK3 interaction) [5, 6], the released GSK3 ac-
tivity exerts similar impacts on cell growth/survival,
which is suggested to have important effects on the initi-
ation and progression of chronic diseases [5].

Dietary and pharmacological considerations that
influence GSK3 regulation
The PI3K/Akt pathway relays a vast number of extracel-
lular signals, through their interaction with cell surface
receptors (e.g. cytokine receptors, integrin, receptors of
tyrosine kinase (RTK), and G-protein coupled receptors
(GPCR)), to GSK3. Nutrients and drugs that either acti-
vate or antagonize the PI3K/Akt pathway will inevitably
exert an impact on GSK3, and as discussed above, often
lead to unchecked GSK3 activation, either through
PI3K/Akt or else PLIN2.
Nutrients that affect PI3K/Akt pathway include water,

proteins, carbohydrates, and fats (Table 2). Hypo-osmotic
[46–48] or hyper-osmotic stresses [49–52] associated with
disorders in water homeostasis are known to involve the
PI3K/Akt signaling. Non-denatured and denatured
proteins can activate PI3K/Akt. Branched-chain amino
acids presented in cow milk are highly insulinotropic and
a potent activator of PI3K/Akt [53–55]. Increased protein
intake causes negative calcium balance in the body [56].
Excess dietary proteins produce a great amount of acids,
mostly in the forms of sulfates and phosphates [57]. Mag-
nesium sulfate, fucosylated chondroitin sulfate [58, 59],
and heparan sulfates [60] all play a role in PI3K/Akt path-
way activities.
The interplay between dietary glucose and body insulin

response has been well elucidated, and the impairment of
insulin-triggered PI3K/Akt signaling is the underlying

mechanisms for T2D [61]. Under certain conditions,
decreased activation of Akt but not PI3K can occur in
skeletal muscles of diabetic rats [62], a situation desig-
nated as stage 2 of the kinases insensitivity (Table 1).
Moreover, while short-term hyperglycemia activates PI3K/
Akt and suppresses GSK3 [62], prolonged hyperglycemia
(as in diabetics) can lead to inflammation and apoptosis
associated with high GSK3 activity [14–16, 63, 64].
Hyperlipidemia (i.e. high levels of extracellular lipids)

and obesity (i.e. high levels of intracellular lipids) can in-
crease GSK3 activity via (i) suppression/overstimulation
of the PI3K/Akt pathway and (ii) dissociation of GSK3/
PLIN2. High extracellular lipids, such as fatty acids, can
modulate GSK3 activity via the fatty acid receptor
(GPCR) [65] and activation of PI3K/Akt [66]. However,
extended high fatty acid concentrations induce insulin
resistance by decreasing PI3K activation [67], a situation
defined as stage 3 of the kinase insensitivity (Table 1).
Although pSGSK3 levels do not differ in cells treated
without or with oleic acid [6], cells treated with palmitic
acid exhibit increased Akt/PI3K/GSK3 insensitivity [68],
also showing the condition of stage 3 of the kinase in-
sensitivity (Table 1). Sterol (including androgen) [69],
monoacylglycerol [70], diacylglycerol [71] and medium-
chain triacylglycerol [72] all exert an effect on PI3K/Akt.
High level of intracellular lipids, as discussed above,

exerts an effect on GSK3 via PLIN2; short-term lipid ac-
cumulation increases GSK3/PLIN2 association, whereas
long-term lipid accumulation decreases GSK3/PLIN2 as-
sociation [6]. GSK3 in oleic acid treated cells is activated
because of an increased level of pYGSK3 and dissoci-
ation of GSK3 from PLIN2 [6]. In vivo studies show that
unlimited high-fat diet is associated with low PI3K/Akt
and high GSK3 activities, stage 3 of the kinase insensitiv-
ity (Table 1) in mouse brains [43]. High fat diet-induced
GSK3 activity is linked with development of insulin
resistance and T2D in obesity-prone mice [73], so that
suppression of GSK3 activity betters insulin-induced
glucose metabolism in mice fed high-fat diet [74]. Over-
expression of PLIN2 can raise insulin sensitivity in skeletal
muscle despite high lipid levels [33], which is probably via
high PLIN2 expression-gained IRS1 expression regardless
of lipid levels [6]. The same event [6] can also happen in
vivo where PLIN2 overexpression attenuates insulin
insensitivity induced by high-fat diet [33].
In a broader sense, nutrients also include minerals

(Table 3), vitamins (Table 4), food supplements such as
antioxidants (Table 5), condiments and ingredients in
drinks (Table 6). All of these nutrients, taken up as food-
stuff, represent the major environmental factor that influ-
ences activities of the PI3K/Akt/GSK3 axis. There are two
major types of such environmental factors that can unlock
the respective inhibitory effects of PLIN2 and PI3K/Akt on
GSK3. One is intracellular lipid that sequesters PLIN2 [6],
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Table 2 Water, proteins or fats affect PI3K/Akt and/or GSK3 activities

Nutrient Model system Observed effects Ref. (model)

Water

Hypo-osmotic stress Human embryonic kidney cells, mouse
osteoblast, human thyroid cancer cells,
HRPE, human monocytes and human
neuroblastoma.

Hypo-osmotic pressure induces calcium influx that
mediates PI3K and p53 activation, resulting in cell
apoptosis, which involves high GSK3 activity due
to overstimulation.

[5, 15, 46–48]

Hyper-osmotic stress Monkey kidney cells, HeLa cells, human or
mouse melanoma cells, HRPE,
human monocytes.

Despite inducing the p21-activated serine-threonine
kinase, requiring PI3K activation, within 30-min,
hyper-osmotic stress suppresses melanin production
that also requires PI3K activation, for days of the
treatment, suggesting overstimulation of the
PI3K/Akt pathway.

[5, 49–52]

Proteins

Non-denatured protein Male SD rats, human embryonic kidney cells. Branched-chain amino acids in cow milk are highly
insulinotropic and a potent activator of PI3K/Akt.

[53, 54]

Denatured proteins Rat muscle cells. Increase PI3K. [55]

Excess protein Adult women, rats with intestinal
ischemia-reperfusion injury, T2D mice.

Raise calcium excretion; protein-generated
sulfates activate PI3K/Akt via their receptors.

[56, 58, 59]

Carbohydrates

Glucose Humans with diabetes, rat extensor digitorum
longus muscle, mouse cardiac fibroblasts.

Cause insulin response; insulin resistance and
stage 2 of the kinase insensitivity (Table 1);
modulate PI3K/Akt/GSK3 activities; add
inflammation and apoptosis.

[61–63]

Fructose SD rats with diabetes, mouse hepatocytes. Increase NF-κB activity which associates with
GSK3 activity.

[96, 97]

D-galactose Mice, human neuroblastoma cells. Activate caspase-3, which associates with
GSK3/p53 binding.

[15, 98]

Polysaccharides Rats with diabetes, cancer patients, C57BL/6
mice [68, 99], human hepatocellular carcinoma,
human melanoma cells, human osteosarcoma,
human gastric carcinoma cells, Balb/c mice,
T2D rats, human hepatocellular carcinoma cells,a

KKAy mice.

Modulate PI3K/Akt and/or GSK3 activities. [68, 99–107]

Fats

Intracellular lipid Human embryonic kidney cells, human
monocytes, mouse embryonic fibroblasts.

Modulate GSK3/PLIN2 association, GSK3 activity,
expression of GSK3 substrates and cell growth/survival,
and increase pYGSK3 levels (long-term).

[6]

Extracellular lipid
including palmitic
acid

Human hepatocellular carcinoma cells,
normal men.

Generate insulin resistance and stage 3 of the kinase
insensitivity (Table 1) and decrease insulin-induced
PI3K activity.

[67, 68]

Sterol including
androgen

Human prostate cancer epithelial cells. Increase Akt activity. [69]

Monoacylglycerol Mouse neural crest cells. Activate PI3K. [70]

Diacylglycerol and
medium-chain
triacyglycerol

Human breast cancer cells, human brain
glioblastoma cells, human alveolar basal
epithelial cells, livers of malnourished
Wistar rats.

Activate Akt. [71, 72]

High-fat diet C57BL16 mice, Tg2576 mice, diabetes- and
obesity-prone C57BL/6 J mice, C57BL/6
J mice.

Induce insulin insensitivity which can be improved
by overexpression of PLIN2, increase glucose
intolerance and insulin resistance, and decrease
PI3K/Akt activities and raise GSK3 activity, stage 3
of the kinase sensitivity (Table 1), whereas glucose
metabolism can be ameliorated if GSK3 activity
is inhibited.

[33, 43, 73, 74]

High lipid levels Mouse myoblast cells. Overexpression of PLIN2 betters insulin sensitivity
reduced by fatty acids.

[33]

aKKAy mice: The KK-Ay mouse is a T2D model that exhibits marked obesity, glucose intolerance, severe insulin resistance, dyslipidemia, and hypertension
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Table 3 Minerals alter PI3K/Akt and/or GSK3 activities

Minerals Model system Observed effects Ref.

High levels in the body

Sodium, chloride, potassium Monkey kidney cells, HeLa cells, human
or mouse melanoma, mouse renal distal
convoluted tubule cells, aWnk4+/+ and
Wnk4D561A/+ mice, male SD rats.

High salt foods (mainly NaCl) cause potential
hyperosmotic stress, which modulates
PI3K/Akt/GSK3 activities; increase or decrease
phosphorylation of NaCl transporter, regulated
via insulin/PI3K pathway by low salt diet or
high salt diet; high salt food causes early
insulin resistance, stage 0 of the kinase
insensitivity (Table 1).

[24, 49–52, 108, 109]

Calcium Mouse osteoblast, human thyroid
cancer cells, mouse neural crest cells.

Exert effects on PI3K/Akt and/or GSK3
pathway.

[47, 48, 110]

Manganese sulfate Mouse macrophages. Anti-inflammation via PI3K/Akt. [111]

Magnesium sulfate Rats with intestinal ischemia-reperfusion
injury.

Protect injury via PI3K/Akt. [58]

Fucosylated chondroitin
sulfate

T2D mice. Improve insulin sensitivity via activation
of PI3K/Akt.

[59]

Heparan sulfate Human normal astrocytes, and malignant
gliomas, human breast cancer cells,
human umbilical vein endothelial cells,
wild type and Syndecan-1−/− mice
infected by influenza.

Increase/Reduce PI3K/Akt/ERK signaling,
carcinogenesis/anti-cancer and
anti-inflammation.

[112–115]

Magnesium Brains of Wistar rats, patients with diabetes. Required for GSK3 activation; EDTA Chelation
Therapy decreases CVD events in patients
with diabetes.

[116, 117]

Trace levels in the body Wistar rats, mouse hepatocytes. Induce injury regulates PI3K/Akt/GSK3β
pathway, whereas aged rats have less
sensitivity of the regulation; iron oxide
nanoparticles-mediated cytotoxicity
related to PI3K/Akt pathway.

[118, 119]

Iron

Zinc or copper Mouse myogenic cells, monkey kidney
cells, mouse embryonic fibroblast, human
hepatoma cells, human neuroblastoma
cells, human prostate epithelial cells.

Stimulates PI3K/Akt signaling, leading to
inhibition of GSK3β; zinc deficiency adds
Akt signaling.

[120–124]

Iodine SD rats. Required for synthesis of thyroid hormones
that activates Akt.

[22]

Manganese Mouse microglial cells, human lung
epithelial cells.

Induce inducible nitric oxide synthase
expression via activation of both MAP
kinase and PI3K/Akt pathways; increase
the expression of prostaglandin-endoperoxide
synthase 2 (COX-2) via p38 and PI3K/Akt.

[125, 126]

Zinc and manganese South Hampshire and Merinob

CLN6 sheep.
Increased in the model with reduced
expression of ceroid-lipofuscinosis
neuronal protein 6, accompanying with
activation of Akt/GSK3 signaling
(stage 1 of the kinase insensitivity
(Table I)), and neurodegeneration.

[127]

Selenium Human prostate cancer cells. Reduce the activities of PI3K/Akt. [128]

Aluminum fluoride Mouse adipose cells. Induce G-protein-linked PI3K signaling. [129]

Fluorine SD rats. Accumulation of it relates to increase of
PI3K/Akt and p38 and tissue in bone tissue
of fluorosis rats.

[130]

Chromium Mouse myoblast cells. Increase expression glucose transporter
and insulin receptor, resulting in enhanced
glucose uptake.

[131]

aWNK with-no-lysine kinase,bCLN ceroid-lipofuscinosis neuronal protein
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Table 4 aVitamins change PI3K/Akt and/or GSK3 activities

Vitamins Model system Observed effects Ref.

Vitamin A Mouse embryonic stem cells,
human neuroblastoma cells,
human bronchial epithelium.

PI3K via IGF-1 receptor/IRS1; suppress cyclin D1
protein expression via GSK3, stage≥ 1 of the
kinase insensitivity (Table 1).

[79–81]

Vitamin B1 analog Mice with diabetes, mouse
cadiomyocytes, human
embryonic kidney cells,
bAPP/PS1 mice.

Activate Akt, preventing diabetes-induced
diastolic dysfunction and heart failure;
avert high glucose-induced β-amyloid
related to GSK3 activity; inhibit GSK3
activity to subdue cognitive damages
and beta-amyloid accumulation.

[132–134]

Vitamin B3 (Niacin) and
vitamin B6 (pyridoxine)

Human epidermoid carcinoma
cells, Chinese hamster ovary
cells, cHca2

+/− mice, human platelets.

Augment PI3K/Akt activities. [135, 136]

Vitamin B8 (inositol) Smokers. Suppress Akt and ERK. [137]

Vitamin B9 (folic acid) Mouse neural stem cells. Stimulate cell growth by modification of
epigenetics of PI3K/Akt/cAMP response
element-binding protein pathway.

[138]

Vitamin B10
(para- aminobenzoic acid)

Zebrafish embryos. Raise pSGSK3β reduced by valproic acid,
an anti-epilepic drug).

[139]

Vitamin B11 (salicylic acid) Human umbilical vein endothelial
cells and human foreskin fibroblasts,
murine myoblasts, Humans with
inflammation.

Inhibit COX-2 gene transcription, resulting
in anti-inflammatory effects.

[140–142]

Vitamin B13 (orotic acid) Human umbilical vein endothelial
cells, SD rats.

Patients with orotic acid metabolic disorders
may reduce insulin response and PI3K/Akt
signaling, generating insulin resistance.

[143]

Vitamin B14 Human bone marrows. Increase cell growth and haemopoiesis. [144]

Vitamin B17 (amygdalin) Human bladder cancer cells. Inhibit cell growth via activated Akt-related pathways. [145]

Pyrroloquinoline quinine Rat cardiomyocytes, hippocampal
neurons and brain cortex from
SD rats.

Possibly naturally existing in vitamin B complexes
can activate PI3K/Akt and reduce cell apoptosis or
inhibits GSK3β activity in nervous tissues of
glutamate-injected animals.

[146–148]

Vitamin C or vitamin E Human colon cancer cells. Inhibit casein kinase 2 (CKII) downregulation-mediated
aging in cells, whereas suppression of CKII raises
PI3K/Akt activities.

[149]

Vitamin C Human breast cancer cells. Enhance a synthetic anti-cancer drug,
mitoxantrone-induced cytotoxicity.

[150]

Vitamin D Vitamin D receptor mediates PI3K/Akt activation;
vitamin D reduces caspase activities for cell
apoptosis via vitamin D receptor/PI3K/Akt pathway.

[151, 152]

Human myeloid leukaemic cells,
rat osteoblasts.

Vitamin D deficiency induces hyperinsulinemia
and insulin resistance in obese mice.

[153]

C57BL/6J mice. Enhance effects of PI3K inhibitors on cell growth. [154]

Human prostate cancer cells. Induce the tolerance or immunosuppression
through the PI3K/Akt pathway.

[155, 156]

Human monocyte-derived
tolerogenic dendritic cells,
human CD3+ T cells.

Activate MAP kinase and/or PI3K/Akt for
protecting cell death.

Vitamin E Cultured mouse cortical
neurons, human
neuroblastoma.

[157, 158]

Human breast cancer cells,
human prostate cancer cells.

Tocotrienols (natural forms of vitamin E) or tocopherol
(the saturated form of vitamin E)-associated protein
can suppress cancer growth via inhibition of PI3K.

[75, 76]

Mouse neoplastic mammary
epithelial cells.

Gamma-tocotrienol can block human epidermal
growth factor receptor 3-dependent PI3K/Akt
mitogenic signaling.

[77]
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which may provide a mechanism for the etiology of diseases
such as Alzheimer’s disease, CVD and T2D that are often
associated with obesity. The other is via PI3K/Akt inhib-
ition or overstimulation. High doses of certain vitamins can
suppress PI3K/Akt activities [75–77], playing similar roles
to that of LY compounds (PI3K inhibitors) [78], which can
be defined as over-inhibition events (Fig. 1) since those
reagents generate severe physiological effects via sup-
pression of PI3K [75–77], or over-stimulate the pathway
[79–81], leading to augmented GSK3 activity with
increased risks of mortality [82]. Dampening a food
ingredient-induced PI3K/Akt activation [63] or maintaining
a hormone-caused unregulated GSK3 activity in regulated
ranges [83], antioxidants can buffer the effects (overstimu-
lation) generated by the abnormal factors on the pathway.
Although GSK3 activity has not been uniformly mea-

sured in the above cited literatures, given that PI3K/Akt
are the major regulators of GSK3 and that those studies
present GSK3-associated phenotypes such as inflamma-
tion and apoptosis, it is not out of realm to speculate that
the diet ingredients that modulate PI3K/Akt would have
an impact on GSK3 activity as well. It is noteworthy that
studies using the same ingredients sometime yield incon-
sistent or contradictory results, which could be due to
differences in experimental conditions (e.g. dose or dur-
ation of the treatment and model systems chosen) that
could impact the activation/inactivation of GSK3. Because
unconstrained GSK3 activity can be associated with differ-
ent stages of the kinases’ insensitivity (Table 1) or
activated GSK3 can be caused by suppression of PI3K/
Akt, it is therefore recommended all three kinases’ activ-
ities in the PI3K/Akt/GSK3 axis be determined in future
studies of disease development. Measurements of mass
and phosphorylation status of GSK3, GSK3-related
kinases, and GSK3 substrates [4] in peripheral blood
mononuclear cells (PBMC) may help diagnosis of sub-
health patients [20, 84]. These measurements may also
help selection of control groups in clinical studies and
assessment of efficacy of treatment of diseases (e.g. HIV),
because activities of GSK3-related kinases are altered by

HIV infection [85–88]. Moreover, these measurements
may help establishment of a relationship between GSK3
activity and various chronic and age-related disorders,
including insomnia, chronic inflammation (e.g. that causes
neuropathy damage) [89, 90], as well as pre-diseases/dis-
eases signals (e.g. liver palms, obesity, abnormal face
wrinkles, optic redness), among others. Thus, these mea-
surements may supplement blood and urine tests in the
surveillance of health conditions among peoples who
carry genetic risks of diseases.

Conclusions
Nature has seemingly selected GSK3 as a gatekeeper of life
span. GSK3β knockout mice are systemic in apoptosis and
die in utero, whereas GSK3 overexpression in mice also
results apoptosis [91]. The question concerns whether ab-
normal GSK3 activity per se limits life span or GSK3 activ-
ity represents “the shortest side slab” in the “life span
bucket” remains to be addressed experimentally, if pos-
sible. Regardless, GSK3 perhaps plays a major role in lon-
gevity [92] and in mortality incurred by infections or
injury-caused inflammation. There appears to be an “un-
certainty principle” governing the relationship between
environmental factors and chronic diseases. Acute adverse
environmental factors may not necessarily lead to diseases
stages and rather create a sub-health condition. Thus, the
relationship between cause and effect is not always clear.
This uncertainty is also influenced by individual variations.
Despite the complexity of cellular signaling pathways and
their intrinsic cross talks, the one thing that seems certain
is the convergence of high GSK3 activity under all adverse
conditions. In this regard, GSK3 activity is inhibited by a
short-term stimulus but released by a long-term one (e.g.
under oleic acid treatment conditions), and only the in-
creased GSK3 activity is consistent with the observation of
metabolic disorders.
The presence of the dual mechanism (i.e. PI3K/Akt-me-

diated phosphorylation and lipid-mediated GSK3/PLIN2
interaction) for GSK3 regulation provides a link between
energy homeostasis and cellular functionality. Whether or

Table 4 aVitamins change PI3K/Akt and/or GSK3 activities (Continued)

Vitamin J (catechol) Mouse microglial cells. Iridoid and catechol (vitamin J) derivatives of natural
products, have anti-inflammatory activities via
inhibition of the PI3K/Akt and p38 pathways.

[159]

Vitamin K Apoptotic cells. Protein Gas6 and S are vitamin K dependent proteins
and ligands of RTK that can regulate PI3K/Akt pathway.

[160]

Vitamin P Mouse primary neurons. Increase PI3K/Akt activities and the survival of
motoneurons via tropomyosin-receptor kinase B.

[161]

Vitamin U Mice, rats. Vitamin U (methylmethioninesulfonium chloride)
reduces capillaries’ permeability of animal skin;
protecting gastric mucosa from lesion caused
by aspirin, an acetylated form of salicylic acid
(vitamin B11) with anti-inflammatory effects.

[162]

aVitamins: not all the vitamins are widely accepted as vitamins, bAPP/PS1 amyloid precursor protein/presenilin-1, cHca2 niacin receptor 1
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Table 5 Antioxidants influence PI3K/Akt and/or activities

Antioxidants Model system Observed effects Ref.

Anthocyanidins Hypercholesterolaemic patients, human
stomach cancer cells, human breast
cancer cells, human hepato-carcinoma cells.

Suppress PI3K/Akt signaling pathway via
epidermal growth factor receptor pathway,
or levels of pSGSK3β and β-catenin in a
tumor xenograft model.

[163–166]

Mulberry anthocyanidin Human liver cancer cells. Activate PI3K/Akt. [167]

Berberine Human melanoma cells, SD rats. Inhibit PI3K/Akt and/or GSK3β activities. [52, 168]

Murine neural crest cells, murine primary
neurons, mice with cerebral and
reperfusion, human chondrosarcoma cells.

Increase PI3K/Akt activities and cell
growth/survival in other studies.

[169, 170]

Curcumin Human Burkitts’ lymphoma, human
esophageal cancer cells, human
renal cancer cells.

Enhance radiation- or PI3K/Akt inhibitors-
induced or directly induce apoptosis by
suppression of PI3K/Akt signaling pathway.

[171–173]

Rat cardiomyocytes, human prostate cancer
cells, Balb/c mice.

Protect cells from apoptosis induced by a
high glucose level via upregulation of
Akt/GSK3β serine/threonine phosphorylation
levels via protein phosphatase-dependent
mechanism or inhibits GSK3β activity
in vitro or in vivo.

[174–176]

Ergosterol Streptozotocin-induced diabetes in mice,
human cancer cells.

Restore PI3K/Akt signaling damaged in
diabetic mice; ergosterol-related compounds
induce cell apoptosis depending on a
protein-promoted Akt activation.

[177, 178]

Garlicin Human cellosaurus cells Suppress PI3K/Akt pathway. [179]

Garlic Fructose-fed diabetic SD rats Activate PI3K/Akt in Diabetes rats. [96]

Luteolin Human epidermoid carcinoma cells and their
murine cells xenograft model, human umbilical
vein endothelial cells, human prostate cancer
cells, human colon cancer cells, human
glioblastoma cells.

Inhibit VEGF-increased PI3K/Akt activities
or IGF-1-increased the phosphorylation
levels of PI3K/Akt/GSK3 or down-regulate
PI3K/Akt pathway.

[180–183]

Cardiomyocyte in rats with ischemia/reperfusion,
murine neural crest cells.

Decrease apoptosis via PI3K/Akt pathway
in a rat model or persistently activate Akt in cells.

[184, 185]

Lycopene Prostate epithelial cells. Inhibit IGF-1-induced Akt/GSK3 serine/threonine
phosphorylation levels.

[83]

Patients, human prostate cells. Its effects on PI3K/Akt pathway are inhibitory
in prostate cancer.

[186]

Phytoestrogens Human embryonic kidney cells, mouse
preosteoblastic cells.

Increase phosphorylation levels of Akt and
GSK3β as well as the Wnt/β-catenin signaling.

[187]

Isoflavones Human cancer cells Inhibit PI3K/Akt signaling in cancer cells. [188]

Soy isoflavone SD rats with myocardial ischemia/reperfusion. Gain PI3K/Akt pathway activities in
ovariectomized rats.

[189]

Daidzein or genistein Nude mice with various tumors Up-regulate or down-regulate GSK3 gene/protein
expression, and both belong to isoflavones.

[190]

Psoralidin Human lung fibroblasts, mice. A coumestan derivative suppresses
pro-inflammatory cytokines and
regulates PI3K/Akt pathway.

[191]

Resveratrol Mouse cardiac fibroblasts, human glioma cells. Inhibit high glucose-induced PI3K/Akt
pathway and inflammation or reduces
PI3K/Akt activities.

[63, 192]

Neural crest cells, APP/PS1 mice. Protect cells from apoptosis induced by high
glucose via activation of PI3K/Akt pathways
and increase in vivo pSGSK3β levels.

[193, 194]

Lignan including
honokiol and
sauchinone

Human prostate cancer cells, human myeloid
leukaemic cells, mouse microphage, mouse
lymphoblast, splenic lymphocytes, human
glioma, breast and prostate cancer cells,
human hepatocytes, WT and aNrf2 KO C57/BL6 mice.

Inhibits Akt signaling and generate
anti-inflammatory effect via inhibition
of PI3K/Akt pathway or mediate suppression
of PI3K; however sauchinone, augments
in vivo pSGSK3β levels.

[195–198]

aNrf2 nuclear factor (erythroid derived 2)-like 2
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Table 6 Condiments or ingredients in drinks modulate PI3K/Akt and/or GSK3 activities

Nutrient Model system Observed effects Ref.

Condiments

Capsaicin aTRPV1-KO and wild-type C57BL/6 mice. Exert its effect through the capsaicin receptor that
is the transient receptor potential cation channel
subfamily V member 1 (TRPV1).

[199]

Human prostate cancer cells. Regulate PI3K/Akt pathway in cultured cells and
can activate microglia in mouse spine cord at a
very low concentration.

[200]

Rat spinal cord ERK activation is detected in microglia of animal
spine cord by capsaicin stimulation.

[201]

SD rats, astrocytes and microglia from
the rats, human microglia cells.

Capsaicin-activated TRPV1 mediates microglia
death via calcium signaling.

[202]

Human colorectal cancer cells. Increase association of c/EBPβ and GSK3β,
which is suggested to mediate capsaicin-
induced apoptosis.

[203]

Monosodium glutamate
(MSG)

Rodent striatal cholinergic interneurons. Contain glutamate which is a non-essential
amino acid and its receptor is glutamate
receptor, belonging to GPCR.

[204]

Animal nervous systems Neurotransmitters in the brain; whether MSG
clinically associates with neurologic diseases
remains to be studied.

[205]

SD rats, mouse hippocampal
neuronal cells, hippocampal
neurons and brain cortex from SD rats.

Induce neurodegeneration is suggested via
PI3K/Akt pathway regulation and injection
of glutamate into animals generates
neurotoxicity via GSK3β.

[147, 148,
206]

Ingredients in drinks Animal nervous systems. A central nervous system (CNS) stimulant
and cause biological effects via adenosine
receptors that belong to GPCR.

[207–209]

Caffeine Human neuroblastoma cells, HeLa cells,
mouse neural crest cells, mouse adipocytes.

Activate PI3K/Akt pathway and prevent cell death;
or induce cell apoptosis by suppressing PI3K/Akt
signaling and decrease phosphorylation
levels of Akt/GSK3β.

[210–212]

Patients. Excess caffeine can lead to caffeine intoxication
(i.e. overstimulation of CNS).

[213]

Ethanol Ethanol-induced fatty liver in mice,
aAA and ANA rats.

Presented in liquor can acutely induce
hepatosteatosis, a process associated
with PI3K/Akt activation and phosphorylation
levels of Akt and GSK3β in the rat cortex.

[214, 215]

Human vascular endothelial cells. Low concentrations of ethanol activate PI3K/Akt
signaling, inhibiting GSK3 activity, whereas high
concentrations of ethanol induce caspase-3
activation and increases apoptosis

[216]

Human cells, C57BL/6 mice. Ethanol is metabolized to acetaldehyde by alcohol
dehydrogenase in the body, and acetaldehyde is
further metabolized by aldehyde
dehydrogenases (ALDH).

[217, 218]

Human hepatic stellate cells. The acetaldehyde-enhanced gene expression
requires PI3K activation.

[219–221]

C57BL/6 mice Ethanol administration reduces phosphorylation
levels of Akt and GSK3β, which is aggravated in
cardiomyocyte without ALDH-2.

[218]

Tea Components analyzed. Have ingredients including caffein, polyphenols
and catechin containing abundant
epigallocatechin gallate (EGCG).

[222]

Tea polyphenols Mouse skin epithelial cells, human
normal and keloid fibroblasts,
the cultured human keloid model.
Humans.

Have inhibitory effects on PI3K pathway and suppress
PI3K/Akt proteins expression and/or Akt activity in vitro
and in vivo in prostate cancer models, may play roles
in prevention of prostate cancer.

[223–225]
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not there is a cross talk between the two regulatory
pathways remains to be determined. Palmitic acid-treated
cells show decrease in Akt/PI3K/GSK3 sensitivity [68],
which is a good lipid model to study the crosstalk between
the two pathways.

Development of drugs targeting GSK3 inhibition is
recently making progress [9, 93], including synthetic
inhibitors that delay progress of diseases [10, 94, 95] and
natural inhibitor such as lithium that can extend Drosoph-
ila lifespan by 16 % [92]. However, high concentration of

Fig. 1 Dual regulation of GSK3 by the PI3K/Akt/GSK3 pathway and PLIN2. Upon Wnt stimulation, the axin-GSK3-β-catenin complex (AGβC) is
disassembled and the process is dependent of PLIN2 (denoted by curvy blue arrows) [1]. The released β-catenin from the AGβC complex activates
transcription of factors involved in cell growth/survival (e.g. c-Myc, c/EBPα, and cyclin D1) or in insulin signaling (e.g. IRS1) [2], whereas the
released GSK3 from the AGβC complex can be present in cytosol or recycle back to the AGβC complex [3]. The GSK3 activity is regulated mainly
through the PI3K/Akt pathway that relays extracellular and intracellular (not shown) signals; − and + denote normal inhibitory and stimulatory
signals, respectively, whereas −− and ++ (in red) denote over-inhibitory (e.g. the potency of the LY compounds used in (Ref 216)) and
over-stimulatory (e.g. the potency of VEGF used in (Ref 5)) signals, respectively [4]. Different stages of kinase insensitivity and uncontrolled GSK3
activation are summarized in Table 1. Under − and −− conditions, the respective pSGSK3 levels are reduced but GSK3/pYGSK3 levels are increased
(denoted by red blockage between the two) [5], perhaps inducing moderate and high activities of GSK3, respectively. Under ++ conditions, all the
kinases tend to become insensitive (denoted by red blockages), generating unbridled GSK3 activity (Table 1) that can phosphorylate its substrates
and render their degradation [6]. Accumulation of cytosolic lipid droplets (CLD) alters the association of PLIN2 and its binding proteins such as
Dishevelled (Dvl), β-catenin, c/EBPα, and IRS1 [7]. The bold blue lines denote high affinity between PLIN2 and CLD [8]. LRP5/6: lipoprotein
receptor-related proteins 5/6; Fz, frizzled; Gα, guanine nucleotide binding protein α subunit

Table 6 Condiments or ingredients in drinks modulate PI3K/Akt and/or GSK3 activities (Continued)

EGCG Human hepatocyte derived cellular
carcinoma cells, human pancreatic
carcinoma cells.

Block cell growth and induces cell apoptosis
via inhibition of VEGF signaling pathway
including Akt or downregulation of Akt activity.

[226, 227]

Human alveolar basal epithelial cells,
human neuroblastoma cells
expressing bAPP-C99.

Raise cell viability by its induction of Akt activity
and suppression of GSK3β activity and inhibit
β-amyloid-induced neurotoxicity by suppression
of GSK3β activation.

[228, 229]

aAA and ANA: AA (Alko, Alcohol) line of rats which prefer 10 % alcohol to water, and the ANA (Alko, Non-Alcohol) line of rats which are given only water
bAPP-C99: an amyloid precursor protein fragment
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lithium appears to be toxic [92] and over-suppression
of GSK3 activity increases the risk of developing can-
cer [6, 10]. It merits further investigation to ascertain
whether or not GSK3 inhibition could be a druggable
target for clinical treatments.
To conclude, the overstimulation-induced kinase

insensitivity that leads to uncontrolled GSK3 over-
activation represents a key cellular/molecular mechan-
ism that is intimately associated with aging and many
age-related chronic diseases. As an ancient Taoism say-
ing goes, the extremity reached, the course reversed (物
极必反). Factors contributing to such an overstimulation
range from life style (unbalanced diets), habit and behav-
ior (including medication) to psychological conditions
(including negative emotions or ecstasy, an extremely
positive emotion). Therefore, preventing from over-
activation of GSK3 in the body, through adoption of
healthy habits/lifestyles including balanced diets and a
positive attitude, does a great favor to our health.

Abbreviations
AA and ANA, AA (Alko, Alcohol) line of rats which prefer 10 % alcohol to water,
and the ANA (Alko, Non-Alcohol) line of rats which are given only water; ADRP,
adipose-differentiation related protein; AGβC, axin/GSK3β/β-catenin complex;
AIDS, acquired immune deficiency syndrome; ALDH, aldehyde dehydrogenases;
APP/PS1, amyloid precursor protein/presenilin-1; APP-C99, an amyloid precursor
protein fragment; c/EBP, CCAAT enhancing binding protein; CK II, casein kinase
2; CLN, ceroid-lipofuscinosis neuronal protein; CNS, central nervous system;
COX-2, cyclooxygenase-2, prostaglandin-endoperoxide synthase 2; CVD,
cardiovascular diseases; Dvl2, dishevelled 2; EDTA, ethylenediaminetetraacetic
acid; EGCG, epigallocatechin gallate; ERK, extracellular signal-regulated kinases;
Fz, Frizzled; Gas6, growth arrest-specific 6; GPCR, G-protein coupled receptors;
GSK3, glycogen synthase kinase 3; Gα, guanine nucleotide binding protein α
subunit; Hca2, Niacin receptor 1; HIV, human immunodeficiency virus; HRPE,
human retinal pigment epithelial cells; IGF-1, insulin-like growth factor 1; IL17RC,
interleukin 17 receptor C; IRS1, insulin receptor substrate 1; KKAy mice, The
KK-Ay mouse is a type 2 diabetic model that exhibits marked obesity, glucose
intolerance, severe insulin resistance, dyslipidemia, and hypertension; LRP,
lipoprotein receptor-related proteins; MSG, monosodium glutamate; NaCl,
sodium chloride; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; Nrf2, nuclear factor (erythroid derived 2)-like 2; NSF,
N-ethylmaleimide-sensitive factor; PBMC, peripheral blood mononuclear cells;
PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphoinositide 3-kinase;
PK, protein kinase; PLIN, perilipin; Protein S, S-protein; pSGSK3,
serine- phosphorylated form of GSK3; pYGSK3, tyrosine-phosphorylated form
of GSK3; RTK, receptors of tyrosine kinase; SD, Sprague Dawley; siRNA, short
interfering RNA; SNAP, soluble NSF attachment protein; SNARE, SNAP
(soluble NSF attachment protein) receptor; T2D, type 2 diabetes; TCF, T-cell
factor; TRPV1, transient receptor potential cation channel subfamily V member
1; VEGF, vascular endothelial growth factor; WNK, with-no-lysine kinase
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