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Abstract

Background: Excess weight is a strong risk factor for the development of dysglycaemia. It has been suggested that
changes in the metabolism microRNAs, small non-coding RNAs that regulate gene expression, could precede late
glycaemic changes. Vitamin E in turn may exert important functions in methylation and gene expression processes.
This study aimed to determine the effect of α-tocopherol on glycaemic variables and miR-9-1 and miR-9-3 promoter
DNA methylation in overweight women.

Methods: A randomized, double-blind, exploratory, placebo-controlled study was conducted in overweight and
obese adult women (n = 44) who ingested synthetic vitamin E (all-rac-α-tocopherol), natural source vitamin E (RRR-
rac-α-tocopherol) or placebo capsules and were followed up for a period of 8 weeks. Supplemented groups also
received dietary guidance for an energy-restricted diet. An additional group that received no supplementation and
did not follow an energy-restricted diet was also followed up. The intervention effect was evaluated by DNA
methylation levels (quantitative real-time PCR assay) and anthropometric and biochemical variables (fasting plasma
glucose, haemoglobin A1C, insulin, and vitamin E).
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Results: Increased methylation levels of the miR-9-3 promoter region (P < 0.001) and reduced haemoglobin A1C
(P < 0.05) were observed in the natural source vitamin E group after intervention. Increased fasting plasma glucose
was observed in the synthetic vitamin E group, despite the significant reduction of anthropometric variables
compared to the other groups.

Conclusions: α-Tocopherol from natural sources increased methylation levels of the miR-9-3 promoter region and
reduced haemoglobin A1C in overweight women following an energy-restricted diet. These results provide novel
information about the influence of vitamin E on DNA methylation.

Trial registration: ClinicalTrials.gov, NCT02922491. Registered 4 October, 2016.

Keywords: DNA methylation, miR-9, miR-9-1, miR-9-3, Haemoglobin A1C, Fasting plasma glucose, α-Tocopherol,
Obesity, Diet

Background
Obesity is a pro-inflammatory state with a broad impact
on health and is the main risk factor for metabolic dis-
eases such as diabetes, with an alarming increase world-
wide [1]. Epigenetic mechanisms such as DNA
methylation and regulation by microRNAs (miRs) play a
central role in the obesogenic environment [2, 3]. Condi-
tions associated with obesity, such as chronic inflamma-
tion, hyperglycaemia and hyperlipidaemia, are related to
changes in DNA methylation status and gene expression
[2, 4]. MiRs in turn can affect several signal pathways
with impact on chronic inflammation, apoptosis, and ab-
normal cell cycle progression [3].
Methylation of DNA in promoter regions, particularly

in CpG dinucleotides (cytosine-phosphate-guanine), is
more often associated with transcriptional repression,
while lower levels of methylation are related to increased
transcription [5–7], although this relationship is not uni-
versal [8]. MiRs are small RNAs of approximately 22 nu-
cleotides, which, unlike messenger RNA (mRNA), do
not encode protein. The miRs perform functions of
mRNA repression or degradation, leading to the impedi-
ment of translation and acting as post-transcriptional
regulators [9–11].
Transcription of miRs can also be epigenetically regu-

lated by methylation in CpG islands [12, 13]. In the hu-
man genome, there are three different regions that can
be transcribed in the same mature miR-9 sequence:
miR-9-1 (chromosome 1), miR-9-2 (chromosome 5) and
miR-9-3 (chromosome 15) [10, 14]. MiR-9 plays a role
in insulin and glucose homeostasis, in vitro and in vivo,
and its dysregulation has been associated with obesity,
diabetes, and non-alcoholic fatty liver disease [14–17].
However, despite these findings, the impact of nutri-
tional interventions related to obesity on miR methyla-
tion levels has not yet been described, with most studies
investigating genes encoding mRNA [4].
α-Tocopherol is a signalling molecule involved in an

extensive network, with effects on gene regulation, par-
ticularly by modulation of the activity of several signal

transduction enzymes and transcription factors [18, 19].
In mice, tocopherols and tocotrienols reduced DNA
damage and affected DNA methyltransferase 1 (Dnmt1)
and MutL homolog 1 (MLH1) gene expression and
methylation [20]. It was also demonstrated that differ-
ences in dietary vitamin E may affect hepatic miRs con-
centrations in rats; however little is known about
potential regulatory effects of vitamin E on miRs [21].
Thus, for its possible influence on DNA methylation

[20, 22, 23], vitamin E has been suggested as an epige-
netically active nutrient as well as an important nutri-
tional factor in preventing DNA damage caused by
oxidative stress due to obesity [20]. In fact, obesity, asso-
ciated with oxidative stress and inflammation, seems to
increase the requirement for α-tocopherol [24, 25]. It
has also been observed that approximately 79% of the
world population has α-tocopherol blood levels below the
levels at which health effects such as prevention of cardio-
vascular disease and different types of cancer may occur
(< 30 μmol/L) [26]. According to a recent systematic re-
view of α-Tocopherol global status, low dietary intake has
also been reported, reaching values even below estimated
average requirement for vitamin E in the US (EAR:
12 mg/day) [27]. Taken together, these observations high-
light the potential of vitamin E on health [26, 28].
Two sources of α-Tocopherol, naturally sourced RRR

α-Tocopherol (likely greatest effect on health outcomes)
and synthetic all-racemic α-Tocopherol, are commonly
consumed from foods and dietary supplements, respect-
ively [29]. These different isomeric forms differ in bio-
activity and human trials have been less conclusive than
animal research about health beneficial effects of both
sources a-Tocopherol [30]. It was demonstrated that vita-
min E supplementation, with or without caloric restriction
upregulated the mRNA expression of genes that encodes
key enzymes involved in cholesterol metabolism, suggest-
ing the maintenance of hepatic homeostasis in rats [31]. It
is thought also that caloric restriction it might regulates
many different metabolic pathways and attenuate the epi-
genetic changes occurring during the progress of aging

Luna et al. Nutrition & Metabolism  (2018) 15:49 Page 2 of 11

http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02922491?term=NCT02922491&rank=1


[32]. Thus, this study aimed to determine the effect of
α-Tocopherol (RRR α-Tocopherol and all-racemic
α-Tocopherol) on glycaemic variables and miR-9-1 and
miR-9-3 promoter DNA methylation in overweight and
obese women under energy-restricted diet.

Methods
Subjects
Study subjects were recruited from the study titled “II
Ciclo de Diagnóstico e Intervenção da Situação Alimentar,
Nutricional e das Doenças não Transmissíveis mais Preva-
lentes da População do Município de João Pessoa (II DIS-
ANDNT/JP) [Cycle II of Diagnosis and Intervention of the
Food, Nutritional and Non-Communicable Diseases Status
of the Population of the Municipality of João Pessoa (II
DISANDNT/JP)” [33, 34] which was conducted between
May 2015 and May 2016. The study II DISANDNT/JP
(technical advice: 0559/2013) and the clinical trial (tech-
nical advice: 1.697.641, CAEE 50410315.5.0000.5188) were
approved by the Research Ethics Committee, Health Sci-
ences Center, University of Paraíba, Brazil. The clinical trial
was recorded on clinicaltrials.gov as NCT02922491. All
subjects signed the informed consent before participating
the study. The study was conducted in accordance with
the Declaration of Helsinki.
A total of 166 overweight and obese (body mass index

(BMI) ≥25 kg/m2) women were screened. We chose
women because they represented a higher percentage and
greater adherence to II DISANDNT/JP project [33, 34],
thus, greater adherence likelihood to the clinical trial. We
included women within the age range of 20–59 y with a
preserved cognitive state. We excluded persons with a his-
tory of alcoholism, smoking, neuropsychiatric disorders,
use of medication or medical diagnoses for chronic dis-
eases with influence on the endocrine and metabolic sys-
tem (diabetes, thyroid disorders, liver disease, kidney
disease, cardiovascular disease and cancer), use of drugs
known to interfere with folic acid metabolism (in the last
3 months), use of multivitamin or mineral supplements,
use of anorexigenic or anabolic substances, pregnancy,
plans to become pregnant, and loss of weight in the period
prior to the study.
After the initial screening, 55 subjects were block ran-

domized and included in the trial. Fifteen women were al-
located to each intervention group and 10 were allocated
to the group that did not participate in any intervention
through the randomization process using Stata® 13.0 soft-
ware (College Station, Texas, USA). Eleven subjects did
not complete the study. In total, 44 subjects completed
the study and were included in data analysis (Fig. 1).

Study design
The study was designed as a randomized, double-blind,
exploratory, placebo-controlled study. One week before

the start of vitamin E or placebo supplementation (plat-
eau week), women received individual diet plans based
on the dietary recommendations of the National
Cholesterol Education Program (NCEP) [35] and the
American Heart Association (AHA) [36]. The individual
diet plans were performed using the food equivalent sys-
tem proposed by Costa [37]. The energy content was
based on the Estimated Energy Requirement (EER) to
maintain the weight of women over 19 years of age with
a BMI > 25 kg/m2 [38], subtracting approximately 500 to
1000 kcal, so that all consumed between 1200 and
1500 kcal to promote weight loss [39, 40]. We chose
NCEP and AHA recommendations because the study’s
women were at metabolic alterations risk, such as gly-
cemic disorders. Thus, it is emphasized that in this inter-
vention, women with glycemic dysregulation remained
in the sample, except those already diagnosed with dia-
betes. We also implemented a weight loss diet due the
genes evaluated were related to glucose metabolism in
vivo (mice) in obesity [14, 41]. The recommended diet
during the intervention consisted of about 55% carbohy-
drates, 30% fat (< 7% saturated fat), and 15% protein.
In the second week of the study, the women continued

to follow the recommended individual dietary plan and
started VE or placebo supplementation. The synthetic VE
group received daily supplementation with 400 mg syn-
thetic vitamin E (all-rac-α-tocopherol); the natural VE
group received daily supplementation with 400 mg of nat-
ural source vitamin E from soybean oil (RRR-α-tocopherol);
and placebo group 3 received daily supplementation with
400 mg of starch. The period of VE or placebo supplemen-
tation combined with energy-restricted diet lasted 8 weeks.
Subjects met with a nutritionist every 15 days.
The subjects in the non-intervention group did not fol-

low a diet plan, nor did they take vitamin E or placebo
capsules; they were asked to continue their current eating
habits over the 8-week period. At the end of the study,
these participants received guidance for a similar
energy-restricted diet to that received by the other groups.
Synthetic vitamin E capsules (all-rac-α-tocopherol

acetate) were handled at the Roval LTDA (João
Pessoa, Paraíba, Brazil), and natural vitamin E cap-
sules (RRR-α-tocopherol), originating from soybean
oil, were obtained from Carlson Lab (Arlington
Heights, IL, USA) and had been used in a previous
study with asthmatic patients [42]. Daily capsule in-
take was recommended during meals to enhance ab-
sorption. Synthetic vitamin E and placebo capsules
had the same appearance and smell (opaque) and the
natural capsules had a different appearance (gelatin-
ous). Despite capsules appearance difference they
were delivered individually to each participant’s home
and the women did not meet during the study period.
They did not know each other and live in different
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locations/neighborhoods keeping them blind during
the study period. They remained blind for the inges-
tion of vitamin E or placebo capsules.
Regarding the quantity offered (400 mg), it is con-

sidered safe, according to the results of previous
studies [43], and it is below the UL value for this
vitamin, which is 1000 mg/day, with an Estimated
Average Requirement (EAR) for adults of 12 mg/day,
according to the Dietary Reference Intakes (DRIs)
[44]. Therefore, we chose this dosage because no ad-
verse effects were demonstrated so far and vitamin E
supplementation may also help in the glycated
haemoglobin control [43, 45]. Since results in mice
may not be relevant to humans further studies are
required to elucidate the potential beneficial or ad-
verse effects of vitamin E [46]. Such studies will also
help identify likely “nonresponders,” as well as those
susceptible to untoward outcomes from supplementa-
tion with specific nutrients and their nutrient–gene
interactions [47].

Anthropometric and dietetic measurements
Weight and height were measured in triplicate, and the
average of the three values was used. The BMI was then
calculated as the body weight (kg) divided by the
squared body height (meters), and the cut-off points rec-
ommended by the World Health Organization (WHO)
were used [48]. Waist circumference (WC) was used to
determine abdominal obesity [49] and waist-to-height
ratio (WHtR) as an indicator of early health risk [50].
To evaluate the regular food intake of the individuals,

four 24-h dietary recalls (24HR) were performed, two
in the pre-intervention period, and two during the 4th
and 8th intervention weeks. To complete the 24HR, a
food photograph album with household measures was
used. This food photograph was based on the actual
weight of the average food intake validated for this
population, thus minimizing possible biases of this
method [51]. The foods were analyzed by the nutrition
software Dietwin®, and the multiple source method
(MSM) (https://msm.dife.de/) was used to estimate the

Screening (n= 166)

Analyzed (n=12)

Synthetic VE Group
(n = 15)

Randomized (n= 55)

Natural VE Group
(n = 15)

Placebo Group
(n = 15)

Non-intervention 
(n = 10)

Protocol (n = 2)

Personal reason (n = 0)

Medication (n = 1)

Protocol (n = 2)

Personal reason (n = 0)

Medication (n = 0)

Protocol (n = 3)

Personal reason (n = 2)

Medication (n = 1)

Protocol (n = 0)

Personal reason (n = 0)

Medication (n = 0)

Analyzed (n=13) Analyzed (n=09) Analyzed (n=10)

Excluded (n = 111)

Exclusion criteria (n = 96)

Personal reason (n = 10)

Other reasons (n = 5)

Follow-up
8 weeks

Fig. 1 Flowchart of study subjects. VE: vitamin E. In total, 55 subjects were randomized in 4 groups being followed for a period of 8 weeks. The
synthetic VE group received all-rac-α-tocopherol capsules, the natural VE group received RRR-α-tocopherol capsules, the placebo group received
starch capsules. VE supplemented groups and placebo also received dietary guidance for energy-restricted diet. The non-intervention group did
not receive any type of intervention during the 8-week period. Eleven subjects dropped out due protocol violation (n = 7), personal reason
(n = 2), medication (n = 2). A total of 44 subjects were included in statistical evaluation. Before and after intervention were analyzed miR-9-1 and
miR-9-3 methylation levels, anthropometric and biochemical variables (fasting plasma glucose, hemoglobin A1C, insulin, vitamin E)
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regular intake of the individual from repeated measure-
ments in a determined period.

Biochemical measurements
The biochemical analyses were performed before and after
the end of the nutritional intervention. Analyses of fasting
plasma glucose by the enzymatic method [52],
hemoglobin A1C (HbA1c) by high-performance liquid
chromatography [53], insulin by electrochemilumines-
cence [54], HOMA-IR as fasting plasma glucose (mg/dL)
x (fasting insulin (mg/dL) × 0.05551) / 22.5 [54] e vitamin
E by ultra-performance chromatography [55] were per-
formed. Blood samples were collected after overnight fast-
ing in sterile vacuum tubes between 07:00 and 08:00 at
patients’ homes, supervised by a nurse and the researcher
responsible. Tubes for vitamin E analysis were carefully
wrapped to avoid exposure to light. The samples were
transported properly packed to the Clinical Pathology
Laboratory HEMATO (João Pessoa, Paraíba, Brazil),
where the analyses were conducted. The vitamin E ana-
lysis was carried out at the Hermes Pardini Laboratory
(Minas Gerais, Brazil).

DNA methylation analyses
The DNA from white blood cells were extracted using
10 mM TRIS-HCl, according to protocol described and
adapted from Miller et al. [56]. Genomic DNA was
modified by bisulfite from the Cells-to-CpG™ Bisulfite
Conversion Kit (Applied biosystems, Life Technologies,
California) according to the manufacturer’s instructions.
The bisulfite conversion reaction was incubated at 65 °C
for 30 min, 95 °C for 1.5 min, 65 °C for 30 min, 95 °C
for 1.5 min, 65 °C for 30 min with a final incubation at
4 °C for up to 4 h in a PCR thermocycler. The analysis
of methylation levels was performed by High Resolution
Melting (HRM) Real Time PCR method in a Appplied
Biosystems 7500 Fast System. PCR was performed in a
total volume of 20 μl containing: 1× Buffer, 4 mM Mg +
2, 200 μM of each dNTPs (Qiagen), 250 nM of each pri-
mer, 5 μM SYTO® (Invitrogen), 1 U HotstarTaq DNA
Polymerase (Qiagen) and 1 μl of bisulfite-modified
DNA. The primers sequence were: miR-9-1-mF: 5′-GAT
TTA GGT AGA GGT TTT TTT AgT TT-3′ (248 bp),
miR-9-1-mR: 5′-TTA ACT ACC CAT TTC CCC TTT
TAA T-3′, miR-9-3-mF: 5′-GTT TGT TTA TTT TTT
TTG GTT TTT-3′ (220 bp), miR-9-3-mR: 5′-AAA TTA
TAA AAATCATTT CTA CTT TC-3′ [57]. Primers were
identified using UCSC website (http://genome.ucsc.edu/):
miR-9-1, chr 1: 156390133–156,390,221; and miR-9-3, chr
15: 87,988,426–87,722,341 [57]. The PCR program con-
sisted of an initial enzymatic activation at 94 °C for 10 min-
utos, followed by 35 ciclos de 94 °C/1 min, 60 °C/1 min
and 72 °C/30 s, with a final extension at 72 °C for 10 min.
The melting curves were normalized by calculation of the

‘line of best fit’ in between two normalization regions be-
fore and after the major fluorescence decrease represent-
ing the melting of the PCR product using the software
provided with the HRM Software v2.0, provided by 7500
Fast System.

Statistical analysis
Continuous variables were tested for normality and
homogeneity of variances by the Shapiro-Wilk test and
the Levene test, respectively. Variables with normal dis-
tribution were described as the means and standard de-
viation. The variables with non-Gaussian distribution
were described as median and quartile interval and cat-
egorical variables, as proportions.
To evaluate possible pre- and post-intervention differ-

ences between miR-9-1 and miR-9-3 methylation levels in
each group, we used the paired Wilcoxon test and boxplot
graphs for representation. For the comparison of bio-
chemical and dietary variables before and after the inter-
vention in each group, Student’s paired t-test was used for
glycaemic control variables and serum vitamin E, and the
paired Wilcoxon test was used for dietary variables.
One-way ANOVA and post hoc Bonferroni test were

used for comparisons among groups before and after
intervention (glycaemic control variables and serum vita-
min E), and the Kruskal-Wallis test and Mann-Whitney’s
a posteriori test, for variables with non-normal distribu-
tion and/or heteroscedasticity (methylation levels and
dietary variables). The χ2 test was used to compare cat-
egorical variables in the comparability among the
pre-intervention groups. The statistical program used
was Stata® 13.0 (College Station, Texas, USA). Statistical
significance was determined as p < 0.05. It is noteworthy
that in all statistical analyzes performed, the p-values ad-
justed by the Hommel procedure (modified Bonferroni
test) were included in the tables and figures in order to
avoid erroneous inferences in tests involving multiple
comparisons of outcomes [58, 59].

Results
Results at baseline
Before the intervention period, the groups supplemented
with synthetic vitamin E (all-rac-α-tocopherol), natural
vitamin E (RRR-α-tocopherol) or placebo and the
non-intervention group were homogenous with regard
to miR-9-1 and miR-9-3 methylation levels, anthropo-
metric variables, family income, physical activity prac-
tice, menopausal status (Table 1), glycaemic control
variables (fasting plasma glucose, haemoglobin A1C, in-
sulin) and serum vitamin E (Table 2).
The mean BMI in the groups was 30.0 kg/m2 (obesity

grade 1), with 25% obese women in the synthetic vita-
min E group, 46% in the natural vitamin E group, 44% in
the placebo group and 30% in the non-intervention
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group. There were no differences in BMI values among
the groups (Table 1).
Regarding the risk classification for diabetes from gly-

cated haemoglobin, 50% of the women in the synthetic
vitamin E group, 77% of the women in the natural vitamin
E group and 67% in the placebo group presented HbA1c
values between 5.7–6.4% [60], without significant differ-
ences among the groups before the intervention (Table 3).
Serum vitamin E values (mg/L) at the beginning of the

intervention were below those recommended by the DRIs
related to health effects (≥30 μmol/L).

Effect of α-tocopherol on DNA methylation
MiR-9-1 methylation levels were unaffected by
α-tocopherol (Fig. 2). On the other hand, an elevation in
miR-9-3 methylation levels was observed for the group
supplemented with natural source α-tocopherol (Fig. 3).
For the placebo group, which did not receive

Table 1 Baseline characteristics of the study population before the start of the study1

Synthetic VE
(n = 12)

Natural VE
(n = 13)

Placebo
(n = 9)

Non-intervention
(n = 10)

P-value Adjusted p-value*

DNA methylation (%)

miR-9-1 8.7 ± 8.8 9.3 ± 10.6 12.8 ± 9.0 10.5 ± 9.2 0.637 1.000

miR-9-3 8.6 ± 7.7 2.8 ± 4.1 4.0 ± 4.1 5.7 ± 2.6 0.051 0.204

Age (years) 42.1 ± 8.5 49.3 ± 7.7 46.7 ± 11.9 40.1 ± 6.7 0.062 0.248

Body mass index (kg/m2) 29.9 ± 4.6 30.4 ± 3.8 30.0 ± 4.5 29.9 ± 3.6 0.918 1.000

Waist circumference (cm) 90.9 ± 10.8 93.0 ± 7.4 92.3 ± 10.7 96.7 ± 7.7 0.518 1.000

Waist-to-height ratio (cm) 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.795 1.000

Family income ($) 862.6 ± 317.2 1028.3 ± 652.0 1092.1 ± 1171.1 563.2 ± 447.6 0.155 0.620

Daily physical activity practice/min 10.8 ± 25.4 23.1 ± 32.8 22.2 ± 27.3 10.0 ± 21.1 0.486 1.000

Proportion of active individuals n (%)a 2(16.7) 4(30.8) 2(22.2) 2(20.0) 0.856 1.000

Proportion Peri and postmenopausal n (%)b 5(41.7) 9(69.2) 6(66.7) 6(60.0) 0.517 1.000
1Data presented as mean and standard deviation or n (%). Synthetic VE contains all-rac-α-tocopherol and natural VE contains natural RRR-α-tocopherol. VE: vitamin
E. *Adjusted p-value was calculated by Hommel procedure (modified Bonferroni test). ANOVA and a posteriori Bonferroni test were used to compare means
between groups. Kruskal-Wallis test and Mann-Whitney a posteriori test were used to compare medians between groups. Pearson’s chi-square test was used to
verify differences between categorical variables: a4 cells (50%) expected counts less than 5; b3 cells (37.5%) expect to count less than 5

Table 2 Effects of intervention with α-tocopherol e placebo on glycemic and dietary control variables1

Synthetic VE (n = 12) Natural VE (n = 13) Placebo (n = 9) Analysis of variance
(ANOVA) After

Before After P* Before After P* Before After P* P*

HbA1c (%)
2 5.6 ± 0.3 5.6 ± 0.3 n.s. 5.9 ± 0.3 5.7 ± 0.40 0.004 5.8 ± 0.3 5.8 ± 0.3 n.s. n.s.

Plasma
glucose
(mg/dL)2

85.4 ± 8.4 92.5 ± 9.4 0.002 94.8 ± 11.3 95.7 ± 10.0 n.s. 94.9 ± 11.8 97.5 ± 11. 1 n.s. n.s.

Insulin
(uU/mL)2

12.1 ± 6.8 13.5 ± 6.7 n.s. 12.8 ± 3.4 13.6 ± 5.7 n.s. 14.7 ± 7.6 14.4 ± 5.7 n.s. n.s.

HOMA-IR2 2.6 ± 1.6 3.2 ± 1.8 n.s. 3.0 ± 1.0 3.3 ± 1.7 n.s. 3.6 ± 2.3 3.6 ± 1.8 n.s. n.s.

Vitamin E
(mg/L)3

12.2 ± 3.8 23.6 ± 11.2a 0.016 12.8 ± 2.6 19.5 ± 7.2 0.002 13.2 ± 6.3 12.3 ± 2.8 n.s. 0.030

α-tocopherol
(mg/dia)4

0.9 ± 0.8b 402.5 ± 2.2c 0.004 2.5 ± 3.4 401.4 ± 0.7c 0.002 6.6 ± 10.0 2.8 ± 1.4 n.s. 0.000

Calories
(kcal/day)5

1591.7 ± 358.4 1231.0 ± 263.4 0.006 1340.5 ± 246.8 1049.6 ± 292.8 0.006 1878.1 ± 765.8 1119.9 ± 248.2 0.038 n.s.

1Data presented as mean and standard deviation. Synthetic VE contains all-rac-α-tocopherol and contains natural RRR-α-tocopherol. HbA1c
glycated hemoglobin; HOMA-IR Homeostasis Model Assessment-Insulin Resistance; VE vitamin E. *Adjusted p-value< 0.05 (this p was corrected by
Hommel procedure); n.s: not significant. Paired t test or Wilcoxon paired test was used to compare means or medians before and after
intervention in each group. 2For glycemic control variables no differences were found between the three groups before and after intervention by
analysis of variance ANOVA. 3For vitamin E (mg/L) differences between the three groups were found only after intervention by ANOVA. Post-Hoc
Bonferroni test was used for multiple comparisons after intervention: a = significantly different from placebo group at p = 0.004. 4For α-tocopherol
(mg/day) differences were found before (p = 0.037) and after intervention (p = 0.000) by the Kruskal-Wallis test. Mann Whitney test was used for
multiple comparisons: b = significantly different from placebo group before intervention at p = 0.013; c = significantly different from placebo
group after intervention at p = 0.000. 5For calories from diet no differences were found between the three groups before and after intervention
by the Kruskal-Wallis test, respectively

Luna et al. Nutrition & Metabolism  (2018) 15:49 Page 6 of 11



supplementation with α-tocopherol, there was a trend of
elevation in miR-9-3 methylation levels; however, this
was not significant (Fig. 3).
In order to reduce the variations observed in Fig. 3 we

apply the tests with the withdrawal of outliers values.
The results did not change (Please see Additional file 1).

Effects of intervention on biochemical and dietary
parameters
The group supplemented with synthetic vitamin E
showed an increase in fasting plasma glucose, whereas
the group supplemented with natural source vitamin E
was the only one to present an HbA1c reduction com-
pared with the baseline (at baseline 77% of the women
presented HbA1c values between 5.7–6.4%). Both groups
supplemented with vitamin E increased serum levels
after intervention. Comparing the three groups, serum
levels were higher for the synthetic vitamin E group than
for the placebo group. In relation to the α-tocopherol
dietary intake levels (mg/day), these were lower than
EAR before intervention, being increased only for the
groups supplemented with vitamin E. The three groups
showed a reduction in caloric intake after intervention
(Table 2). There is no difference for HbA1c, plasma glu-
cose, insulin and HOMA-IR after intervention by ana-
lysis of variance ANOVA (Table 2).

Discussion
This study demonstrated that 8 weeks of daily supplemen-
tation with natural source vitamin E capsules (RRR-α-to-
copherol) in overweight and obese women provided an
increase in miR-9-3 methylation levels and decreased
values of glycated haemoglobin. RRR-α-tocopherol is the
most biologically active form of α-tocopherol, present in
natural sources such as vegetable oils, seeds and nuts. On
the other hand, the synthetic form, all-rac-α-tocopherol, is
composed of 8 stereoisomers in equal proportions (RRR-,
RRS-, RSR-, RSS, SRR-, SRS-, SSR- and SSS-) and con-
sumed as a supplement [26, 30, 44, 61]. Evidence suggests
variation of bioavailability and biopotency among of the 8
stereoisomers depending on the dosage, the type of tissue,
and the duration of dosing [29, 30]. It has been assumed
that, at doses of an equivalent mass, all-rac-α-tocopherol
has one-half the biopotency of RRR-α-tocopherol. RRR
α-tocopherol is preferentially taken up into tissues over
and it is suggested better functional capacity [29].
Although all forms of vitamin E are absorbed without

preference, the α-tocopherol carrier protein (α-TTP)
preferably incorporates RRR-α-tocopherol in VLDL (very
low-density lipoprotein) compared to the other stereo-
isomers. This incorporation into VLDL in the liver is
what determines α-tocopherol plasma concentrations
[30]. All-rac-α-tocopherol supplement may increase
non-RRR-α-tocopherol stereoisomer proportion and
consequently decrease RRR-α-tocopherol percentage in
plasma [62]. In the present study, α-tocopherol serum
levels do not discriminate between the different forms
[55]. Thus, we have not been able to evaluate the levels
of different stereoisomers in plasma. Different stereo-
isomers may present different biopotency, which is
higher for RRR-α-tocopherol. Therefore, despite the

0
10

20
30

40
m

iR
-9

-1
 m

et
hy

la
tio

n 
%

Synthetic VE Natural VE Placebo Non-intervention

Before After

Fig. 2 Effect of α-tocopherol supplementation on miR-9-1 methylation
levels. VE: Vitamin E. The synthetic VE contains all-rac-α-tocopherol and
contains natural RRR-α-tocopherol. There were no differences in
methylation levels before and after intervention for the synthetic
vitamin E group (p = 0.146; adjusted p = 0.584), natural (p = 0.581;
adjusted p = 1.000), placebo (p = 1.000; adjusted p = 1.000),
and non-intervention group (p = 0.754; adjusted p = 1.000)
(Wilcoxon test paired). Adjusted p means that the p-value was
corrected by Hommel procedure (modified Bonferroni test)
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Fig. 3 Effect of α-tocopherol supplementation on miR-9-3 methylation
levels. VE: Vitamin E. The synthetic VE contains all-rac-α-tocopherol and
contains natural RRR-α-tocopherol. Methylation levels were significantly
higher in the natural vitamin E (VE) group after intervention (p = 0.000;
adjusted p = 0.000). There were no differences in methylation levels
before and after intervention for the synthetic vitamin E group
(p = 0.388; adjusted p = 0.776), placebo (p = 0.179; adjusted p = 0.537)
and non-intervention group (p = 1.000; adjusted p = 1.000) (paired
Wilcoxon test). Adjusted p means that the p-value was corrected by
Hommel procedure (modified Bonferroni test)
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similarity in plasma, other factors such as biopotency
could explain the differences between the two sources
(synthetic and natural) in relation to the molecular effects.
After intervention we found that α-tocopherol serum
levels were higher for the synthetic vitamin E group (all-ra-
c-α-tocopherol) comparing to placebo group. We didn’t
evaluate lipids markers, but higher α-tocopherol plasma
concentrations could also reflect increase plasma lipid con-
centrations as well as depletion of tissue α-tocopherol [28].
As an important nutrient against oxidative stress, vita-

min E is not restricted to antioxidant functions [63]; it also
performs several essential actions at the molecular level,
such as modulate the activity of nuclear receptors, tran-
scription factors, membrane channels, and enzymes [19]. It
is known that epigenetic marks can be altered by a variety
of factors [7], including diet [64]. Even though few studies
have been conducted regarding the effect of vitamin E on
epigenetic mechanisms, in mice, tocopherols were capable
of decreasing DNA methylation in different genes [20, 23].
In the present study, we observed increased methylation

levels with vitamin E supplementation. However, this was
observed only for the miR-9-3 promoter region and for
the group that consumed RRR-α-tocopherol capsules.
Taken together, the cited articles and the present study
show that vitamin E is associated with changes in the
DNA methylation profile and that the decrease or increase
in methylation levels is gene-specific. To the best of our
knowledge, this is the first study to report the effect of a
nutritional intervention on the methylation levels of genes
encoding miRs. MiR-9-3 appears to be the most expressed
form among the three genes that are transcribed in miR-9
[14, 65]. Adequate levels of miR-9 are important for the
balance of insulin secretion and glucose homeostasis [66].
On the other hand, when miR-9 is overexpressed, Onecut2
(OC2) expression is reduced, leading to an increase in
Granuphilin, a negative regulator of the β-cell secretory
ability, resulting in lower insulin secretion. Decrease in
the β-cell secretory capacity in turn can cause hypergly-
caemia and lead to diabetes [41, 66, 67].
Corroborating these observations, Motawae et al. re-

ported that increased miR-9 expression in human serum
was positively associated with fasting glucose and BMI in
subjects with type 2 diabetes [15]. These authors did not
evaluate methylation levels in genes encoding miR-9.
Thus, it is possible that miR-9-3 promoter region methyla-
tion is one of the mechanisms involved in the regulation
of miR-9 levels. According to Yan et al., increases in
miR-9-3 promoter region methylation but not miR-9-1
promoter region methylation were related to the reduc-
tion in miR-9 expression in obese rat hepatocytes [14]. In
turn, miR-9 may present alternative and non-overlapping
functions in different cell types [14, 17, 67].
Regarding the impact on glycaemic control variables,

it has been reported that vitamin E would have an

effect on glycated haemoglobin and insulin through the
disruption of glycation and protection of β-cell toxicity
in patients with type 2 diabetes [43, 45] who present with
glycated haemoglobin levels of 8–10% or low levels of
vitamin E (< 5.0 μg/mL) [45]. A wide variation in the vita-
min E form (RRR-α-tocopherol, all-rac-α-tocopherol and
tocotrienol) and dosage used (90 to 810 mg/day) have
been described in the above-mentioned meta-analysis
[43]. In the present study, 77% of obese and overweight
women who received 400 mg of RRR-α-tocopherol were
in the pre-diabetes group (5.7–6.4 HbA1c%) [60] and pre-
sented a significant reduction in this parameter after inter-
vention. Greater benefits on glycaemic control may be
observed in treatments with longer periods [43].
Vitamin E supplementation does not appear to result

in significant differences for fasting plasma glucose sta-
tus in individuals with type 2 diabetes compared to pla-
cebo or control [43, 45]. In the present study, natural
source vitamin E also had no effect on fasting plasma
glucose; however, in the all-rac-α-tocopherol group there
was an increase in glucose after intervention, despite a
significant reduction in the values of the anthropometric
markers BMI, waist circumference and waist-to-height
ratio and a reduction in dietary caloric intake. As glu-
cose level fell in the normal range and the increase was
small, the slight increase did not present any clinical sig-
nificance. Thus, since indiscriminate vitamin E supple-
mentation is not supported by the available evidence,
further efforts are needed to establish biomarkers and
selection criteria to predict who can benefit from vita-
min E supplementation [26].
Our study has limitations that should be considered in

interpreting the results. First, the sample size. Second, we
did not measure of miR-9 expression levels and not all CpG
sites will present the typical silencing response [20, 68].
However, it’s important to mention there is a possible in-
verse relationship between miR-9-3 methylation levels and
miR-9 expression level [14]. Significant amounts of miRs
have been found not only at the intracellular level but also
in human extracellular body fluids [11]. In obesity, circulat-
ing miRs have been suggested as biomarkers for the detec-
tion of metabolic stress early phases, as well as for the
detection of the effects of dietary interventions [9].

Conclusions
This study randomized, double-blind, exploratory, con-
trolled demonstrated that supplementation with natural
source α-tocopherol increased miR-9-3 promoter region
methylation levels and improved glycated haemoglobin
profiles in obese and overweight women under
energy-restricted diet and NCEP/AHA dietary regimen.
These results provide new information on the influence
of vitamin E on DNA methylation, specifically on genes
encoding miRs.
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