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Abstract

Background: The ketogenic diet (KD) is a very low-carbohydrate, high-fat and adequate-protein diet that without
limiting calories induces different metabolic adaptations, eg, increased levels of circulating ketone bodies and a
shift to lipid metabolism. Our objective was to assess the impact of a 6-week non-energy-restricted KD in healthy
adults beyond cohorts of athletes on physical performance, body composition, and blood parameters.

Methods: Our single arm, before-and-after comparison study consisted of a 6-week KD with a previous preparation
period including detailed instructions during classes and individual counselling by a dietitian. Compliance with the
dietary regimen was monitored by measuring urinary ketones daily, and 7-day food records. All tests were performed
after an overnight fast: cardiopulmonary exercise testing via cycle sprioergometry, blood samples, body composition,
indirect calorimetry, handgrip strength, and questionnaires addressing complaints and physical sensations.

Results: Forty-two subjects aged 37 ± 12 years with a BMI of 23.9 ± 3.1 kg/m2 completed the study. Urinary ketosis
was detectable on 97% of the days, revealing very good compliance with the KD. Mean energy intake during the study
did not change from the habitual diet and 71.6, 20.9, and 7.7% of total energy intake were from fat, protein, and
carbohydrates, respectively. Weight loss was −2.0 ± 1.9 kg (P < 0.001) with equal losses of fat-free and fat mass. VO2peak
and peak power decreased from 2.55 ± 0.68 l/min to 2.49 ± 0.69 l/min by 2.4% (P = 0.023) and from 241 ± 57 W to
231 ± 57 W by 4.1% (P < 0.001), respectively, whereas, handgrip strength rose slightly from 40.1 ± 8.8 to 41.0 ± 9.1 kg by
2.5% (P = 0.047). The blood lipids TG and HDL-C remained unchanged, whereas total cholesterol and LDL-C increased
significantly by 4.7 and 10.7%, respectively. Glucose, insulin, and IGF-1 dropped significantly by 3.0, 22.2 and 20.2%,
respectively.

Conclusions: We detected a mildly negative impact from this 6-week non-energy-restricted KD on physical
performance (endurance capacity, peak power and faster exhaustion). Our findings lead us to assume that a KD does
not impact physical fitness in a clinically relevant manner that would impair activities of daily living and aerobic
training. However, a KD may be a matter of concern in competitive athletes.

Trial registration: DRKS00009605, registered 08 January 2016.
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Background
The ketogenic diet (KD) is a very low-carbohydrate
(<10% of energy), high-fat (>60% of energy) and adequate-
protein diet that without limiting calories induces a
metabolic condition called “physiological ketosis” involv-
ing increased levels of circulating ketone bodies [1]. The
KD is a long-time proven therapy for intractable child-
hood epilepsy [2]. Its therapeutic use in a range of diseases
such as type 2 diabetes, polycystic ovary syndrome, neuro-
degenerative diseases, and cancer is currently being inves-
tigated [3]. Moreover, KDs recently have become quite
popular as a weight-loss diet [4].
According to recently published pilot studies, KDs ap-

pear to be safe and feasible in cancer patients [5, 6]. Al-
though the current scientific evidence does not justify
recommending a KD in cancer patients, a growing num-
ber of cancer patients put themselves on a KD at their
own risk, outside of clinical trials, and often without
medical supervision in response to frequent press re-
ports and health books. Regular physical exercise during
and after anti-cancer therapy plus adequate nutrition re-
sult in improvements in physical functioning, quality of
life, and may reduce cancer-related fatigue [7] as well as
malignant recurrences and mortality among several can-
cers [8–10]. Any diet that potentially compromises phys-
ical performance and someone’s capacity to adhere to an
exercise regime would be of great concern.
An analysis of the existing literature of the KD’s effects

on endurance and physical performance was conducted,
excluding those studies using carbohydrate-restricted diets
unable to produce ketosis (carbohydrate intake >50 g/day),
hypocaloric diets, and any intervention periods lasting
under a week. We identified only four small studies meet-
ing our search criteria [11–14], whereas three included
performance athletes [11–13] and one applied a high-
protein, probably non-ketogenic diet [12]. Hence, the avail-
able data is very limited, thus our objective was first to
assess in a larger trial the impact of a non-energy-
restricted, 6-week KD in healthy adults beyond cohorts of
performance athletes on physical performance (endurance
capacity and muscle strength), body composition, and a
range of blood parameters.

Methods
Subjects
Adults in good general health with a body mass index
(BMI) in the range of 19–30 kg/m2 were recruited from
employees of the University Medical Center Freiburg and
their family and friends via advertising from February to
June 2016. Exclusion criteria included low-carbohydrate
nutrition, impaired liver and renal function, kidney stones,
pregnancy or lactation period, diabetes mellitus, and any
fatty acid-metabolism disorders. The study protocol was
approved by the Ethics Commission of Albert-Ludwig

University Freiburg (494/14) and all subjects signed a
written consent form. The study was registered at ger-
manctr.de as DRKS00009605.

Study design and intervention
This study had a single arm before-and-after comparison
design. The experimental intervention consisted of a KD
without caloric restriction lasting 6 weeks (42 days) with
a previous preparation period including detailed instruc-
tions during classes and individual counselling by a
dietitian. Day one and day 42 will subsequently be de-
noted PRE and POST, respectively.
Our dietary recommendations and handouts were

similar to those used in the study by Klement et al. [14].
Our subjects were provided with handouts summarizing
the main aspects of a KD and given a list of suitable
foods with very low carbohydrate content. Furthermore,
the subjects shared cooking recipes and links to helpful
webpages on an internal weblog. They were free to fol-
low a KD according to their personal preferences but
were advised to eat ad libitum but limit their carbohy-
drate intake to a maximum of 20–40 g/day to derive at
least 75%, 15–20%, and 5–10% of total energy from fats,
protein, and carbohydrates, respectively. In the first
intervention week the subjects were instructed to switch
in a gradual and well-controlled manner from their usual
to a KD with the objective to attain stable ketosis by the
end of the week, as such transition periods can be
accompanied by short-term side effects including gastro-
intestinal symptoms (eg, constipation) and slight head-
ache [15]. The subjects received a logbook to record
daily any side effects and complaints during the KD
intervention. To avoid biasing the cardiopulmonary ex-
ercise testing at POST, the subjects were advised not to
alter their physical activities during the study period.
Physical activity was assessed at PRE and POST using a
validated questionnaire developed by Frey et al. [16].
Compliance with the dietary regimen was monitored

by taking daily measurements of urinary ketones and
keeping 7-day food records. The subjects documented
their daily urinary ketone measurements (acetoacetate)
using self-testing strips (Ketostix, Bayer Vital GmbH,
Leverkusen, Germany). An initial substudy revealed that
ketonuria can be most reliably detected in the early
morning and post-dinner urine [17]. Those results also
enabled our dietitian to individually fine-tune their diets
if necessary via phone or personal contact, thus ensuring
continuous ketosis.
Two semi-quantitative 7-day food records were ob-

tained from all subjects before and during the last week
of the intervention. Our dietitian gave them precise oral
and written instructions individually on how to accur-
ately record the amounts and types of food and bever-
ages. Subjects were given a digital portable scale (KS 22,
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Beurer GmbH, Ulm, Germany) and instructed to weigh
all food items separately if possible or to estimate the
amounts and take a photograph. The energy, macro-
and micronutrient intakes were analysed with a nutri-
tional database software (Prodi 6.5 basis, Nutri-Science
GmbH, Stuttgart, Germany).

Testing procedure
All testing procedures were performed at the Institute
for Exercise- and Occupational Medicine in the morning
between 07:00 and 09:30 after an overnight fast lasting
at least 8 h. The subjects were not allowed to exercise
the day before, and were advised to arrive to the exami-
nations without any physical effort. Our endpoints are
hereafter described in the chronological order recorded
at PRE and POST.
Venous blood was drawn and the tubes sent immedi-

ately to our Institute for Clinical Chemistry and Labora-
tory Medicine. All parameters tested are listed in
Table 4. Height to the nearest 1 cm was measured at
PRE using a wall-mounted stadiometer. Fat mass (FM)
and fat-free mass (FFM) were determined via air dis-
placement plethysmography (ADP) using the BodPod
device (Cosmed USA Inc., California, USA), which was
calibrated prior to each use according to the manufac-
turer’s guidelines. The subjects (wearing tight-fitting
underwear and a bathing cap) were weighed using the
device’s corresponding scale (Tanita Corp., Tokyo,
Japan). As many ADPs were performed as necessary to
obtain two body volume measurements within 150 ml.
The respiratory exchange ratio (RER) at rest served to

estimate the respiratory quotient (RQ). An airtight mask
covering nose and mouth was used for measuring
respiratory gases for 20 min with the spirometer
MetaLyzer 3B-R3 (Cortex Biophysik GmbH, Leipzig,
Germany) while the subjects were in supine position in a
quiet and darkened atmosphere and a thermoneutral
environment (24–26 °C). The RER was measured at a
steady-state interval of 5 min and used to calculate 24-h
resting energy expenditure (REE) using the modified Weir
equation [18]. Subjects then underwent a 12-lead electro-
cardiogram (ECG) via the Custo diagnostic device (Custo
med GmbH, Ottobrunn, Germany). Still in supine pos-
ition, body compartments FM, FFM and body cell mass
were determined via bioelectrical impedance analysis BIA
2000-M (Data Input, Pöcking, Germany) following a stan-
dardized procedure according to guidelines [19].
Maximum incremental cycling test was performed on an

electronically braked cycle ergometer (ergoline 100,
Ergoline GmbH, Bitz, Germany) with continuous monitor-
ing of ECG, heart frequency, and blood pressure. Gas ex-
change and ventilation were recorded continuously via
breath-by-breath gas analysis (MetaLyzer 3B-R3, Cortex
Biophysik GmbH, Leipzig, Germany), which was calibrated

according to the manufacturer’s instructions prior to each
test. The cycle exercise test was conducted using a ramp
protocol: after a 1-min resting period, the exercise test
started at a workload of 25 W and the load was increased
gradually by 25 W/min until exhaustion accompanied with
verbally encouragement. The following cycling test indices
were determined: peak oxygen uptake (VO2peak), VO2peak
adjusted for body weight (relative VO2peak), ventilatory
threshold (VT), peak power (Pmax), maximum heart rate
(HRmax), and maximum RER (RERmax). After cycling,
the subjects rated their perceived exertion via the 20-point
Borg scale [20].
Next, we took isometric handgrip strength measure-

ments on the dominant hand by an electronic Digimax
dynamometer (Mechatronic GmbH, Hamm, Germany)
connected to a computer running the ISO-Check soft-
ware version 1.1. The most comfortable distance from
the handles was noted and applied at the PRE and POST
tests. The testing position recommended by the American
Society of Hand Therapists was used [21]. Three attempts
lasting 5 s each were made, with a 30-s rest between each.
The subjects were verbally encouraged and able to follow
the course of their strength measurements on a screen.
Their highest values were used for analysis. At POST,
the subjects filled out a short non-validated question-
naire addressing several aspects of their subjective
sensations during the KD.

Sample size calculation and statistics
Reference data indicate that the difference in the re-
sponse of matched pairs is normally distributed with an
absolute VO2max standard deviation of 0.46 [22]. If the
true difference in the mean at PRE and POST of
matched pairs is 0.216 (10%) and assuming equal vari-
ances, we would need to study 38 subjects with a power
of 80% with a one-sided t-test at a significance level of
5%. Considering potential drop-outs (20%), we aimed to
enrol 46 subjects. All variables were tested for normal
distribution (Kolmogorow-Smirnow test). Normally dis-
tributed variables are presented as means ± standard devi-
ations and paired t-test was used to compare PRE and
POST means. Not normally distributed variables are pre-
sented as median (minimum - maximum) and Wilcoxon
rank-sum test was used. Statistical significance was set at
P <0.05. The data were analysed using IBM SPSS 22 for
statistical analysis (IBM, New York, USA).

Results
Characteristics of the subjects
Out of the 72 volunteers assessed for eligibility, 46 were
allocated to the KD intervention (Fig. 1). Four (8.7%)
dropped out during the intervention due to persistent side
effects (n = 2), inability to comply with the diet (n = 1) or a
health issue (n = 1). The persistent reported side effects
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were gastrointestinal complaints and headache, common
side effects that often occur during the first week [1] and
that disappeared after the two subjects returned to their
usual diet. Forty-two completed the 6-week intervention
study, which lasted a total 42 (41–43) days. Characteristics
of the study population are summarised in Table 1. Mean
age and body mass index were 37 ± 12 (24–63) years and
23.9 ± 3.1 (19.0–30.4) kg/m2, respectively. Women made
up 73.8% of the population and 88.1% reported consum-
ing a meat-based diet. Thirteen (31.0%) subjects took
medications and the most frequent therapies/drugs were
thyroid (n = 5) and menopausal (n = 2) hormone replace-
ment therapies and antidepressants (n = 3). The PRE ques-
tionnaire of physical activity revealed that our cohort
included subjects with sedentary to vigorously active life-
styles [34.6 (8.5–156.1) MET-hours/week] and with a me-
dian physical activity level comparable to the general
population [23].

Compliance and diet compositions
Urinary ketosis was detectable already after 2 (1–7) days
from the start of the KD intervention. After the 1-week
transition phase ketosis was detectable on 97% (69–100%)

of the days, revealing very good compliance with the KD.
Furthermore, the significant decrease in RER at rest from
0.86 to 0.79 (P <0.001) confirmed the metabolic shift to
fat oxidation (Table 2).
Macro- and micronutrient compositions from 7-day

food records of their habitual diets and KD are shown in
the Additional file 1: Table S1-S2. The mean daily caloric
intake during the study did not change from the previ-
ous habitual diet (PRE 2321 ± 551 kcal, POST 2224 ±
584 kcal; P = 0.186) proving a non-energy-restricted diet
intervention. The intake of all three macronutrients
changed significantly (P <0.001) with higher fat and pro-
tein combined with lower carbohydrate consumption,
respectively. The subjects consumed on average a KD
with 71.6, 20.9, and 7.7% of total energy intake from fat,
protein and carbohydrate, respectively. The ratio of
the essential linoleic acid [LA, 18:2(n-6)] and alpha-
linolenic acid [ALA, 18:3(n-3)] decreased significantly
and improved from 8:1 to 6:1 (P = 0.003), coming
close to the recommended ratio 5:1 [24]. In addition,
the intake of 12 of the 21 evaluated vitamins and
minerals during the KD changed significantly com-
pared to the habitual diet.

Fig. 1 Flow diagram of the study participants from eligibility criteria screening to study completion
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Performance tests
Cycling test and handgrip strength results are presented
in Table 2. The physical activity questionnaire confirmed
that subjects maintained their usual physical activity
during the study. Our primary endpoint absolute
VO2peak decreased significantly from 2.55 ± 0.68 l/min
to 2.49 ± 0.69 l/min (P = 0.023) by 2.4%, but there was
no change when expressed per kg of body weight (rela-
tive VO2peak). In addition, Pmax decreased significantly
from 241 ± 57 W to 231 ± 57 W by 4.1%, combined with
a slightly increased rating of perceived exertion [PRE 17
(13–19), POST 18 (14–19); P = 0.052]. VT1 and HRmax
were, however, unaffected by the KD intervention.
Handgrip strength increased slightly from 40.1 ± 8.8 to
41.0 ± 9.1 kg (P = 0.047) by 2.5%.

Weight and body composition
We observed a significant mean body weight loss of −2.0 ±
1.9 kg ranging from −7.1 to +1.1 kg with equally significant
losses of FM and FFM via ADP by −1.0 ± 1.7 kg and −1.0 ±
1.0 kg, respectively (Table 3, P <0.001). BIA FFM, however,
did not change significantly [PRE 47.3 (38.6–76.1), POST
46.7 (38.3–75.3); P = 0.182] and BIA body cell mass, reflect-
ing muscle mass, remained constant.

Blood parameters
Fourteen of 33 (42.4%) blood parameters changed sig-
nificantly after a 6-week KD (Table 4). The blood lipids

Table 2 Physical performance and physiological parameters (indirect calorimetry, cycling test, handgrip strength)

Unit PRE POST P-value

Indirect calorimetry

REE kcal/day 1523 ± 329 1430 ± 338 0.038

RERrest 0.86 (0.75–1.14) 0.79 (0.69–0.85) <0.001

Spiroergometry, EKG and Borg scale

VO2peak (absolute) l/min 2.55 ± 0.68 2.49 ± 0.69 0.023

VO2peak (relative) ml/min*kg 36.7 ± 8.5 36.8 ± 9.0 0.808

VT1 l/min 1.23 (0.79–2.83) 1.19 (0.73–2.69) 0.233

Pmax W 241 ± 57 231 ± 57 <0.001

HRmax 1/min 176 ± 14 177 ± 14 0.268

HRrest 1/min 57 ± 7 59 ± 7 0.008

Spinning speed rpm 60 (58–65) 60 (58–64) 0.274

Rating of perceived exertion 17 (13–19) 18 (14–19) 0.052

Questionnaires

Physical activitya kcal/week 2575 (615–12915) 2464 (625–13760) 0.457

MET-hours/week 34.6 (8.5–156.1) 36.7 (8.5–170.4) 0.264

Handgrip strength

Maximum strength kg 40.1 ± 8.8 41.0 ± 9.1 0.047

Abbreviations: HR heart rate, MET metabolic equivalent of task, VO2 oxygen consumption, Pmax Peak power, REE 24-h resting energy expenditure, RER respiratory
exchange ratio, rpm revolutions per minute, VT ventilatory threshold, W watt
aPhysical activity is expressed by the rate of energy expenditure in MET based on the reference data published by Ainsworth et al. [25]. One MET for a reference
adult is approximately 1 kcal/kg*h

Table 1 Characteristics of the subjects (n = 42)

Unit

Male:female n (%) 11 (26.2):31 (73.8)

Age years 37 ± 12 (24–63)

Weight kg 70.3 ± 11.5

BMI kg/m2 23.9 ± 3.1 (19.0–30.4)

Current smoker n (%) 2 (4.8)

Nutrition n (%)

Meat-based 37 (88.1)

Flexitariana 5 (11.9)

Medication n (%)

Thyroid hormone (L-thyroxine) 5 (11.9)

Hormone replacement therapy 2 (4.8)

Antidepressant (NDRI or SSRI) 2 (4.8)

Proton pump inhibitor 1 (2.4)

Oral anticoagulant and statins 1 (2.4)

Methylphenidate and
antidepressant (NDRI)

1 (2.4)

Glucocorticoidb 1 (2.4)

Abbreviations: BMI body mass index, NDRI norepinephrine-dopamine reuptake
inhibitor, SSRI selective serotonin reuptake inhibitor
aA plant-based diet with the occasional inclusion of meat products
binhaled glucocorticoid (daily 250 μg fluticasone)
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triglyceride (TG) and HDL-C remained unchanged,
whereas total cholesterol (TC) (PRE 186.5 ± 34.7, POST
195.3 ± 34.7; P = 0.019) and LDL-C (PRE 110.9 ± 31.3,
POST 122.8 ± 33.6; P = 0.001) increased significantly by
4.7 and 10.7%, respectively. The PRE and POST LDL-C/
HDL-C ratios remained within the reference range for
all subjects and did not change significantly after a 6-
week KD. The TG/HDL-C ratio improved significantly
by 13.5% at the end of the KD (P = 0.039). Blood glucose,
insulin, and IGF-1 dropped significantly by 3.0, 22.2 and
20.2%, respectively. The thyroid hormone free triiodo-
thyronine (fT3) decreased significantly by 16.3% and free
thyroxine (fT4) rose by 5.5%, whereas the pituitary TSH
concentration remained unchanged.

Complaints and adverse events via daily records
Additional file 1: Figure S1 reveals that a noticeably higher
number of complaints were reported in the first week,
peaking on day 4, when the subjects reported a total of 28
complaints. After day 7, the complaints levelled off and no
serious adverse events were reported. The most predom-
inant complaints over the study period were fatigue, head-
ache, and diarrhoea (Additional file 1: Figure S2).

Subjective physical sensations via questionnaire at POST
Additional file 1: Figure S3 shows the subjectively-rated
physical sensations over the KD period assessed at
POST. The most predominant physical sensation was a
reduced feeling of hunger in 71.8% of the subjects. Al-
most half of the subjects reported decreased physical fit-
ness. A third complained about the perception of less
strength and peak power, respectively, whereas the ma-
jority (71.8%) reported having an unchanged endurance
capacity. A total of 94.9% rated the KD’s implementation
in daily life as easy or rather easy, and 87.2% claimed to
be open-minded about repeating a KD.

Discussion
The primary purpose of this controlled before-and-after
comparison study was to evaluate the effects of a proven
non-energy-restricted KD on physical performance, body
composition, and blood parameters. Our diet intervention
enjoyed very good compliance and was fully ketogenic, as
verified by positive testing of urinary ketosis, dietary food
records, and reduced RER at resting indicating increased
lipid metabolism, respectively. Furthermore, our cohort
was heterogeneous regarding age, gender, BMI, physical
activity; moreover, their physical activity levels remained
unchanged during the study period.

Weight and body composition
Consistent with non-energy-restricted KD studies
[12–14, 26], we observed mild weight loss over the entire
6-week KD period although mean energy intake did not
change. Nevertheless, we cannot rule out the possibility
that the 7-day food records of the last KD week were not
representative for the whole KD period, and as most of
the subjects reported feeling less hungry, a negative energy
balance could have predominated during the KD’s first
weeks. A negative energy balance could also be associated
with the elevated excretion of energy-rich ketones via
urine and breath [27]. Nordmann et al. showed that
low-carbohydrate, non-energy-restricted diets are at
least as effective as low-fat, energy-restricted diets in
inducing weight loss for up to 1 year [28].
The results of both body composition assessments

(ADP and BIA) were inconsistent regarding changes in
FFM. However ADP, which is based on the same princi-
ples as the gold standard method of hydrostatic weigh-
ing [29], revealed that weight loss consisted in equal
parts of reductions in FM and FFM. The unexpected
decrease in REE, which contradicts the results of
Alessandro et al. [30], could be partly explained by the
slight decrease in FFM, the main determinant of REE
[31]. We noted a significant positive correlation between
FFM and REE (r = 0.749; P <0.001), but no relation between
changes from PRE to POST in both parameters. This could
indicate that the FFM loss did not comprise the metabolic-
ally active tissue compartment/muscles. This assumption is
strengthened by the unaffected body cell mass, which rep-
resents the protein-rich and metabolically-active compart-
ment [32], combined with an increased phase angle. The
phase angle increase was due to a decrease in resistance R
(reflecting fluid losses) and increase in reactance Xc
(reflecting better cell membrane function). There is evi-
dence that larger values are related to better outcomes in
various diseases [33, 34]. Fluid loss could be related to the
increased excretion of ketones and water in the urine dur-
ing the state of ketosis [27]. The muscle-sparing effect dur-
ing a metabolic state in which fatty acids are predominantly
used as the energy source and the importance of sufficient

Table 3 Weight and body composition

Unit PRE POST P-value

Weight kg 70.3 ± 11.5 68.4 ± 10.3 <0.001

Whole-body air displacement plethysmography (ADP)

FM kg 22.6 ± 8.7 21.7 ± 8.2 <0.001

FFM kg 44.7 (36.7–72) 43.9 (36.1–70.5) <0.001

Bioelectrical impedance analysis (BIA)

FM kg 20.9 ± 6.9 19.4 ± 6.3 <0.001

FFM kg 47.3 (38.6–76.1) 46.7 (38.3–75.3) 0.182

Body cell mass kg 24.3 (20.0–43.3) 24.4 (19.0–43.4) 0.427

Phase anglea ° 6.1 (4.8–8.5) 6.3 (4.8–8.2) 0.030

Abbreviations: FFM fat-free mass, FM fat mass
aPhase angle, one of the raw data obtained at a frequency of 50 kHz
Radian, Unit system SI derived unit, Unit of Angle, Symbol rad or °, Symbol for
the unit of bioelectrical phase angle is °
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Table 4 Fasting blood parameters

Unit PRE POST Reference range P-value

Glucose and lipids

Glucose mg/dl 91.4 ± 7.3 88.7 ± 5.3 74–106 0.009

TG mg/dl 64 (38–212) 62 (39–172) <150 0.089

HDL-C mg/dl 71.3 ± 14.3 73.6 ± 15.6 >40 0.088

LDL-C mg/dl 110.9 ± 31.3 122.8 ± 33.6 <160 0.001

TC mg/dl 186.5 ± 34.7 195.3 ± 34.7 <200 0.019

LDL-C/HDL-C 1.47 (0.50–3.62) 1.58 (0.56–2.92) <4.5 0.084

TG/HDL-C 0.89 (0.43–4.24) 0.76 (0.48–3.37) <2 0.039

Hormones

TSH μU/ml 1.81 (0.01–7.26) 1.87 (0.15–10.29) 0.27–4.20 0.202

fT3 pmol/l 4.91 (3.84–10.87) 4.11 (2.91–8.80) 3.4–6.8 <0.001

fT4 pmol/l 15.7 (11.9–37.1) 16.4 (12.6–36.2) 10.6–22.7 0.008

Insulin pmol/l 55.3 ± 23.7 43.0 ± 19.7 18–173 0.001

IGF-1 ng/ml 175 (52–427) 140 (31–337) 72–457 <0.001

Liver and kidney parameters

CRP mg/l 0 (0–11) 0 (0–21) <5 0.327

Albumin g/dl 4.51 ± 0.24 4.55 ± 0.24 3.5–5.2 0.215

GOT U/l 21 (12–43) 23 (12–51) 10–50 0.410

GPT U/l 19 (12–37) 22 (12–57) 10–50 0.012

Alkaline Phosphatase U/l 56.3 ± 17.0 52.1 ± 15.3 35–130 0.001

Total bilirubin mg/dl 0.5 (0.2–2.2) 0.4 (0.2–1.4) <0.9–1.4 0.088

Creatinine mg/dl 0.89 ± 0.13 0.88 ± 0.15 0.51–1.17 0.185

Urea mg/dl 30.3 ± 8.8 34.9 ± 9.3 12.8–42.8 <0.001

Uric acid mg/dl 4.1 (2.9–7.0) 4.5 (2.3–8.1) 2.4–7 0.001

Micronutrients

Potassium mmol/l 4.4 (3.6–5.4) 4.3 (3.8–5.2) 3.5–5.1 0.180

Calcium mg/dl 2.34 ± 0.08 2.33 ± 0.07 2.15–2.50 0.411

Magnesium mmol/l 0.82 ± 0.05 0.82 ± 0.06 0.66–1.07 0.721

Iron μg/dl 100.9 ± 50.0 77.3 ± 32.2 37–158 0.002

Folic acid ng/ml 7.81 ± 3.32 10.04 ± 3.92 4.6–18.7 <0.001

Blood count

Leucocytes 103/μl 5.73 (3.44–11.07) 5.66 (2.90–11.58) 3.9–10.4 0.457

Thrombocytes 103/μl 255.8 ± 52.8 240.6 ± 53.4 146–391 0.002

Erythrocytes 106/μl 4.66 ± 0.32 4.72 ± 0.31 4.0–5.8 0.056

Haemoglobin g/dl 13.9 ± 1.0 14.1 ± 0.9 11.6–17.6 0.068

Haematocrit % 40.3 ± 2.7 40.7 ± 2.6 34.6–50.6 0.163

MCH pg 29.8 ± 1.1 29.8 ± 1.1 27–34 0.415

MCHC g/dl 34.4 (32.5–37.1) 34.4 (32.7–36.0) 31.5–36.3 0.333

MCV 10−9μl 86.7 ± 3.4 86.3 ± 3.4 81–100 0.061

Abbreviations: CRP C-reactive protein, C cholesterol, GOT glutamic-oxaloacetic transaminase, GPT glutamic-pyruvic transaminase, HDL high-density lipoprotein, IGF-1
insulin-like growth factor 1, LDL low-density lipoprotein, MCH mean corpuscular haemoglobin, MCHC mean corpuscular haemoglobin concentration, MCV mean
corpuscular volume, fT3 free triiodothyronine, fT4 free thyroxine, TC total cholesterol, TG triglycerides, TSH thyroid stimulating hormone
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protein intake during a KD are discussed in greater detail
in a recent review by Paoli et al. [35].
Together with our result having documented a rise in

hand grip strength as a surrogate marker of total muscle
mass and function, we conclude that our intervention af-
fected neither muscle mass nor muscle function nega-
tively. The body composition changes may be regarded
as positive.

Physical performance
A study in 9 elite artistic gymnasts found no influence of
a 4-week KD on explosive strength performance [12].
However, their study’s main limitation is that the authors
defined their diet as being ketogenic despite a mean pro-
tein energy content of 41% and without having measured
ketone bodies in blood or urine. As a high protein intake
diminishes ketone production by favouring gluconeogen-
esis from abundant amino acids [36], it appears highly
questionable that their diet was ketogenic. The few
remaining studies that have investigated the impact of a
non-energy-restricted KD on physical performance in-
cluded a total of just 25 subjects with KD periods lasting
28 to 38 days [11, 13, 14].
Our primary outcome measure was VO2peak as mea-

sured during graded exercise to exhaustion, which re-
flects an individual’s aerobic physical fitness and is a key
determinant of endurance capacity [37]. We found a
mild but significant decrease in absolute VO2peak by
2.4% but the relative VO2peak (normalized to body
weight) remained unchanged as the KD caused a de-
crease in body weight mainly based on FM and fluid
loss. Phinney et al. [11] and Klement et al. [14] found
that aerobic capacity was not compromised by a KD,
while Zajac et al. [13] found a significant relative
VO2peak improvement. This relative improvement
should be interpreted with caution since the subjects’
body weight dropped significantly. Our subjects’ max-
imum work load (peak power) was comprised and de-
creased significantly by 4.1%, consistent with results
others have reported [13, 14]. Zajac et al. [13] noted a
significant (−3.3%; P = 0.037) and Klement et al. [14] a
trend (−1.5%; P = 0.08) toward decreased peak power, re-
spectively. This issue is further supported by the in-
creased ratings of perceived exertion of our subjects
after cycling test at POST, as such ratings correlate well
with endurance performance [38]. In addition, our co-
hort’s subjectively-rated physical sensations that physical
activities were more exhausting during the KD what was
confirmed by the loss in peak power at POST. A major
explanation therefore could be lower muscle glycogen
stores combined with lower glycolytic-enzyme activity,
which is compensated by enhanced capacity for fat oxida-
tion and muscle glycogen sparing [39–41]. Investigations
were therefore carried out to implement the KD’s beneficial

metabolic adaptations to enhance fat oxidation in endur-
ance sports by solving the muscle glycogen issue via short
periods of carbohydrate intake, described in detail in a
review [42].
In summary, our results reveal a slightly negative im-

pact of a 6-week KD on physical performance. In the
light of the importance of regular physical exercise dur-
ing and after anti-cancer therapy [7], any diet that may
compromise an individual’s capacity to adhere to an ex-
ercise regime would be of great concern, and raise the
question of our findings’ clinical relevance. The KD im-
paired predominantly the endurance capacity and but
not the performance in the submaximum area, as VT1
remained unchanged. In addition, activities of daily liv-
ing and training in the aerobic zone would not be im-
paired. Further study is warranted to demonstrate the
impact on endurance capacity of a longer KD period and
after transition to normal diet after a KD.

Blood parameters
All measured overnight fasting blood parameters at PRE
and POST were within the reference ranges, but unex-
pectedly, approximately 40% of all parameters changed
significantly. Our data and similar studies involving a
non-energy-restricted KD in normal-weight, normolipi-
demic healthy adults confirm consistently significant in-
creases in both total and LDL-C levels [13, 14, 43, 44]
except for one study in 12 men reported decreased TG
levels combined with unchanged TC, LDL-C and HDL-
C levels after a 6-week KD [45]: they detected un-
changed levels of HDL-C and TG and were in excellent
agreement with an earlier study by Phinney et al. [44],
but contrary to two other comparable studies reporting
increased HDL-C and higher or lower TG levels [13, 14].
However, it is worth noting that all available comparable
studies recruited small samples (8 to 12). A higher TG/
HDL-C ratio has been identified as an index of the inci-
dence and extent of cardiovascular disease and the inci-
dence of type 2 diabetes mellitus [46] and this index
decreased significantly during our study. A meta-analysis
comparing the effects of non-energy-restricted low-
carbohydrate (<60 g carbohydrates) vs. low-fat diets in-
cluded five randomized controlled trials with a total of
447 obese subjects [28]. The authors concluded that long-
term low-carbohydrate diets are associated with unfavour-
able changes in total and LDL-C levels, but favourable
changes in TG and probably HDL-C levels. However, a 6-
month non-energy-restricted KD intervention in 141 chil-
dren with intractable seizures significantly increased TC,
LDL-C, TG and atherogenic apoB-containing lipoproteins
combined with a decrease in HDL-C, which corresponds
to a potentially atherogenic blood lipid pattern [47].
There is evidence of strong associations between

carbohydrate-restricted and fat-enriched diets and a
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significant increase in large LDL particles combined with
a decrease in the number of small LDL particles [48, 49]
and it has been hypothesised that large LDL particles
have lower atherogenic potential [50]. Our subjects’ KD
was rich in saturated fat (28% of energy) and the
changes from PRE to POST of saturated fat intake and
LDL-C correlated weakly (r = 0.294; P = 0.059) (data not
shown). There is also evidence that a rise in saturated fat
intake can elevate LDL-C levels [49]. Furthermore, Volek
et al. showed that an energy-restricted KD rich in mono-
unsaturated fat and supplemented with (n-3) fatty acids
increased HDL-C and lowered TG levels [51]. As we did
not assess lipoprotein subclasses, the atherogenic risk of
our KD remains unclear and requires further investiga-
tion combined with the effect of a KD low in saturated
but rich in monounsaturated fats.
Our subjects’ thyroid hormones changed significantly,

but remained within the reference ranges. The impact of
a KD on these hormones has only been marginally in-
vestigated. The sharp decline in the fT3 level and un-
changed pituitary TSH in our subjects concur with those
reports [14, 44, 52]. As Klement et al. [14] hypothesised,
the KD-triggered increase in LDL-C is partly related to
the significant drop in fT3 levels, as fT3 stimulates the
expression of the LDL receptors on hepatic and periph-
eral cells, which are mandatory for LDL particle clear-
ance [53]. The increase in fT4 combined with a decline
in fT3 observed in our study is endorsed by a recent
study in overweight men after a 4-week non-energy-
restricted inpatient KD [54]. Probably due to the meta-
bolic shift towards reliance on fatty acids for fuel at rest,
and the less need for glucose uptake, we observed a sig-
nificant decrease in fasting insulin, an observation con-
sistently reported in the literature, namely large falls in
the range of 34–48% during KDs [13, 45, 52, 55].

Complaints and study limitation
Consistent with other studies [15, 56], our subjects com-
plained about headache, gastrointestinal symptoms, and
general weakness mainly during the 1-week metabolic
adaptation phase to a KD. However, as the present study
had no control group (a limitation), it remains unclear if
the reported complaints were side effects directly related
to the KD. Results from a non-controlled study should
be interpreted with caution. Because of the high preva-
lence of thyroid dysfunction in our region 5 participants
took thyroxin medication. As they had been taking this
medication for over at least 6 months, we did not ex-
clude these patients. Likewise, one participant taking
methylphenidate and another inhaling daily glucocorti-
coids were not excluded due to stable medication for
months. As we included healthy individuals, there was a
broad range of leisure time activity. As we were not fo-
cusing on athletes, this diversity was intentional.

Conclusions
In summary, our results reveal that a 6-week non-energy-
restricted KD had a slightly negative impact on physical
performance including endurance capacity, maximum
work load, and faster exhaustion. Furthermore, we noted
numerous metabolic adaptations, including alterations in
many biochemical parameters. The significant weight loss,
evenly distributed between FM and FFM, comprised nei-
ther muscle mass nor function. Our findings lead us to as-
sume that a KD does not impact physical fitness in a
clinically relevant manner that would impair activities of
daily life and aerobic training. However, a KD may be a
matter of concern in competitive athletes. Clearly, there is
a need for longer-term trials focusing on lipoprotein sub-
class distributions and particle sizes. Studies are also re-
quired to evaluate the influence of the KD’s fatty acids
composition on blood lipids.
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