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Abstract

Diabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter
parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial
infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart
at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been
hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme
system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the
exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various
natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their
modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its
use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols
from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed.
Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major
compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the
latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is
linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an
intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties
of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.
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Background
The prevalence of diabetes mellitus (DM) is increasing
at an alarming rate worldwide. According to recent data
by the International Diabetes Federation, the number of
individuals living with DM is 415 million, and this figure
is estimated to reach 642 million by the year 2040 [1].
Type 2 DM, which is associated with insulin resistance
and obesity, represents approximately 90% of diabetic

cases worldwide [2]. Type 1 DM is characterized by
deficient insulin secretion and chronic hyperglycemia.
Chronic hyperglycemia remains the leading causal factor
for the development of cardiovascular disease (CVD)
and heart failure (HF) in a diabetic state [3, 4]. Chronic
hyperglycemia alters the myocardial substrate preference
in cardiomyocytes and augments production of free
radical species, giving rise to oxidative stress [5]. Oxida-
tive stress may directly induce cardiac structural remod-
eling, a prominent sign of diabetic cardiomyopathy
(DCM) [6, 7]. DCM is a distinct clinical entity that was
first described about four decades ago [7]. The diagnosis
of DCM remains nebulous and the precise mechanism
explaining DCM has been partially explained. Although
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they remain mainly non-ischemic, distinctively affecting
the heart muscle, cardiomyopathies play a pre-dominant
role in inducing HF and are one of the major causes of
death in Africa [8, 9]. Currently, there is no specific
treatment for DCM; however, therapeutic drugs certainly
play a significant role in the treatment of diabetes and
its cardiovascular complications.
Insulin and metformin are the commonly used therap-

ies for the treatment of DM and have been shown to
present limited cardiac protective properties [10–12]. It
is known that CVD-related deaths in individuals with
DM are still a major concern [13]. Furthermore, lifestyle
intervention of restricted energy intake and physical ac-
tivity in persons with impaired glucose tolerance has
been shown to improve CVD function. Nonetheless,
most individuals do not adhere to such lifestyle interven-
tions. On the other hand, antioxidants are among the
leading therapies being investigated for their efficacy
against various metabolic complications [14, 15]. In the
last decade, there has been much interest in the poten-
tial health benefits of plant polyphenols, such as resvera-
trol, mangiferin and aspalathin as dietary antioxidants
[16–18]. The rooibos flavonoid and dihydrochalcone,
aspalathin, has been investigated and reported to con-
tribute to the antidiabetic properties of rooibos extract
as reviewed by Muller and colleagues [18]. This flavon-
oid and others have been shown to exert their thera-
peutic effects by mainly regulating the expression of key
genes involved in energy metabolism and oxidative stress.
Prime examples include 5′-adenosine monophosphate-
activated protein kinase (AMPK), which is crucial for
maintenance of myocardial substrate metabolism and
nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a
transcription factor that is upregulated in response to
oxidative stress [18, 19]. This review will discuss the
cardioprotective potential of rooibos flavonoids and the
phenylpropenoic acid, phenylpyruvic acid-2-O-β-D-
glucoside (PPAG), against hyperglycemia-induced injury
and heart disease. Physiological context is provided by a
short overview of the role of oxidative stress in a diabetic
heart.

Mechanisms of oxidative stress leading to cardiac tissue
damage
Chronic hyperglycemia is strongly associated with en-
hanced oxidative stress-induced myocardial injury [13, 20].
This has been confirmed by various laboratory studies
showing strong correlation between oxidative stress and
matrix remodeling in cardiomyocytes isolated from dia-
betic heart tissue [21, 22]. Oxidative stress is aggravated
by enhanced levels of Reactive Oxygen Species (ROS)
within cardiomyocytes [21, 23, 24]. Abnormal ROS pro-
duction elicits an increased pro-inflammatory response
resulting in myocardial apoptosis [25]. Some of the

well-known reactive oxygen substances, associated with
myocardial damage include superoxide anion (O2

•−) and
hydrogen peroxide (H2O2). Generation of ROS is gener-
ally a cascade of reactions that starts with the formation
of O2

•− [26]. Superoxide anion rapidly dismutates to
H2O2, either spontaneously or catalytically by super-
oxide dismutase (SOD), while H2O2 is decomposed by
catalase (CAT) to water and oxygen. However, the
mitochondrial electron transport chain and the actions
of the nicotinamide adenine dinucleotide phosphate-
oxidase (NADPH oxidase; Nox) enzymes remain the
foremost sources of stress in cardiomyocytes (Fig. 1).
Mitochondrial structural modification is affiliated with
reduced endogenous antioxidant status in cardiomyocytes
from diabetic heart tissue [24, 27]. Correspondingly, aug-
mented activity of NADPH oxidase is demonstrated in the
myocardium of diabetic animals at the same rate as oxida-
tive damage [28].
The mitochondrion is an essential organelle for intra-

cellular energy production. Increasing the cellular de-
mand of the mitochondrion to produce energy is
associated with accelerated ROS production. Given that
a diabetic heart has a diminished mitochondrial antioxi-
dant capacity [29], it is therefore not surprising that
minor alterations in mitochondrial structure or function
induced by increased ROS are associated with major
changes in the heart muscle [30]. Increased ROS and
mitochondrial depolarization, subsequent to diastolic
dysfunction, have been reported in patients with meta-
bolic disturbances [31, 32]. However, data explaining the
precise role of mitochondrial dysfunction in a diabetic
heart are still lacking.
Concurrent with energy generation is the constant gen-

eration of ROS within the mitochondria [33]. Accumula-
tion of these radicals results in the induction of
mitochondrial permeability transition (MPT) and the
opening of high conductance permeability transition pores
[34]. MPT formation has been reported to lead to an al-
tered redox state of the mitochondria [30]. With disease
states, the MPT opening is unique for being nonselective
and allowing for the accumulation of excessive calcium
(Ca2+) and other toxic compounds [35, 36]. The fate of
the cell after an insult depends on the extent of MPT pore
formation [36–38]. If MPT pore formation occurs only to
a limited extent, the cell may recover through cell re-
covery mechanisms such as activation of mitophagy/
ubiquitination, whereas if MPT pore formation is ex-
acerbated, it accelerates apoptosis [38]. If it occurs to
an even larger degree, the cell is likely to undergo
necrotic cell death [38]. Thus, prevention of mitochon-
drial membrane depolarization may play a role in reducing
myocardial injury associated with chronic hyperglycemia.
On the other hand, Nox is another system that plays a

notable role in the generation of ROS in many cell types,
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including cardiomyocytes. Nox generates intracellular
ROS by transferring electrons from NADPH across the
cell membrane and coupling these to molecular oxygen
to produce O2

•−. Nox exists in different isoforms, i.e.
Nox1 to Nox4, with Nox2 and Nox4 predominant in the
heart muscle [39, 40]. Nox1 has been identified to be the
major source of ROS production in vascular tissues,
resulting in low levels of nitric oxide [41, 42]. Decreased
levels of nitric oxide are connected to impaired
endothelium-dependent vasodilation of coronary arteries
[43]. Human aortic endothelial cells exposed to high glu-
cose concentrations display amplified expression of Nox1
concomitant to enhanced oxidative damage [44]. The
same study showed that diabetic mice lacking Nox1 had
profound anti-atherosclerotic outcome related to reduced
ROS generation. Although Nox2 and Nox4 are predomin-
ant in the heart muscles, these two ROS producing en-
zymes are also expressed in other cell types and are
implicated in agonist-stimulated redox-sensitive signal
transduction [39]. Nox2 has been shown to play a central
role in insulin resistance-mediated oxidative damage in
vascular tissue [45, 46]. Nox2 knockout transgenic mice
with endothelial-specific insulin resistance present reduced
ROS production and vascular dysfunction [45]. On the
other hand, the Nox4 isoform is specifically expressed in
mitochondria of cardiomyocytes; and mice lacking the
Nox4 gene show reduced free radical damage [28]. Its
overexpression in the mouse heart deteriorates cardiac
dysfunction by initiating apoptosis through cytochrome c
release [28]. Cytochrome c is a vital component of the
mitochondrial electron transport chain, acting as an elec-
tron shuttle during redox generation of ATP [47]. Its

release and mitochondrial depolarization are considered
key physiological events of apoptosis [48]. In cardiomyo-
cytes exposed to high glucose concentrations, cytochrome
c release is enough to cause apoptosis, independent of
mitochondrial depolarization status [49]. Complex systems
within the apoptotic pathway exacerbate myocardial injury
through cytochrome c release [50]. Therefore, interven-
tions that could inhibit pro-apoptotic proteins and mito-
chondrial cytochrome c release could salvage myocardial
injury.

Endogenous cardioprotective mechanisms
Activation of AMPK
AMPK is a heterotrimeric protein composed of a cata-
lytic alpha, non-catalytic beta and gamma subunit. The
main function of this kinase is to preserve ATP or to
promote alternative pathways of ATP generation. It
functions as a sensor during low energy states such as
ischemia to change substrate utilization and thereby
increase or decrease ATP synthesis. Its activation is con-
trolled by an increase in the AMP:ATP ratio [51]. Stimu-
lation of AMPK leads to phosphorylation of many target
proteins important for ATP synthesis and utilization
while concurrently inhibiting ATP-consuming pathways
such as fatty acid synthesis. In the diabetic heart, AMPK
activation is linked to phosphorylation of both acetyl-
CoA carboxylase and malonyl-CoA decarboxylase; how-
ever, its association with the latter in the heart remains
to be fully elucidated [52–54]. Acetyl-CoA carboxylase
and malonyl-CoA decarboxylase are both important for
the interconversion of acetyl-CoA to malonyl-CoA (Fig. 2).
Phosphorylation of acetyl-CoA carboxylase by AMPK

Fig. 1 Chronic hyperglycemia is strongly associated with enhanced oxidative stress-induced myocardial injury. The mitochondrial electron transport
chain and the actions of the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) enzymes remain the foremost sources of stress
in cardiomyocytes
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reduces the generation of malonyl-CoA; thus promoting
the entry of FFAs for beta-oxidation into mitochondria
through carnitine palmitoyltransferase I [55]. Resultant in-
creased levels of ATP and citrate through beta-oxidation
are responsible for the allosteric inhibition of glycolysis
through phosphofructokinase-1 [56]. This causes acceler-
ated ROS production and associated membrane peroxida-
tion [24, 26]. Hence, adequate control of uptake and
oxidation of FFAs remain crucial for optimal functioning
of the myocardium, especially in a diabetic state.

Activation of Nrf2
Free radicals within mitochondria are generally removed
by mitochondrial SOD, thereby generating H2O2. This
process allows H2O2 to be further reduced to water by
glutathione (GSH) or CAT. GSH remains an important
intracellular antioxidant to prevent free radical damage.
GSH can easily be oxidized to its disulfide form during
oxidation reactions; thus, NADP transhydrogenase en-
zymes remain important to maintain the reduced form of
this co-factor [57]. NADP transhydrogenase functions by
transferring electrons from a reduced form of nicotina-
mide adenine dinucleotide (NADH) to NADP+ in order to

regenerate GSH [58]. Reduced expression of GSH is con-
sistently reported in experimental models investigating a
diabetic heart [21, 24]. This was confirmed when investi-
gated in either human subjects at risk of CVD or mice
that are chronically subjected to hyperglycemia and hyper-
lipidemia [59, 60].
Expression of antioxidant response genes, including

GSH is regulated by the redox-sensitive transcription fac-
tor, Nrf2 [61]. Nrf2 is a transcriptional regulator that is ac-
tivated in response to intracellular stress (Fig. 3). Genes
activated by Nrf2 can be classified into different groups,
including phase II detoxifying and cytoprotective enzymes.
Nrf2 resides in the cytoplasm, where it is subjected to
continuous degradation by the ubiquitin-proteasome [62].
Under stressful conditions such as ischemia or oxidative
stress, Nrf2 is activated by disassociating from its negative
regulator Kelch-like ECH-associated protein 1 (Keap1)
and translocates to the nucleus. Once in the nucleus, it
forms a heterodimer with Maf protein before binding to
the antioxidant response element (ARE) to initiate and acti-
vate antioxidant defence genes [63]. An overview of the
pathway associated with the activation of Nrf2 and its pro-
tective effect against ROS in a cardiac cell is illustrated by
Fig. 3. Activation of Nrf2 in epithelial cells has been shown
to induce GSH synthesis and thus protects against oxidative
stress [64]. In addition to its negative regulation of Nrf2,
Keap1 also acts as a sensor for a wide array of stressors that
could activate Nrf2. Significant down-regulation of cardiac
Nrf2 expression is concomitant to increased ROS and re-
active nitrogen species damage in hearts of diabetic animals
[62–64]. Thus, agents that can significantly up-regulate
Nrf2 expression have a potential to protect cardiomyocytes
against high glucose-induced apoptosis.

Cardioprotective potential of current antidiabetic agents
Primary interventions that may salvage a diabetic heart at
risk from myocardial infarction mainly target maintaining
low blood sugar levels [13]. While such interventions are
achievable and beneficial to the heart, adherence to life-
style changes remains a big challenge. Therefore, antidia-
betic agents that could suppress postprandial and chronic
hyperglycemia may be effective in decreasing the risk of
HF. Despite evidence on the efficacy of antidiabetic and
antidyslipidemic drugs such as dipeptidyl peptidase-4 in-
hibitors and statins [65, 66], metformin remains the leading
first line antidiabetic drug for type 2 diabetic individuals
with known cardiac complications [67, 68]. In addition to
its accomplished antidiabetic properties [69, 70], metfor-
min is associated with improved clinical outcomes in dia-
betic patients with HF [71, 72]. Although clinical data are
lacking, metformin enhances the efficacy of a number of
synthetic drugs and novel medicinal compounds currently
screened for metabolic benefits in vitro [73–75]. Metfor-
min monotherapy or its use as an add-on effect to

Fig. 2 AMPK is associated with the phosphorylation of ACC and MCD
to regulate myocardial energy metabolism. Chronic hyperglycemia
activates AMPK, resulting in the phosphorylation of ACC, releasing the
inhibitory effect of malonly-CoA on CPT1 and subsequently leading to
enhanced entry of FFAs via CPT1 into the mitochondria for beta-
oxidation. Abnormally increased beta-oxidation is further accountable
for mitochondrial membrane damage through peroxyl radicals. Keys:
ACC- acetyl-CoA carboxylase; AMPK- 5’ adenosine monophosphate
(AMP)-activated protein kinase; CPT1- carnitine palmitoyltransferase 1;
FFA- free fatty acid; MCD- malonyl-CoA decarboxylase
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glibenclamide improves the intracellular antioxidant status
of the myocardium in streptozotocin-induced diabetic
Sprague-Dawley rats [76]. In addition to improving the anti-
oxidant capacity of heart cells, metformin may benefit the
heart by enhancing autophagy and inhibiting MPT opening
[77, 78]. However, an increasing toll of cardiovascular re-
lated deaths in diabetic patients on treatment warrants fur-
ther investigation into alternative treatment regimes.

Cardioprotective potential of rooibos
In recent years, the use of plant-derived products as a
cardioprotective therapy is receiving increasing attention
[59, 79, 80]. Rooibos (Aspalathus linearis) is an indigen-
ous South African plant well-known for its potential
health benefits. Rooibos tea is available in two forms: a
“fermented” or oxidized form; and an “unfermented” or
unoxidized form (Fig. 4). The unfermented product is
also referred to as green rooibos. The “fermentation”
process gives fermented rooibos its distinctive reddish-
brown colour, while unfermented rooibos tea maintains
its green colour (Fig. 4b). The fermentation process is
important to develop the characteristic taste and aroma
of rooibos tea, traditionally consumed [81]. Its effect on
the health outcomes of rooibos is obscured if the prod-
ucts do not originate from the same bush due to large
inherent variation in the phenolic content of the rooibos
plant [81]. However, it is well established fermentation
decreased the flavonoid content of rooibos [81]. Infu-
sions and extracts prepared from unfermented rooibos

have higher antioxidant capacity than those from fer-
mented rooibos, largely due to higher levels of flavo-
noids, in particular aspalathin in the unoxidized plant
material [81]. Consumption of a “ready-to-drink” unfer-
mented rooibos beverage as opposed to one produced
from fermented rooibos effected a 28% higher total
radical-trapping antioxidant potential in the plasma of
human subjects [82]. Nonetheless, both forms of rooibos
are increasingly studied in experimental diabetes and
related complications, given that fermented rooibos is
more readily available and forms the bulk of rooibos
production [81].
In a recent study, Oh and colleagues have demon-

strated that the total flavonoid content of a water extract
of rooibos, determined using a colorimetric assay based
on aluminium complexation, is higher than that of lem-
ongrass tea, mulberry leaf tea, bamboo leaf tea, lotus leaf
tea, and persimmon leaf tea [83]. However, they further
showed that the total flavonoid content of this extract is
slightly lower than that of green and black tea. Von
Gadow and colleagues have also previously shown that
both fermented and unfermented rooibos, when tested
together with green, oolong and black tea, present
strong antioxidant properties in vitro [84]. They further
showed that this antioxidant effect, as evaluated using
the 2,2-diphenyl-1-picrylhydrazyl radical assay, was re-
duced in the order: green tea > unfermented rooibos >
fermented rooibos > semifermented rooibos > black
tea > oolong tea. Accompanying its well-documented

Fig. 3 The role of Nrf2 in response to increased ROS within a diabetic heart. Nox and mitochondrial-ETC cause augmented production of O2
∙−, which

damages the cell through ROS. The cell reacts by activating the Nrf2-mediated antioxidant response system. Activated Nrf2 causes it to dissociate from
Keap1 and migrate into the nucleus where it binds ARE and cause increased expression of cytoprotective genes and phase II detoxifying enzymes to
eliminate ROS. Keys: ARE-antioxidant response element; CAT- catalase; Gpx- glutathione peroxidase; GSH- glutathione; Keap1- Kelch-like ECH-associated
protein 1; Nox- NADPH oxidase; O2

∙− superoxide ion; Nrf2- nuclear factor (erythroid-derived 2)-like 2; ROS-reactive oxygen species
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antioxidant capacity [18, 84–89], rooibos has been
shown to inhibit adipogenesis in vitro [90], reverse
palmitate-induced insulin resistance in 3T3-L1 adipo-
cytes [91] and prevent inflammation in vivo [92–94]. An
aspalathin-enriched green rooibos extract, containing
18.4% aspalathin has demonstrated an even higher
hypoglycemic potential through its inhibitory effect of
alpha-glucosidase and suppressing fasting plasma glu-
cose levels in animal models [91, 95]. Another green
rooibos extract, containing 6.6% aspalathin promoted
glucose transporter 4 translocation to the plasma mem-
brane and suppressed advanced glycation end products
(AGEs)-induced oxidative damage in cultured skeletal
L6 muscle cells, pancreatic beta-cells and obese diabetic
KK-Ay mice [96]. Rooibos inhibits experimentally-induced
oxidative stress [21]; and improved cardiovascular func-
tion by reducing lipid peroxidation, blood pressure and
angiotensin-converting (ACE) enzyme in various experi-
mental models [97–100]. Moreover, it protected against
ischemia-reperfusion injury by modulating the phos-
phatidylinositol 3-kinase/protein kinase B (PI3K-AKT)
pathway [101]. Controlling free fatty acid oxidation by
modulating phosphorylation of AMPK remains central in
the preventive effect of rooibos against diabetes associated
cardiac complications [90, 91, 96]. The cardioprotective
potential of rooibos is summarized in Table 1.

A profound relationship between a diet rich in poly-
phenols and health has given hope to long-term effective
interventions that could prolong the onset of diabetes
and its co-morbidities [102]. Flavonoids constitute a
major sub-class of polyphenols, which can be further di-
vided into different sub-groups such as dihydrochal-
cones, flavonols and flavones, the predominant rooibos
flavonoid sub-groups. Variations in the hydroxylation
pattern, glycosylation and chromane ring (Ring C)
underpin their structural differences (Table 2). Structural
features of flavonoids relevant for their antioxidant
properties [103] also explain binding affinity to plasma
proteins [104] and enzymes such as alpha-glucosidase
[105]. Whilst in vitro data suggest flavonoid aglycones to
be more effective than their glycosides, lack of in vivo
data precludes broad generalizations concerning the
effect of glycosylation on the benefits of flavonoids for
human health [106].
In the following sections the focus will fall on flavo-

noids found in rooibos that have an ameliorative effect
against various metabolic diseases. Of interest is the pre-
dominance of C-glucosyl flavonoids in rooibos, and in
particular the dihydrochalcones (aspalathin and nothofa-
gin) and their flavone derivatives (orientin, isoorientin,
vitexin and isovitexin). The major flavonols are O-glyco-
syl derivatives of quercetin, i.e. quercetin-3-O-robinobio-
side, hyperoside, isoquercitrin, and rutin. The aglycones,
luteolin, chrysoeriol and quercetin, are present in low to
trace levels in rooibos [107]. Discussion of their bioactiv-
ities is included to underscore the health potential of
rooibos.
PPAG is per definition not a phenolic compound due

to the absence of a hydroxyl group on the phenyl ring.
This compound is a biosynthetic precursor of flavonoids
[108] and rooibos is one of the few plants demonstrated
to date to be a substantial source.

Rooibos dihydrochalcones
The dihydrochalcone, aspalathin is unique to rooibos,
while its 3-deoxy analogue, nothofagin, is relatively rare
with its presence also confirmed in Notofagus fusca and
Schoepfia chinensis [81]. Unfermented rooibos tea bever-
age contains 10-fold or more aspalathin and nothofagin
when compared to the fermented product [107, 109].
This is not surprising as the fermentation process is
known to reduce their content in rooibos [81, 110]. Des-
pite C-glycosides having very low bioavailability due to
the inability of intestinal enzymes to hydrolyze the C-C
bond linking the sugar moiety to the aglycone and thus
influencing their absorption process [111], aspalathin
has been reported in the plasma of subjects who con-
sumed 500 mL of green rooibos infusion, containing
287 mg aspalathin [112]. However, generally as reported
for other dihydrochalcones [113, 114], the human gut

Fig. 4 Photos of a rooibos plantation (a) and the two forms of
processed plant material (b), fermented and unfermented
rooibos with spray-dried powders of their hot water extracts. The
fermentation process gives fermented rooibos its distinctive
reddish-brown colour, while unfermented rooibos tea maintains
its green colour
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Table 1 The cardioprotective effect of rooibos, its flavonoids and a phenylpropenoic acid

Rooibos/compounds Model Experimental outcome References

Rooibos Aqueous extract of fermented
rooibos on cardiomyocytes isolated
from diabetic rats

Prevented experimentally induced
oxidative stress and ischemia

[21]

Fermented rooibos tea for 6
weeks in human subjects at risk
of cardiovascular disease (CVD)

Reduced CVD risk by improving
lipid profile and redox status

[59]

Aqueous extract of fermented
rooibos in endothelial cells from
human umbilical veins (HUVECs)

Prevented vascular-induced
inflammation by enhancing nitric
oxide production

[86, 92, 93]

Aqueous extract of fermented rooibos
on non-diabetic rats

Acted as a bronchodilator,
antispasmodic and blood pressure
lowering effects

[97]

Fermented rooibos tea in healthy
human subjects

Prevented myocardial infarction by
inhibiting angiotensin-converting
enzyme (ACE)

[98–100]

Aqueous extracts of fermented and
unfermented rooibos in non-diabetic rats

Reversed ischemia-reperfusion injury [101]

Aspalathin and nothofagin Aspalathin and nothofagin on high
glucose-induced vascular in HUVECs
and mice

Prevented inflammation and
thrombosis by suppressing TNF-α,
IL-6 and NF-κB

[118, 119]

Aspalathin in H9c2 cardiomyocytes
exposed to high glucose and
cardiomyocytes isolated
from insulin resistant rats

Prevented cell apoptosis by reducing
phosphorylation of AMPK; decreasing
inflammation and lipid accumulation;
and attenuated oxidative damage via
increasing Nrf2 expression

[73, 124–126]

Orientin and isoorientin Orientin on isolated hearts of
nondiabetic rats, rabbits and guinea
pigs as well as H9c2 cells

Prevented ischemia-reperfusion injury
and platelet aggregation by inhibiting
mPTP formation and apoptosis

[137–139]

Orientin and isoorientin Orientin on rats Prevented myocardial infarction [134]

Isoorientin in low density lipoprotein
isolated from human plasma

Prevented formation of atherosclerotic
lesions by inhibiting low density
lipoprotein (LDL) oxidation

[135]

Orientin in non-diabetic rats Attenuated ventricular remodeling
associated with myocardial infarction

[136]

Orientin and isoorientin in
lipopolysaccharide-induced
reperfusion injury

Protected vascular barrier integrity by
inhibiting hyperpermeability

[223]

Vitexin and isovitexin Vitexin on primary cardiomyocytes
and isolated rat hearts and on rats

Prevented ischemia-reperfusion injury
by reducing calcium overload and
modulating ERK1/2 signaling and
MAPK pathway

[146, 149, 224]

Vitexin on primary rat cardiomyocytes Prevented cardiac hypertrophy by
inhibiting calcineurin and CaMKII
signaling pathways

[151]

Vitexin on dogs Reduced aortic pressure, arterial and
pulmonary capillary pressure and
heart rate

[150, 225]

Vitexin on rats Attenuated acute doxorubicin
cardiotoxicity by
reducing oxidative stress and
apoptosis

[226]

Luteolin and chrysoeriol Luteolin on isolated rat cardiomyocytes,
rabbit hearts and anesthetized pigs

Prevented ischemia-reperfusion injury
and enhanced relative coronary flow

[157, 159, 162]

Luteolin on rat endothelium-denuded
aortic rings

Induced vasorelaxion by regulating
calcium and potassium channels and
reducing oxidative stress

[227]
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microbiota can possibly enhance the absorption of aspa-
lathin and nothofagin in the small intestine by splitting
off the aglycone from the glucose moiety [115]. In vivo,
the low levels of aspalathin are difficult to detect in
serum, however metabolites (glucuronides and sul-
fates) of aspalathin and nothofagin have been detected
in urine of human subjects 5 h after consumption of
500 mL of either fermented or unfermented rooibos
[109]. Recent data have demonstrated that aspalathin
is absorbed and metabolized in mice to mostly
sulphate conjugates detected in urine, while the mode
of absorption is hypothesized to occur through the
monolayer paracellularly [116].
The biological of activity of aspalathin and nothofagin

has been primary associated with their known strong
antioxidant properties [73, 117]. Both compounds pro-
tected against high glucose-induced vascular inflamma-
tion and platelet aggregation when tested in endothelial
cells and mice; however, nothofagin did not have any
anticoagulant effect in mice [118, 119]. Increasing
research is presented focusing on aspalathin and its
enhanced efficacy to prevent metabolic-associated com-
plications in vitro and in vivo models [18, 120–122].
Our laboratory has presented recent evidence that

aspalathin reversed palmitate-induced insulin resistance
in cultured adipocytes [123], while it prevented high
glucose-inducedapoptosis by improving substrate metab-
olism in H9c2 cells exposed to high glucose or cardio-
myocytes from insulin resistant rats [73, 124, 125]. In
addition to regulating AMPK and enhancing Nrf2
expression, aspalathin can modulate the expression of
peroxisome proliferator-activated receptor gamma and
sterol regulatory element-binding protein 1/2, tran-
scriptional factors involved in lipid metabolism, in
addition to inhibiting inflammation via interleukin-6/
Janus kinase 2 pathways, leading to reduced myocar-
dial apoptosis [73, 124, 126].

Rooibos flavones
The major flavones present in rooibos include orientin
and isoorientin, the flavone derivatives of aspalathin, and
vitexin and isovitexin, the flavone derivatives of nothofa-
gin. Minor flavones include the aglycones, luteolin, and
chrysoeriol (Table 2). Lower levels of flavones are
present in fermented rooibos [81]. Food processing may
also change their content. The orientin and isoorientin
content of a ready-to-drink rooibos beverage showed a
slight change as a result of pasteurization and storage,

Table 1 The cardioprotective effect of rooibos, its flavonoids and a phenylpropenoic acid (Continued)

Luteolin on vascular smooth muscle
cells and rats

Prevented hypertensive vascular
remodeling

[160]

Luteolin on diabetic and normal rats Alleviated vascular complications
associated with insulin resistance
through the Pparγ pathway

[161]

Luteolin and chrysoeriol Luteolin-7-glucoside on isolated
primary rat cardiomyocytes

Prevented ischemia-reperfusion injury
and increased of coronary flow

[228]

Chrysoeriol in rats under anesthesia
and H9c2 cells

Reduced arterial blood pressure and
protected against doxorubicin-induced
cardiotoxicity

[97, 172]

Quercetin and rutin Quercetin on rats Protected against diabetic
cardiomyopathy, autoimmune
myocarditis, LDL-oxidation, and
doxorubicin-induced lipid peroxidation

[185–192]

Quercetin in either endothelial cells
or rats

Presented antihypertensive potential and
reduced cardiac hypertrophy by increasing
antioxidant capacity

[229–233]

Hyperoside and rutin Hyperoside in vitro and in vivo Protected against hyperglycemia
induced inflammation

[208]

Hyperoside in ECV304 cells Prevented advanced glycation end products
and promoted via the c-Jun N-terminal
kinases (JNK) pathway

[205]

Hyperoxide in vitro and in vivo Hydrogen peroxide induced cell damage
and ischemia reperfusion injury

[209, 211, 212]

Rutin on rats Protected against advanced glycation end
products, oxidative stress and myocardial
infarction

[199, 234, 235]

Phenylpyruvic acid-2-O-β-D-glucoside
(PPAG)

PPAG on high-glucose exposed
H9c2 cells

Protected against substrate impairment,
mitochondrial depolarization and cell
apoptosis

[221]
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postulated to be due to the conversion of aspalathin to
these compounds [110, 127]. Except for luteolin, there is
very limited data on the characteristic metabolism and
transportation of these flavone glucosides. The absorp-
tion of orientin, isoorientin and vitexin has been
reported on Caco-2 cell monolayers [128, 129], with
transporter mediated efflux in addition to passive diffu-
sion shown to be the predominant mode of transporta-
tion. In a pharmacokinetics study using Sprague–Dawley
rats, intravenous administration of a 20 mg/kg dose of
orientin was found to be highly recovered in plasma and
eliminated within 90 min after intravenous administra-
tion [130]. On the other hand, permeability and absorp-
tion rate of luteolin has been shown to be significantly
greater in the colon and ileum compared to the duode-
num and jejunum in rats [131]. Furthermore, some of
these compounds, including isoorientin may be

deglycosylated to their aglycones by gut microbiota as
reviewed by Muller et al. [18].
The strong antioxidant properties of flavones have

been associated with their free radical scavenging prop-
erties [132]. Although very few studies are available on
the antidiabetic properties of orientin and isoorientin,
extracts with abundant levels of vitexin, orientin and
isoorientin have been shown to inhibit adipogenesis in
3T3-L1 adipocytes [90, 133]. Relevant to the cardiovas-
cular system, these compounds have been reported to
inhibit high glucose-induced vascular inflammation
[134], atherosclerosis [135], cardiac remodeling [136]
and ischemia-reperfusion injury [137–139]. Additional
protective effects of these compounds are summarized
in Table 1 and are mainly mediated by nuclear factor
kappa B, a transcriptional factor involved in diabetic-
induced HF [140]. Moreover, isoorientin has been shown

Table 2 Molecular structures of flavonoids and a phenylpropenoid present in rooibos
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to reduce other diabetic associated complications such
as lipid toxicity and insulin resistance [141]. Together
with direct radical scavenging activity, the protective
mechanism of isoorientin has been linked to the induc-
tion of Nrf2 pathway-driven antioxidant response
through phosphatidylinositol 3-kinase signaling [142].
On the other hand, oral administration of vitexin and iso-
vitexin at 1 mg/kg has been shown to reduce postprandial
blood glucose levels in sucrose loaded normoglycemic
mice [143]. In addition to inhibiting α-glucosidase [144],
vitexin and isovitexin rich extracts have been demon-
strated to attenuate diabetes linked complications such as
adipogenesis and AGEs in vitro [132, 145]. Vitexin re-
verses ischemia-reperfusion injury in perfused rat hearts
and brain by attenuating inflammatory response and
apoptosis [146–149]; it increased coronary artery
blood flow and cardiac output in anesthetized animals
[150]; and it improved cardiac hypertrophy by redu-
cing the expression of calcium downstream effectors,
calcineurin-NFATc3 and phosphorylated calmodulin
kinase II (CaMKII), both in vitro and in vivo [151].
Other associated cardioprotective mechanisms of vitexin
may include inhibiting cardiomyocyte apoptosis by redu-
cing calcium overload and extracellular signal regulated
kinase (ERK1/2) [152].
Furthermore, although available in trace levels in rooi-

bos, release of luteolin from orientin and isoorientin in
the gut may enhance the levels to physiological relevance.
Accumulative evidence suggests strong ameliorative effect
of luteolin against diabetes and CVD associated complica-
tions [153–155]. The antidiabetic properties of luteolin in-
clude improving hepatic insulin sensitivity by suppressing
gluconeogenesis in diet-induced obese mice [153]; it pre-
vented neuronal injury and cognitive performance by at-
tenuating oxidative stress in rats [154]; and attenuated
morphological destruction of the kidney in rats [155]. The
anti-inflammatory properties of luteolin include inhibiting
elevated levels of interleukin-1β and nuclear factor kappa
B [156–158]. Relevant to the heart, luteolin reduced sys-
tolic and diastolic blood pressure of various animal
models [159, 160]; it improved contractile function [161];
and blocked apoptosis following ischemia-reperfusion in
adult rat cardiomyocytes via downregulating microRNA-
208b-3p [162]; it attenuated HF in a rat model of DCM
[163]; and protected against acute and chronic periods of
isoproterenol-induced myocardial infarction by suppress-
ing mitochondrial lipid peroxidation [164]. One of the im-
portant mechanisms linked to the cardioprotective effect
of luteolin during ischemia-reperfusion injury include
regulation of ERK1/2 and c-Jun N-terminal kinase (JNK),
which are pathways implicated in generation of inflamma-
tion [165]. The number of functional hydroxyl groups on
the structure of luteolin directly correlates to its scaven-
ging effect of hydroxyl radicals [166].

Another flavone of interest that is present in very low
quantities in rooibos is chrysoeriol [167]. Chrysoeriol
has been previously shown to be more effective in the
protection against lipid peroxidation than its glycoside
(chrysoeriol-6-O-acetyl-4′-β-D-glucoside) when tested in
vitro [168]. In addition to preventing H2O2-induced oxi-
dative stress in osteoblasts [169], chrysoeriol protected
Raw264.7 macrophages from lipopolysaccharide-induced
inflammation by blocking activator protein 1, which is
crucial in the transcriptional activation of inducible ni-
tric oxide synthase [170]. A hydroalcoholic extract of
Tecoma stans, containing 96% chrysoeriol presented an
enhanced activity to inhibit pancreatic lipase [171]. Rele-
vant to the heart, chrysoeriol can lower arterial blood
pressure in rats under anesthesia [97]; and it can protect
against doxorubicin-induced cardiotoxicity by inhibiting
apoptosis in H9c2 cells [172]. However, no published
study is available on the effect of chrysoeriol on a dia-
betic heart at present.

Rooibos flavonols
Quercetin and its glycosides, quercetin-3-O-robinobioside,
hyperoside, isoquercitrin, and rutin are classified by a
distinct 3-hydroxyflavone backbone and are the major
flavonols present in rooibos (Table 2). Generally, based on
a specific population assessed, the average intake of flavo-
nols may range between 20 to 35 mg/day [173, 174].
Although additional studies are required to validate their
bioavailability, flavonol aglycones have been shown to be
highly absorbed in the gut [175]. The type of sugar moiety
and stability of aglycone largely affect the absorption of
each compound as shown for quercetin glycosides
from onions being better absorbed than pure agly-
cones [173, 176]. Another study has demonstrated
that isoquercitrin and hyperoside are highly absorb-
able in rats [177]. Regular consumption of flavonols
has been found to be protective against ischemic
heart disease in some individuals [178]. Quercetin attenu-
ated paracetamol-induced liver damage and impairment
of kidney function such as intracytoplasmic vacuolization
and brush border loss in rats [179]. Quercetin has a high
affinity to inhibit AGEs such as methylglyoxal and glyoxal
in a bovine serum albumin system [180].
Quercetin and rutin further exhibit a broad range of

pharmacological activities within the myocardium (Table 1).
These compounds presented atherosclerosis lowering prop-
erties by reducing hepatic fatty acid synthesis in mice [181].
They enhanced glucose uptake in muscle cells subjected to
oxidative stress [182] and prevented against dyslipidemia
associated complications such as inflammation and lipid
toxicity by enhancing antioxidant capacity in rats [183].
Interestingly, in the heart, quercetin and rutin have been
shown to directly alleviate DCM by improving myocardial
ultrastructure in diabetic animals through aldose reductase,
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oxidative stress inhibitory activity and modulation of cardiac
calcium homeostasis [184–187]. The use of quercetin at a
dose of 10 mg/kg body weight for 28 days protected against
autoimmune myocarditis by suppressing oxidative stress in
rats [188]. Quercetin is thought to exert cardiac protection
through quenching lipid peroxidation, as it is a known
scavenger of peroxyl radicals [189–192]. In a double-blind
randomized clinical trial on women (n = 72), quercetin
supplementation (500 mg capsule daily) for 10 weeks sig-
nificantly reduced systolic blood pressure but had no ef-
fect on other cardiovascular parameters and inflammatory
biomarkers [193]. Likewise, rutin protected against myo-
cardial damage in a diabetic state by decreasing postpran-
dial hyperglycemia and slowing down formation of AGEs
in various experimental models [194–197]. In combin-
ation with aspalathin, rutin reduced blood glucose con-
centrations of streptozotocin-induced diabetic rats over a
6 h monitoring period [95]. It further improved glucose
homeostasis in streptozotocin-induced diabetic rats sup-
pressing gluconeogenesis [197]. Regulation of glucose me-
tabolism and increasing intracellular antioxidant capacity
have been proposed to be the main cardioprotective ef-
fects of both quercetin and rutin [198, 199].
Like quercetin and chrysoeriol, hyperoside is often

present in very low quantities in a cup of fermented
rooibos tea [167]. Plants and extracts rich in hyperoside
have been established to display antidiabetic properties
[200–202]. Hyperoside prevented against diabetic ne-
phropathy by inhibiting apoptosis and albuminuria in
glomerular podocytes isolated from diabetic rats and mice
[203, 204]. Other biological activities of hyperoside in-
clude reducing accelerated production of AGEs in
ECV304 cells via the JNK pathway [205]; suppression of
inflammation through reducing nuclear factor-κB activa-
tion in mouse peritoneal macrophages [206]; and inhib-
ition of α-glucosidase and apoptosis in liver cells [207]. In
the heart, hyperoside protected hyperglycemia-induced in-
flammation in vitro and in vivo [208]; hydrogen peroxide-
induced oxidative damage [209, 210]; and it protected
against ischemic-reperfusion injury in isolated rat hearts
[211]. The protective mechanism of hyperoside against
diabetes and heart associated complications has been
mainly through suppressing cell apoptosis, improving
mitochondrial function and regulating Nrf2 and extracel-
lular signal-regulated protein kinase signaling [212, 213].

PPAG
PPAG is a phenylpropenoic glucoside (Table 2) that acts
as a precursor in the flavonoid biosynthesis pathway and
has been shown by various studies to be present in rooi-
bos [18, 81, 108]. The occurrence of PPAG in rooibos
was described for the first time about two decades ago
[108] and its bioavailability profile is yet to be estab-
lished. Phenylpyruvic acids apparently play a key role in

the biosynthesis of a number of secondary metabolites,
including PPAG [214]. The biological activity of a
compound with similar structure to PPAG such as 3-
phenylpyruvate has long been reported to display antidi-
abetic properties [215, 216]. Exposure of cardiomyocytes
isolated from diabetic rats to a low concentration of fer-
mented rooibos that contains a relatively high level of
PPAG (0.71 g/100 g extract) prevents oxidative stress
and apoptosis [21]. Recent findings indicated that this
compound attenuates insulin resistance and protects
beta cells from obese and streptozotocin-induced mice
against endoplasmic reticulum stress-induced apoptosis
[217–219]. Data available on the cardioprotective
properties of PPAG are limited to a study in H9c2 cardi-
omyocytes, showing that PPAG abolishes high glucose-
induced altered myocardial substrate metabolism and
apoptosis by increasing the Bcl2/Bax ratio and reducing
caspase 3/7 activity [21]. This study further showed that
PPAG displayed reduced capacity to protect H9c2 cells
against oxidative stress. This result was anticipated since
PPAG is not expected to be an active antioxidant as it
lacks the phenolic structural features that are required
for free radical scavenging ability [220]. Interestingly, PPAG
used in combination with a known antidiabetic agent such
as metformin demonstrated better protection of cardio-
myocytes exposed to high glucose-induced oxidative stress
than when used as a monotherapy [221]. Correspondingly,
Patel et al. [222] recently showed that PPAG has no inhibi-
tory effect on cytochrome P450 enzymes, CYP2C8,
CYP2C9, and CYP3A4, which are important in the metab-
olism of hypoglycemic drugs, such as thiazolidinediones
and sulfonylureas. Supporting the potential use of nutra-
ceutical agents such as PPAG, especially in combination
with a current antidiabetic agent to attenuate oxidative
stress-induced damage and protect diabetic individuals at
risk of myocardial infarction needs further investigation.

Conclusions
Blood glucose lowering therapies such as metformin and
insulin have played a major role in prolonging lives of
diabetic patients. However, tight control of blood glu-
cose remains a challenge in such patients. By contrast,
ameliorative therapies for oxidative stress, including
polyphenols as an adjunct to current blood lowering
drugs, show promise in protecting diabetic hearts in ex-
perimental models. In recent years, rooibos has gained
popularity due to its potential use as a dietary supple-
ment that is rich in polyphenols. The presence of con-
stituents such as aspalathin, nothofagin and PPAG that
are unique to rooibos or rarely occur in other plants
make it attractive for scientific investigation. The com-
pounds present in rooibos continue to present robust
biological properties that are associated with ameliorative
effects on inflammation and apoptosis, leading to improved
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cardiac function in different animal models. In addition,
current evidence has suggested that the combinational use
of some of these compounds with known antidiabetic
agents such as metformin may enhance their biological ef-
ficacy. However, this review clearly highlights the evidence
gap pertaining to the molecular mechanisms associated
with the cardioprotective effect of rooibos and its polyphe-
nols. Once these molecular mechanisms are established, in
addition to verification of such findings in clinical studies,
it could make a significant step in accelerating develop-
ment of an evidenced-based rooibos nutraceutical. It is
therefore imperative that we further investigate the mecha-
nism(s) by which rooibos flavonoids and PPAG modulate
diabetes-induced cardiovascular related complications
thereby identifying new therapeutic candidates.
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