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Myricetin ameliorates atherosclerosis in the
low-density-lipoprotein receptor knockout
mice by suppression of cholesterol
accumulation in macrophage foam cells
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Abstract

Background: Myricetin, a major flavonoid found in several foods including berries, grapes and wine, exhibited
strong antioxidant potency, yet the effect on atherosclerosis is not fully understood. In this study, we examined the
effect of myricetin on lipid accumulation in macrophage and atherosclerosis in atherosclerosis-prone low density
lipoprotein receptor-deficient (Ldlr−/−) mice.

Methods: Ldlr−/− mice were fed an atherogenic diet supplemented with myricetin (0.15% in the diet, v/v) for 8
weeks. Body weight, adipose tissue weight, food intake, serum biochemical parameters were measured.
Atherosclerosis lesions and macrophages accumulaton in lesions were analyzed and quantified. Macrophages
were exposed to 20 μM of myricetin before incubated with oxidized low-density lipoprotein (ox-LDL) (25μg/mL)
or Dil-ox-LDL for the indicated time. Lipid uptake and foam cell formation were evaluated by flow cytometry and
microscopy. The intracellular lipids were extracted and measured. mRNA expression and protein of cholesterol
metabolism related receptors were analyzed.

Results: Myricetin administration reduced the weight, plasma lipid levels but not food intake in Ldlr−/− mice
when fed an atherogenic diet. Myceritin-treated Ldlr−/− mice displayed significantly less atherosclerotic areas
and macrophages in the cross sections of the aortic root. There were also less lipophilic areas in En face Oil
red O staining of aorta from myceritin-treated Ldlr−/− mice. Myceritin treatment also markedly ameliorated ox-
LDL-induced cholesterol accumulation in macrophages. The expression of CD36 were decreased in myricetin
treated macrophages with ox-LDL incubation, while scavenger receptors class A (SR-A) and scavenger receptors
class B (SR-BI) expression was not altered, indicating that these effect of myricetin were dependent on CD36 pathway.

Conclusions: Our findings indicated that myricetin suppressed cholesterol accumulation in macrophage foam cells by
inhibition of CD36-mediated ox-LDL uptake, and suggested myricetin may have an important therapeutic function for
atherosclerosis.
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Background
Atherosclerosis, a leading causes of death worldwide,
is characterized by excessive cholesterol deposition
within the artery wall resulting in myocardiac infarc-
tion and stroke [1, 2] . Atherosclerosis is a chronic
inflammatory disorder of the vascular wall involving
of many circulating immune cells, such as mono-
cytes, lymphocytes, and plateles [3]. Particularly,
infiltration of monocytes and their subsequent for-
mation of macrophage-derived foam cells and proin-
flammatory cytokine secretion is a crucial step in the
progression of atherosclerosis [4, 5]. Modified LDL
such as ox-LDL causes excess cholesterol deposition
in macrophages and leads to the formation of foam
cells that play a crucial role in the initiation and
progression of atherosclerosis [6, 7].
Myricetin is a naturally flavonoid extracted from

wine, berries, grapes, vegetables and medicinal herbs.
Flavonoids exhibited anti-inflammatory activity and
had been reported as potent natural antioxidants that
protect against modified LDL uptake in macrophages
and attenuated the development of atherosclerosis [8,
9]. The beneficial effect of red wine consumption
against the development of atherosclerosis may help
to explain the ‘French Paradox’- a low incidence of
cardiovascular events in southern France despite a
diet rich in saturated fat [10, 11]. Myricetin has been
shown to possess anti-inflammation and antioxidation
properties [12, 13]. And, myricetin has also demon-
strated the ability to anti-obesity, improve glucose
utilization, modulate lipid metabolism [14–16]. It was
reported that myricetinreduced the weight-gain, feed
efficiency, level of blood lipids, adipocyte size, and
weight and size of the perirenal and epididymal adi-
pose tissues [16]. This anti-obesity effect may be in-
volved in upregulation of adropin and β-endorphin
levels. Furthermore, myricetin has been found to reduce
hyperglycemia, ameliorating the impaired insulin-signaling
pathway and improve glucose utilization in diabetes-like
animal models [14, 17]. However, the effect of myceritin
on the lipid metabolism and atherosclerosis is not fully
understood.
We explored the interaction between myricetin effects

and atherosclerosis used atherosclerosis-prone Ldlr−/−

mice. Ldlr−/− mice fed an atherogenic diet (AsD) dis-
played dislipidemia and accelerated atherosclerosis. This
study investigated the effects of myricetin on lipid me-
tabolism and atherosclerosis in AsD fed Ldlr−/− mice. In
addition to its anti-obesity effect, myricetin has bene-
ficial effects on dislipidemia and atherosclerosis. The
possible mechanism by which myricetin ameliorating
atherosclerosis may be involved in improved lipid me-
tabolism and suppression of cholesterol accumulation
in macrophages.

Methods
Animals
Ldlr−/− mice were purchased from Jackson Laboratories
(Bar Harbor, ME). All experiments involving mice were
approved by the Institutional Animal Care Research Ad-
visory Committee of the National Institute of Biological
Science (NIBS) and Animal Care Committee of Zheng-
zhou University. Ldlr−/− mice were divided into 2
groups: Control group (n = 10), Myr group (n = 10).
Control group were given an AsD (20% fat and 0.5%
cholesterol). Myr group were fed with AsD and supple-
mented with myricetin (0.15% in the diet, v/v). All mice
were maintained on a 12:12-h light-dark cycle and have
free access to water and food. Body weight and food in-
take were monitored throughout the experiments.

Cell culture
Peritoneal macrophages were isolated from WT mice 3
days after intraperitoneal injection with a 4% solution of
thioglycollate media. Isolated peritoneal macrophages
were cultured in DMEM supplemented with 10% fetal
bovine serum. Peritoneal macrophages were plated on
chamber slides in 12-well plates. Treatments including
serum starvation (DMEM only), myricetin treatment
((20 μmol L− 1) or control vehicle (DMSO).

Blood metabolite analysis
Blood was obtained by retro-orbital bleeding. Plasma
total cholesterol (TC), and triglyceride (TG) were deter-
mined by enzymatic methods (Sigma kits, USA).

Atherosclerosis lesion analysis
12-week-old Ldlr−/− mice were fed an AsD (20% fat and
0.5% cholesterol). The aorta and aortic sinus sections
were prepared and stained as described [18]. The lesion
area of each aorta and aortic sinus were analyzed by
using Image J software. Sections of aortic sinus were
subjected to immunohistochemical staining with MAC-2
antibody (Santa Cruz Biotechnology, Dallas, Texas) for
macrophages.

Lipid uptake assay
For Dil-oxLDL uptake macrophages was serum-starved
in DMEM for 24 h. Macrophages were treated with or
without myricetin (20 μmol L− 1) for 20 h, then 10 g/mL
Dil-oxLDL at 4 °C for 4 h. Cells were washed and
lysates were analyzed by fluorometry (Molecular
Devices, Downingtown, PA) with 514 nm excitation
and 550 nm emission.

Foam cell formation
Macrophages were cultured on chamber slides. Cells
were starved for 24 h and treated with myricetin
((20 μmol L− 1) for 12 h, then cells were incubated with
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ox-LDL (25μg/mL) for another 12 h. Upon fixation with
PFA (4%) cells were stained with Oil-red O and evalu-
ated by microscopy. To evaluate cholesterol ester accu-
mulation, cells were incubated with BODIPHY 493/
503(Invitrogen) for the indicated time and flow cytomet-
ric analysis was performed. After 24 h incubation with
ox-LDL, cells were washed 3 times with PBS, and then
free cholesterol (FC), cholesterol ester (CE) and trigly-
ceride (TG) were determined using commercial kits
from Applygen Technologies (Beijing, China).

Western blot analysis
For Western blotting, cells were lysed using RIPA
buffer. Equal amounts of protein (30 μg) were loaded
and separated by 8% SDS-PAGE. Separated proteins
were electrophoretically transferred to a nitrocellu-
lose membrane, blocked with 5% (w v− 1) skim milk
solution for 1 h, and then incubated with primary
antibodies to CD36 (Santa Cruz Biotechnology, Inc.,
CA, USA; Cat. No. sc-9154), SR-B1 (Abcam, Inc.;
Cat. No. ab-106,572), ABCA1 (Abcam, Inc.; Cat. No.
ab-18,180) and GAPDH (Abcam, Inc.; Cat. No.
ab-181,602), respectively, overnight at 4 °C. Blots were
visualized by an ECL system (Pierce).

RNA isolation and quantitative real-time PCR
Total RNA was extracted using Trizol reagent (Invitrogen,
USA) and first-strand cDNA was generated by using an
RT kit (Invitrogen,USA). Amplifications were performed
using an opticon continuous fluorescence detection
system (MJ Research) with SYBR green fluorescence
(Molecular Probes, Eugene, USA). All samples were quan-
titated by using the comparative CT method for relative
quantitation of gene expression, normalized to GAPDH.
The following primers were used: CD36 (Forward: 5
-GGC AGG AGT GCT GGA TTA-3; Reverse: 5 -GAG
GCG GGC ATA GTA TCA-3); SR-A (Forward: 5 -TTA
AAG GTG ATC GGG GAC AAA-3; Reverse: 5 -CAA
CCA GTC GAA CTG TCT TAA G-3; SR-BI (Forward: 5
-AAC ACG TAC CTC CCA GAC ATG CTT-3; Reverse:
5 -AGT CGT CCA TTG CCA CAG-3); ABCA1(Forward:
5-CCC AGA GCA AAA AGC GAC TC-3; Reverse:
5-GGT CAT CAT CAC TTT GGT CCT TG-3); IL-10
(Forward: 5 -GAC CAG CTG GAC AAC ATA CTG CTA
A-3; Reverse: 5 -GAT AAG GCT TGG CAA CCC AAG
TAA-3); IL-6 (Forward: 5 -AGG CTC CGA GAT GAA
CAA-3; Reverse: 5 -AAG GCA TTA GAA ACA GTC
C-3); MCP-1 (Forward: 5 -TCC CAA TGA GTA GGC
TGG AG-3; Reverse: 5 -AAG TGC TTG AGG TGG
TTG TG-3); GAPDH (Forward: 5 -TGA TGA CAT CAA
GAA GGT GGT GAA G-3; Reverse: 5 -TCC TTG GAG
GCC ATG TAG GCC AT-3).

Statistical analysis
All data are presented as means ± SD. SPSS 19.0 was
used to perform statistical analysis of the data. The
Shapiro-Wilk test was performed to determine the dis-
tribution of the variables and non-normal distributions
were log-transformed before statistical analysis with an
independent t-Test. Variables that were analyzed with
Mann-Whitney U test. A value of P < 0.05 was consid-
ered statistically significant.

Results
Myricetin ameliorates metabolic abnormalities in low
density lipoprotein receptor-deficient (Ldlr−/−) mice fed
an atherogenic diet
As shown in Fig. 1a, the body weight of myricetin-treated
mice was significantly lower than that of mice in the Con-
trol group (21.86 ± 0.90 g vs 25.22 ± 1.30 g,P<0.05) after
feed with AsD for 8 weeks. No significantly difference in
the total food intake was observed between Control group
and Myr group mice (P = 0.19, Fig. 1b). As shown in
Fig. 1c, the subcutaneous white adipose tissue weight
(WAT) of Myr group mice was 7.72 ± 0.30 mg, this
value was lower than that of Control group, 11.81 ±
0.63 mg, P<0.001. The inguinal WAT, retroperitoneal
WAT, and mesenteric WAT weight of Myr group
mice were 1.45 ± 0.07 mg, 2.32 ± 0.16 mg and 8.55 ±
0.38 mg, respectively. These values were lower than
that of Control group, 2.29 ± 0.33 mg, 2.86 ± 0.33 mg
and 10.63 ± 0.86 mg, respectively, P<0.05.
Plasma lipid levels were then analyzed. As shown in

Fig. 2, the AsD caused the elevation of plasma TC, TG
concentrations in mice. The TG and TC levels in Myr
group mice, 140.1 ± 18.46 mg/dL and 1052 ± 60.16 mg/
dL, were significantly lower (P<0.05) than those of the
Control group mice, 196.3 ± 17.28 mg/dL, 1308 ± 68.63
mg/dL. Taken together, these results show that myricetin
can reduce body weighr and lipid accumulation without
decreasing food intake in AsD fed Ldlr−/− mice.

Myricetin alleviates atherosclerosis and macrophage
accumulation in atherosclerotic lesions
To investigate whether myricetin affects the formation
of atherosclerotic lesions, Ldlr−/− mice were placed on
AsD with or without myricetin administration for 8
weeks. After 8 weeks, most lesions developed in ascend-
ing arota and aortic arch. We performed en face analysis
of the aorta and the results showed Myr group mice de-
veloped less atherosclerotic lesions compared to Control
mice, however, the difference did not reach statistical
significance (Fig. 3a) (3.31 ± 0.67% vs 4.111 ± 0.75%,
P = 0.44). Quantification of Oil red-stained cross sec-
tions of aortic roots showed reduced plaque size in
Myr mice when compared with Control mice (Fig. 3b)
(105.2 ± 7.77%× 103 μm2 vs 158.8 ± 16.94 × 103 μm2, P<0.05).
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These results indicate that myricetin may have a protective
role in atherosclerosis.
To evaluate whether myricetin affects macrophage ac-

cumulation in the atherosclerotic lesions, we performed
immunohistochemical staining of the aortic root tissue

sections with an antibody that recognizes murine macro-
phages, Mac-2. The Mac-2-positive areas were analyzed
with NIH Image J. There were more Mac-2-positive cells
in the aortic lesions of Control mice when compared
with Myr mice (Fig. 4a and b). Mac-2 positive area:

Fig. 1 Effect of myricetin on body weight and food intake. Body weight (a), Food intake (b) and Weights of fat pads (c) in Control mice and Myr
mice. Values are expressed as mean ± SD. N = 10, *P < 0.05, ***P < 0.001 for Myr mice vs. Control mice

Fig. 2 Effect on plasma lipid. Plasma TG level (a) and Plasma TC level (b) in Control mice and Myr mice. Values are expressed as mean ± SD.
N = 10, *P < 0.05, for Myr mice vs. Control mice
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32.67 ± 3.46% vs 21.22 ± 3.03%, P<0.05. However, there was
little or no difference in the amount of smooth muscle cells
and collagen content within plaque lesions (data not
shown). Furthermore, the expression of pro-inflammatory
mediators such as MCP-1 and IL-6 were also reduced in
the aorta of Myr mice (Fig. 4d). The expression of IL-10 in
Myr mice was not different compared with Control mice
(Fig. 4d). These findings indicate that myricetin treatment
is not only important in regulating plaque size, but also, in
determining plaque composition and morphology, which
may have potential impact on plaque stability.

Myricetin regulates foam cell formation
To evaluate whether myricetin has a functional role in
regulating lipid uptake, we thus explored the effect of

myricetin on ox-LDL-induced foam cell formation.
Treatment with myricetin markedly decreased ox-LDL
induced cholesterol accumulation in macrophages, as re-
vealed by cellular cholesterol content and Oil-red O
staining (Fig. 5a, b and e) (75.70 ± 5.43 μg/mg vs 94.74 ±
6.28 μg/mg, P<0.05). Therefore, myricetin may regulate
cholesterol metabolism of macrophage foam cells.
Consistent with decreased foam cell formation, BOD-

IPY fluoresence, which is a marker of cellular lipid drop-
lets, was reduced in macrophages treated with myricetin
(Fig. 5c). Furthermore, cholesterol ester content was de-
creased in macrophages upon treatment with ox-LDL as
compared to vehicle macrophages (Fig. 5e) (7.288 ±
1.80 μg/mg vs 13.90 ± 2.23 μg/mg, P<0.05). However,
Myricetin did not alter the intracellular triglyceride

Fig. 3 Effect on atherosclerosis lesions. Representative en face images of oil red O-stained aorta and quantification of lesion area (a) and
Representative aortic root sections stained with oil red O and quantification of aortic lesion areas (b). Values are expressed as mean ± SD.
N = 10, *P < 0.05, for Myr mice vs. Control mice
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accumulation induced by ox-LDL (Fig. 5e) (59.03 ±
8.23 μg/mg vs 61.63 ± 11.57 μg/mg, P<0.05).. Taken to-
gether, these findings suggest that myricetin plays a crit-
ical role in macrophage foam cell formation.

The mechanisms of reduced lipid accumulation in myricetin
treated macrophages
To explore the mechanism underlying the protective ef-
fect of myricetin, we examined the expression of several
key factors in atherogenesis in macrophages. The ex-
pression of CD36 mRNA were decreased in myricetin
treated macrophages with ox-LDL incubation (P<0.05),
while SR-A and SR-BI expression was not altered
(Fig. 6a). Immunoblotting results showed that the
protein level of CD36 was significantly reduced in
myricetin treated macrophages (Fig. 6b).
Upon cholesterol loading, ABCA-1 mRNA and protein

levels were not altered in vehicle and myricetin treated
macrophages (Fig. 6a and 6b).

Discussion
The main purpose of this study was to evaluate the ef-
fect of myricetin on atherosclerotic development using
Ldlr−/− mice. Myricetin is a narurally occuring flavonoid
and the anti-inflammation effect of myricetin has well

been established [19, 20]. However, the efficacy of myri-
cetin on atherogenesis and the mechanism ramained
elusive. The present study demonstrates that myricetin
has an inhibitory effect on the development of athero-
sclerotic lesions in atherosclerosis-prone Ldlr−/− mice,
which could be related to suppression of cholesterol ac-
cumulation in macrophage foam cells. In macrophages,
incubation with myricetin attenuated ox-LDL-induced
cholesterol accumulation, and thiseffect may be involved
in reduction of CD36-dependent ox-LDL uptake. Our
findings strongly indicate that myricetin has a protective
effect in maintenance of cholesterol homeostasis during
the formation of foam cells in atherogenesis.
Myricetin naturally exists in many foods, especially in

wine and grapes. Recent studys have demonstrated many
health benefits of myricetin including antioxidative [21],
anticarcinogenic [22], antiplatelet activities [10], cytopro-
tective effects [23], anti-obesity [16], improving glucose
utilization [17] and plasma lipids profile [15]. In our
study, myricetin treatment reduced body weight but not
food intake, this anti-obesity effect is consistent with
previous findings [16]. When Ldlr−/− mice were fed an
AsD for 8 weeks, plasma cholesterol reached as high as
1300 mg/dL. And, plasma cholesterol decreased signifi-
cantly (~ 1000mg/dL) after myricetin administration on

Fig. 4 Effect on macrophage accumulation in the atherosclerotic lesions. Quantification of macrophages infiltration in the aortic sinus lesions
stained with anti-Mac2 antisera in Control mice (a) and Myr mice (b) after 8 weeks on AsD. c Comparison of the percentage of Mac2-positive
areas in the aortic sinus lesion from Control mice and Myr mice. d RT-PCR analysis of MCP-1, IL-6 and IL-10 mRNA expression in atherosclerosis
lesionfrom Control mice and Myr mice. Values are expressed as mean ± SD. N = 9, *P < 0.05, for Myr mice vs. Control mice
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the same diet. The mechanism of lowering plasma chol-
esterol may be related to increasing the fatty acid oxida-
tion mediating via peroxisome proliferatior-activated
receptor alpha (PPARα) activation which was reported
in a previous study [15]. As high plasma triglyceride and
cholesterol level increases the risk of atherosclerosis, the
beneficial effect of myricetin for hypercholesterolemia
and hypertriglyceridemia may caused profound reduc-
tions in atherosclerosis. The anti-atherogenesis effect of
myricetin were shown in Oil red O staining of En face
and the aortic root. Strikingly, histological analysis of

aortic root lesions revealed significantly less macro-
phages in atherosclerotic plaques of Myr mice when
comparedwith Control mice, but no difference in the
amount of smooth muscle cells and collagen content.
Taken together, myricetin may have a protective role in
atherosclerosis, not only ameliorating plaque size, but
also maintaining plaque stability.
Macrophages play a crucial role in atherogenesis [6],

and uptake of modified LDL by macrophage and then
transformation into foam cells contribute to development
and progression of atherosclerosis. The lipid homeostasis

Fig. 5 Effect on foam cell formation. Foam cell formation with vehicle (a) and myricetin (b) treated macrophages with ox-LDLincubation. ox-LDL
uptake (c) and BODIPY intensity (d) by flow-cytometry in cholesterol load macrophages. e Lipid accumulation in vehicle and myricetin treated
macrophages. Values are expressed as mean ± SD. *P < 0.05,**P < 0.005 for Myricetin vs. Vehicle

Meng et al. Nutrition & Metabolism           (2019) 16:25 Page 7 of 9



in macrophages depends on the balance of influx and ef-
flux of lipid in which scavenger receptors (SRs) are critic-
ally involved [24–26]. At least two members of this family,
CD36 and scavenger receptors class A (SR-A), mediate
the internalization of ox-LDL by macrophages, leading to
cholesterol ester accumulation and foam cell formation
[27, 28]. In contrast, the efflux of intracellular cholesterol
to high-density lipoprotein is mediated by reverse choles-
terol transporters, including class B scavenger receptor
type I (SR-BI) and ATP-binding cassette transporter A1
(ABCA1) [29–31]. Interestingly, the uptake of modified
LDL was inhibited in myricetin-treated macrophages,
which is consistent with downregulation of CD36 expres-
sion. In the present study, attenuation of CD36 by myrice-
tin but not SR-A or SR-BI, contribute to decreased
cholesterol accumulation in macrophages. Meanwhile,
foam cell formation was decreased in myricetin-treated
macrophages which can be partly attributed to myricetin
effect on cholesterol esterification. Indeed, cholesterol
ester formation was reduced in myricetin-treated macro-
phages upon ox-LDL loading, and cholesterol efflux was
not affected. The mechanism of reduced cholesterol ester
formation remains unclear.
The aim of this study was to investigate the anti-ath-

erosclerotic activity of myricetin. The study was per-
formed with Ldlr−/− mice which are characterized by
accelerated development of atherosclerosis along with
hypercholesterolemia. Despite the current widespread
use of Ldlr−/− mice to mimic human atherosclerosis, ob-
vious differences in murine genetic and metabolic pro-
files are observed [32, 33]. Hamsters display similar
lipoprotein profiles and coronary atherosclerosis which
could be an ideal animal for translational research of hu-
man atherosclerosis [34, 35]. Recently, Ldlr−/− hamster
were successfully generated and serve as an ideal plat-
form over other small animal models for basis and trans-
lational research of atherosclerosis [36]. Convincing
evidence should be provided in Ldlr−/− hamster and we
have plan to carry our this project. In summary, we have

demonstrated that myricetin not only improved dyslipid-
emia, but also inhibit foam cell formation. These find-
ings indicated that myricetin has therapeutic potentials
in the prevention of atherogenic cardiovascular diseases.

Conclusions
In conclusion, our results show that myricetin regulates
cholesterol uptake in macrophages through CD-36 path-
way, resulting in an attenuation of atherosclerosis le-
sions. This findings suggested myricetin may have an
important therapeutic function for atherosclerosis.
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