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Abstract

Background: Obesity has reached an alarming rate worldwide. Promoting thermogenesis via increasing the
function of brown adipose tissue (BAT) or white adipose tissue (WAT) browning has been proposed as a new
protective approach against obesity. The goal of this study was to evaluate the effects of Royal Jelly (RJ) and
tocotrienol rich fraction (TRF) on BAT activation and WAT browning during calorie restriction diet (CRD) in obesity
model.

Methods: In this experimental study, 50 obese Wistar rats were randomly divided into 5 groups and then received
one of the following treatments for a period of 8-week: High-fat diet (HFD), CRD, RJ + CRD, TRF + CRD, and RJ +
TRF + CRD. Effects of RJ and TRF, individually and in combination on body weight and the expression of key
thermoregulatory genes in WAT and BAT were examined by quantitative real-time (qRT-PCR). Also, morphological
alterations were assessed by hematoxylin and eosin staining.
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Results: RJ (—67.21 g £4.84 g) and RJ+ TRF (- 73.29 g £4.51 g) significantly reduced weight gain relative to the CRD
group (—40.70 g £+6.50 g, P < 0.001). In comparison with the CRD group, RJ and RJ + TRF remarkably enhanced the
uncoupling protein1 (UCP1) expression in WAT (5.81, 4.72 fold, P < 0.001) and BAT (4.99, 4.75 fold, P < 0.001). The
expression of PR domain containing 16(PRDM 16), CAMP response element-binding protein1 (CREBT), P38 mitogen-
activated protein kinases (P38MAPK), and Bone morphogenetic protein8B (BMP8B) have significantly increased
following RJ and RJ 4+ TRF treatments (P < 0.001). However, the expression levels of CCAAT/enhancer-binding
protein beta (CEBPB) and Bone morphogenetic protein7 (BMP7) did not remarkably change. Multilocular beige cells
in WAT and compacted dense adipocytes were also observed in BAT of RJ and RJ + TRF received groups. TRF
showed no substantial effects on the expression of the mentioned thermoregulatory genes and brown fat-like

Conclusion: Our results suggest that, Royal Jelly promotes thermogenesis and browning of WAT, contributing to
an increase in energy expenditure. Thus, Royal Jelly may give rise to a novel dietary choice to attenuate obesity.

Keywords: Obesity, Calorie restriction, White adipose tissue, Brown adipose tissue, Royal jelly, Tocotrienol rich

Introduction

The expanding obesity rate worldwide arises from the
complex interactions among the environmental factors,
genetic context, and individual behaviors. Nonetheless,
the disproportion in energy intake, and energy expend-
iture is thought to be the most determining aspect of
obesity [1]. Although calorie restriction is the primary
intervention in obesity management, it seems to be an
inefficient approach in long-term, since metabolic adap-
tations accrue in response to energy limitation, which
may result from reductions in thermogenesis, resting en-
ergy expenditure or other energy expenditure constitu-
ents [2—4].

Unlike white adipose tissue (WAT), which is the main
site of excess energy; brown adipose tissue is a primary
site for adaptive thermogenesis. The thermogenic cap-
acity of brown adipocytes relies mostly on the high ex-
pression of Uncoupling proteinl (UCP1) and high
mitochondrial content. When activated, mediates chem-
ical energy dissipation through dissociation of mitochon-
drial substrate oxidation from Adenosine triphosphate
(ATP) production, which resulted in the generation of
heat [5, 6]. Hence, Brown adipose tissue (BAT) function
and activation have substantial potential attention from
a therapeutic perspective, its vital function in obesity
control is also remarkable.

In addition to classical BAT, a phenomenon called
“browning or beigeing procedure” has been demon-
strated including the development of brite adipocytes in
classical WAT [7-9]. It is suggested that, some stimu-
lants such as cold exposure, P-adrenergic receptor
stimuli, exercise, PPARs agonists, pharmacological
agents, and some food components may develop brite or
beige adipocytes [1, 10]. Browning of WAT protects
against obesity through increasing energy consumption,
which can lead to a negative energy balance [1, 7]. It is

speculated that, PR domain containingl6é (PRDM]I6),
Bone morphogenetic proteins (BMPs) and CCAAT/en-
hancer-binding protein beta (C/EBPf5) are the master
regulators, which their interactions participate in the
UCPI gene regulation that ultimately contribute to BAT
activation or WAT remodeling [11-14]. Identification of
the food components that can induce the browning repre-
sents as an attractive potential way in obesity treatment.
Royal Jelly (R]) is a yellowish-white, multifunctional creamy
material secreted from the hypopharyngeal and mandibular
glands of nurse honeybees [15]. The main components of R]
are 10-hydroxy-Trans- 2-decenoic acid (HDEA) and Hydro-
xydecanoic acid ( HDAA), and main biological activities of
RJ attribute to them [16]. RJ has multiple biological functions
such as antioxidant, antitumor, antiaging, antihypercholester-
olemic, anti-inflammatory, antimicrobial, hypoglycemic,
radio-protective, gastro-protective, hepato-protective, and
vasodilative effects [17]. RJ caused a remarkable decrease in
body weight and abdominal fat depots and also an increase
in skeletal muscle mass in High-fat diet (HFD) induced
obese rats [18]. Nevertheless, the exact effects of RJ on the
regulation of thermogenesis and browning of white adipose
tissue have not been defined yet, as well as the procedure by
which R] ameliorate obesity is not exactly figured out.
Vitamin E is a lipid-soluble nutrient, composed of
two biologically active Tocopherols (TP) and Toco-
trienols (T3) subclasses with eight analogs each one
including «-, B-, y-, and 6-forms [19]. Most of the
studies on vitamin E have concentrated on TPs;
therefore, very little is known about T3s. Main food
resources of T3s are rice bran, oat, wheat germ, palm
oil, and annatto oil. T3s have been indicated to
possess various physiological activities including neu-
roprotective, anticancer, antiangiogenesis, anti-tumor,
cardiovascular-protective, hypocholesterolemic, and anti-
inflammatory properties [20, 21]. However, T3s effect on
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obesity management and its related metabolic challenges
have been less assessed up to now, compared with satu-
rated matched TPs, and also the chief mechanisms of ac-
tion in obesity regulation are still unknown [19]. Gamma-
tocotrienol is the most common T3 isomer and is physio-
logically more available compared to other isomers [22].
By considering the unsuccessful methods of obesity con-
trol and the adverse consequence of long-term calorie re-
striction on energy expenditure and thermogenesis,
applying functional foods with the properties of thermo-
genesis improvement would be profitable. Up to the best
of our knowledge, the potential effects of royal jelly and y-
tocotrienol on white fat browning and thermogenesis in-
duction during calorie restriction diet has not been exam-
ined yet. Thus, the objective of this study was to evaluate
the effect of royal jelly, y-tocotrienol, and their combina-
tions on the induction of genes involved in the beige
phenotype appearance in WAT and also BAT activation
using molecular involved mechanisms in obesity models
of rats during calorie restriction diet ( CRD).

Method

Animals and treatments

In this experimental investigation, 55 Male Wistar rats
(3weeks old) weighing 50-70g were purchased from
Pasteur Institute (Tehran, Iran). All rats were kept indi-
vidually in stainless steel cages under the standard con-
dition temperature of 22-25°C and relative humidity
55+5%, with a 12-h light/dark cycle (7:00-19:00 h),
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allowed free access to water and a normal chow diet for
1 week. All experimental procedures performed on ani-
mals complied with the National Institutes of Health
guide for the care and use of laboratory animals [23] and
approved by the Ethics Committee of Iran University of
medical science (ethic code: IRIUMS.FMD.REC
1396.9321324003). All efforts were made to decrease the
sample size of studied rats and minimized animal
suffering.

The study protocol consisted of a two-phase 1) obesity
induction period 2) treatment period. (Fig. 1) After 1
week of acclimatization, 50 rats were administered a
HFD to induce the obesity model and five rats received
normal chow diet as the control group for HFD receiv-
ing rats. All rats had free access to food and water in this
phase of the study. Semi-purified HFD consisted of
standard chow powder mixed with milk butter (40% w/
w). The compositions of the diets used in the study are
shown in Table 1. HFD was prepared every 2 days
freshly in the form of pellets and kept at 4°C to main-
tain nutrients. We weighted animals every week. At the
end of the 17th weeks, the mean weight of HFD admin-
istered rats increased significantly compared to normal
chow diet consuming rats (443.28 g +46.62 g vs 396.24 g
1+28.79 g P <0.05), indicating that HFD induced obesity
model was accomplished. At the second phase, rats were
randomly allocated to one of 5 groups (n=10/group)
using a randomized block procedure which matched for
body weight and treated for 8 weeks as follows 1) R]

control rats

s

RJ: 100 mg/kg/day
TREF :85 mg/kg/day

Fig. 1 Scheme of study design
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Table 1 Composition of the experimental diets

Dietary composition (g/kg) Chow HFD
Carbohydrate 536.2 335.125
Fiber 42 26.25
Protein 260.8 163
Lipid 40 400
Calcium 9.5 5.93
Phosphorus 6.5 4.06
Salt 5 3.125
Moisture 50 31.25
Ash 50 31.25
Energy density (kcal/g) 3.6 5.6

HFD high-fat diet

group receiving lyophilized R] powder (100 mg/kg/day)
orally dissolved in CRD 2) Tocotrienol rich fraction
(TRF) group receiving TRF (85 mg/kg/day) orally dis-
solved in CRD 3) RJ+ TRF group receiving both 100
mg/kg/day lyophilized R] powder and 85 mg/kg/day TRF
orally dissolved in CRD 4) CRD group; without any sup-
plementation as control for RJ, TRF and RJ+ TRF
groups and 5) HFD group; HFD without any supplemen-
tation as control for CRD group.

CRD had the same macronutrient composition as HFD
(Table 1), but the calorie content was 30% lower than the
ad libitum intake of HFD. RJ and TRF were added to CRD
and the food was weighed, then given to rats every day in
certain time schedules (between 9:00-9:30 AM).HFD was
fed ad libitum and given to rats every day.

Lyophilized Royal jelly powder was purchased from
Bulk Supplements Co, Ltd., (Henderson, USA) contain-
ing 6% of 10-HAD. TRF was kindly provided by Excel-
Vite Co, Ltd. (Perak, Malaysia).High-performance liquid
chromatography determined that TRF contained a-
tocotrienol (12%), PB-tocotrienol (2%), y-tocotrienol
(19.3%) and &-tocotrienol (5.5%) together with a-
tocopherol (11.9%). The doses and duration of treat-
ments were selected based on the previously reported
oral no-observed-adverse-effects and the sample size was
decided based on similar work done before [19, 24].

Sample collection

At the end of the study, all rats were anesthetized with
intraperitoneal injection of xylazine (xylazine 2%, 20 mg
ml - 1, Alfasan, Woerden, Netherlands) and ketamine
(ketamine 10%, 100mgml-1, Alfasan, Woerden,
Netherlands) after overnight fasting and interscapular
BAT, inguinal WAT and hypothalamus were quickly re-
moved, rinsed gently with phosphate-buffered saline
(PBS) solution, and kept in RNA later Stabilization Solu-
tion (Qiagen, Inc. Germantown, Maryland, USA) f or
RNA isolation.
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Quantitative real-time PCR

All tissues were homogenized gently. Total RNA was ex-
tracted from each tissue using Trizol (Thermo Fisher,
Waltham, Massachusetts, USA) according to the manu-
facturer’s protocol. The quality and quantity of extracted
RNA were determined spectrophotometrically, measur-
ing relative absorbance ratio at A260/280 and A260/230
(NanoDrop One/Once, Thermo Fisher Scientific Inc.,
Wilmington, Delaware, USA).

The extracted RNA was converted to Complementary
DNA (cDNA) using the RevertAid First Strand cDNA Syn-
thesis Kit (Thermo Scientific, Waltham, Massachusetts,
USA) with 1 pg of mRNA according to the manufacturer’s
protocol. The real-time reverse transcription-polymerase
chain reaction (RT-PCR) was done using a fluorescence
thermal cycler (Light Cycler system; Roche Diagnostics,
Mannheim, Germany) system using SYBR Premix Ex Taq
(Takara Bio Inc., Shiga, Japan) and gene-specific primers
for cAMP response element-binding proteinl(CREB1)P38
mitogen-activated protein kinases (P38MAPK) Bone mor-
phogenetic protein7 (BMP7), Bone morphogenetic pro-
tein8B(BMP8B), C/EBP f5, PRDM16, UCPI, and fS-actin.
The primer sequences were designed through the reported
sequences of Primer Bank NCBI, summarized in Table 2
and obtained from Metabion international AG (Stein-
kirchen, Germany). Delta-delta method was used to calcu-
late the relative mRNA expression of the target gene and
normalized to B-Actin as a reference gene [25]. PCR was
done under the following conditions: 95°C for 10 min,
95°C for 10s, and 60°C for 10s for 45 cycles with 100%
ramp rate under standard conditions. Triplicate Ct values
were calculated for each sample.

Histological assay

The interscapular BAT and inguinal WAT of randomly
selected two rats from each studied group were re-
moved, rinsed gently with PBS solution, then fixed in
10% buffered formalin with the change of formalin every
2 days for 7days. The samples were then dehydrated
through different solutions of alcohol and then paraffin-
embedded. Tissues were cut by rotary microtome in thin
sections. For histological studies, 5um thick sections
stained with the H&E method and studied with a Nikon
light microscope. For histomorphometric studies, adi-
pose tissue assessment was carried out according to pre-
vious studies [26] briefly from each adipose specimen, in
10 randomly selected microscopic fields, a total of 100
crosses sectioned adipose tissue were analyzed and the
percentage of each parameter which contained; three
types of adipose tissue and connective tissue were aver-
aged for each group using 40X objective lens. One expe-
rienced histologist who was blinded to treatment groups
assessed the histological examination. Each experiment
was performed in triplicate.
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Gene Forward Reverse

CREB-1 CTACAATATGCACAGACCACT GAGGACGCCATAACAACTCCA
p38MAPK GACCTAAAGCCCAGCAACCTC CGTAGCCGGTCATTTCGTCA
C/EBP B ACACGGGACTGACGCAAC AAACATCAACAGCAACAACCC
PRDM16 CCAAAACCGTGTGATAAGGTC GGGTATTTGGCACATTAACAAC
BMP7 TTCCTCACCGACGCCGACA AAGATCAAACCGGAACTCTCGAT
BMP8B TCGAGCACCACTAGCGACT GTTGCCACTGTCATCCGTCA
UCP-1 TTCTTTTCTGCGACTCGGAT GCCCAATGGTGTTTAGCATC
B-actin TCAGGTCATCACTATCGGCAA TTACGGATGTCAACGTCACAC

Statistical analysis
The normality of data was assessed by the one-sample
Kolmogorov-Smirnov test. All data were represented as the
mean + SEM. One-way analysis of variance (ANOVA) was
done to test the differences between groups. Tukey’s post
hoc was performed to analyze the multiple comparisons.
IBM SPSS Statistics 23 (IBM SPSS Statistics,
Armonk, USA) was applied to analyze all data.
Figures were visualized using the Prism software, ver-
sion 80 (GraphPad, CA, USA). A significant level was
considered as P-value < 0.05.

Results

Effects of CRD, RJ, TRF and mixed treatments on weight
changes

All 55 rats completed the intervention for 8 weeks and
included in the analysis. After 8 weeks of the experiment,
as expected the final mean body weight of CRD-fed
obese rats was significantly lower than that of HFD-fed
obese rats. (CRD, 404.24 g +8.65g vs HFD, 493.28 g +
8.23 g, P<0.001) (Fig. 2a). The promoting effects of R]J,
TRF and combined interventions in weight changes
(relative to baseline weights) of CRD-fed obese rats were
depicted in Fig. 2b. R] treatment decreased the weight of
rats (R] group, —67.21g+4.84 g vs CRD group, —40.70
g+ 6.50 g, p <0.001).Moreover, R] + TRF treatments con-
siderably decreased weight (- 73.29 g+ 4.51 g, p <0.001).
However, TRF did not significantly reduce the weight (-
4440g+3.35g, p=0.05).

Effects of RJ, TRF and mixed supplementation on key
thermoregulatory genes expressions

To investigate the effects of CRD on thermogenesis, we
first measured the expression levels of a key regulatory
gene, UCPI by RT_PCR in WAT and interscapular BAT.
As anticipated, along with weight loss, CRD down-
regulated the UCPI levels by 36 and 14% in WAT and
BAT respectively compare to HDF-fed rats, although there
were no statistically significant (P>0.05) (Fig. 3a). We
next tested whether R] and TRF supplementation with
CRD would be able to ameliorate the aforementioned

effects of CRD on the UCPI levels. Our data demon-
strated that R] added in CRD rats led to a significant ele-
vation of UCP1 in comparison with the CRD-matched
group in WAT and BAT as depicted in Fig. 3b (P < 0.001).
We also observed that TRF induced the UCPI levels in
both adipose tissues compared to the CRD group, al-
though it was not statistically significant (P >0.05). Fur-
thermore, RJ + TRF significantly induced the UCPI levels
in comparison to the CRD-matched group (P <0.001).
However, the enhancing effects of R] on L/CP1 expression
was superior. Next, we examined the effects of RJ and
TRF on key brown fat marker PRDM16. As depicted in
Fig. 3c mRNA levels of PRDMI16 was increased signifi-
cantly about 4.65-fold and 2.80- fold in WAT and BAT in
the RJ group respectively relative to CRD group (P<
0.001). Whereas, TRF did not remarkably up-regulate the
PRDM 16 expression in none of the adipose tissues (P>
0.05). Moreover, gene expression of PRDMI6 up-
regulated significantly in the R] + TRF group to 4.30 and
2.61 -fold in WAT and BAT respectively in comparison
with the CRD group (P < 0.001).To further investigate the
potential mechanisms underlying the browning effects of
RJ] and TRF, we determined expression levels of CREB1
and CEBPp, the master regulators of the thermogenic pro-
gram. Gene expression of CREBI increased significantly
by RJ addition to 5.85 and 5 fold relative to CRD group in
WAT and BAT respectively (P<0.001).However, TRF
treatment did not affect the expression of CREBI in com-
parison with the CRD group (P=0.05). Furthermore,
combinations of RJ + TRF markedly increased CREBI ex-
pression in WAT and BAT relative to the CRD group
(P <0.001, Fig. 3d). Furthermore, there were not a signifi-
cant increase in mRNA levels of CEBPf in any studied
groups in WAT and BAT (P = 0.05, Fig. 3e).

UCPI activation can be regulated by various protein
kinases. Therefore, we probed gene expression of
P38MAPK in above mentioned adipose tissues. Expres-
sion of P38MAPK increased significantly in the R] group
to 5 and 3.30 -fold in WAT and BAT respectively rela-
tive to CRD group (P <0.001).Moreover, TRF did not
change the expression of P38MAPK notably (P> 0.05).
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Fig. 2 a Comparison of body weight after 8 weeks of treatment in the CRD vs. HFD group. b Bodyweight changes in RJ, TRF and TRF + RJ groups
vs. CRD group. Data are expressed as mean + SEM, (n =10). **P < 0.001 by one-way ANOVA
J

Furthermore, the combination of RJ + TRF contributed and 5 fold in WAT, BAT and hypothalamus, respectively

to a significant increment of the P38 MAPK mRNA level compared with CRD group (P < 0.001).

in both adipose tissues in comparison with the CRD BMP?7 plays an important role in whole energy homeo-

group (P <0.001, Fig. 3f). stasis, adipogenesis, and energy expenditure. However,
we founded that RJ, TRF and their combination did not
alter the expression of BMP7 mRNA levels in this study

Effects of RJ, TRF and mixed supplementation on BMPs (P=0.05, Fig. 4b).

pathway

Considering that BMPs are signaling molecules that

regulate the thermogenic program and function of clas-  Histological results

sic brown adipose tissue, we measured the expression As illustrated in Fig. 5a in CRD-fed rats, white adipo-

level of BMP8B and BMP7 in WAT, BAT hypothalamus.  cytes appeared smaller than HFD-fed rats with unilocu-

Our findings revealed that RJ significantly elevated lar adipocytes (Fig. 5b). There was no evidence of WAT

BMP8B expression levels (5, 2.79 and 6 folds) in WAT, beiging in CRD and HFD -fed rats. Notably in R]J

BAT, and hypothalamus respectively relative to CRD treated group we found small, multilocular beige adipo-

group (P<0.001, Fig. 4a). Moreover, TRF did not show cytes in WAT, (Fig. 5c) Whiles in TRF group WAT

significant upregulation of BMP8B in any of the afore- changes were not considerable (Fig. 5d). In the R] + TRF

mentioned tissues (P =0.05). Intriguingly, R] + TRF in- group manifestation of some multilocular adipocytes

creased BMP8B expression level significantly by 4.2, 3 among white adipocytes was noticed (Fig. 5e).
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presented as the mean + SEM (n=10). ***P < 0.001 by one-way ANOVA

Interscapular BAT in the CRD group is observable
with some white adipocytes nearby (Fig. 6a), However,
in the HFD group, we observed more unilocular white
adipocytes along with typical brown adipocytes. (Fig. 6b).
In the RJ and R] + TRF group, BAT is distinguished with
more reddish-brown appearance, greater compacted
brown adipocytes with multilocular lipid droplets com-
pared to CRD group (Fig. 6¢ and e), whereas BAT in the
TRF group was less compact with white morphology
and more connective tissues (Fig. 6d).

Discussion
Over the last decades, the rapid changes in lifestyle and
dietary patterns in modern life bring about the alarming

pandemic of obesity. Although Calorie restriction (CR)
through confining energy intake is the most common
lifestyle dietary intervention to protect against weight
gain, it is ineffective in the long-term, since thermogenic
adoptions, as defensive mechanisms, diminish the energy
expenditure to stop energy depletion [2—4, 27]. There-
fore, stimulation of BAT development in WAT (so-
called browning) or increasing BAT function to enhance
energy expenditure would be considered as promising
approaches to manage adiposity. Up to the best of our
knowledge, it is the first research investigated the
browning and thermogenesis properties of Royal jelly
and y- tocotrienol in the obesity model of rats during
CRD. In this study, we demonstrated that, R] decreased



Mesri Alamdari et al. Nutrition & Metabolism (2020) 17:42

Page 8 of 13

A
= Hlm CRD
i
w1
§ RJ
s- TRF
%]
< D RJ+TRF
Z
-4
=
[ae]
®
s
=
[
=
=
= ,
D S S SIS S PRI
69 Q'&QX&Q' qu Q'&Q'X&Q' ng Q'&Q:(&‘Z'
L @ ] L Q L Q> |
WAT BAT Hypothalamus
g B
G 4
S B CRD
=
=t RJ
> 3-
: TRF
E 0 RJ+TRF
2-
g
~ —
=
2}
=]
E 0 = ¥ T
> &8 & S &S
S ¢ &@sx&‘é- &S ¥ &&»SX&Q-
L & ] 1 A ]
WAT BAT
Fig. 4 Effect of RJ, TRF and TRF + RJ treatment on the expression of BMP8B gene in WAT, BAT, and hypothalamus (a) and expression of BMP7
gene in WAT and BAT vs. CRD quantified by gRT-PCR. Data are presented as the mean = SEM (n = 10). ***P < 0.001 by one-way ANOVA

adiposity, induced brite phenotype in WAT, and acti-
vated BAT thermogenic program during CRD through a
significant up-regulation of L/CP1 as an indicator protein
of brown adipocyte concomitant with the increased ex-
pression of PRDM16; a principal modulator of BAT de-
velopment; and P38MAPK, BMP8B, and CEREBI as
other thermogenic components.

During 8 weeks of CRD, we noted insignificant reduc-
tions in UCPI1 expression in WAT and BAT concomi-
tant with weight loss about 36 and 14% in comparison
to HFD-fed obese rats, respectively. Accordingly, this
might be an adaptive response (whitening) to the limited
calorie intake or a negative energy balance. However,
since the reduction in the UCP-1 level was not signifi-
cant, this notion needs more investigations to be ap-
proved. Reduction in UCPI expression throughout CR is
in line with other previously performed studies [2, 3].

However, in the present investigation, due to the short
duration of the study, it did not reach a significant level.
Therefore, we investigated the molecular changes in
thermogenic machinery following the addition of R] and
Y- tocotrienol into CRD-fed rats. Our results showed
that, 8 weeks of RJ administration (100 mg/kg/day) to
obese rats underwent CRD enhanced the UCPI expres-
sion levels in both adipocytes. Consistent with these
findings, Yoneshiro et al. reported that, 5% lyophilized
R] powder in HFD-induced obese rats enhanced UCPI
mRNA expression in BAT, but not in WAT without
modifying food intake, which suggest the possible aug-
mentation of thermogenesis in BAT and energy expend-
iture [28]. It was suggested that, R] attenuated the
adverse effects of CR on thermogenesis via increasing
BAT activity and WAT remodeling. However, TRF (85
mg/kg/day) added into CRD -fed rats was not efficient
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Fig. 5 Hematoxylin and eosin (H&E) staining of inguinal WAT section of CRD (a), HFD (b), RJ (c), TRF (d) and RJ + TRF (e) received rats

in the up-regulation of UCPI and also other thermo-
genic regulators in adipose tissues. However, several
studies revealed the positive thermogenic effects of other
vitamin E analogs (a-tocopherol and § tocopherol) in
UCPI1 gene induction in WAT of rats and also mouse
preadipocytes [29, 30]. In our study, TRF was used com-
prised of all isoforms of tocotrienols along with a- toc-
opherol. It is speculated that, a- tocopherol can interact
with tocotrienols and represses their activities, and also
other isomers of tocotrienol in TRF may produce a syn-
ergistic or antagonistic impact with y- tocotrienol; and
therefore, may affect the outcomes. Thus, a pure isomer
of y- tocotrienol may provide different results. In this
study, we confirmed that, R] + TRF combined treatment
in CRD obese rats significantly induced the expression
of hallmark protein of thermogenesis, L/CPI, and almost
other thermogenic genes mRNA in both adipose tissues.
Bearing in mind that, TRF has no remarkable effect on
UCPI and other regulators of thermogenic program ex-
pression, and the UCPIs induction is attributed to R]
treatment in the RJ + TRF group. Hence, in the present
investigation, we mechanistically explored the thermo-
regulatory and browning potency of RJ.

Our results show that, R] added into CRD-fed obese
rats caused a significant reduction in body weight to a
greater extent related to CRD alone (- 67.21 g +4.84 g vs

-40.70 g + 6.50 g). Accordingly, it is in agreement with
Yoneshiro et al.’s study who reported that, 5% of R] re-
strained HFD-induced obesity and diminished the white
adipose tissue collection in young mice without moder-
ation in food intake [28]. The present study could not
demonstrate the remarkable effect of TRF on weight loss
of CRD-fed obese rats. Furthermore, Wong et al. re-
ported that, administration of 120 mg/kg/day TRF for 8
weeks did not change body weight gain in HFD-fed Wis-
tar rats [20]. In contrast, in young C57BL/6] mice, sup-
plementation of HFD with 0.05% yT3 for 4 weeks
ameliorated HF diet-mediated obesity [31]. Different
genetic backgrounds of the studied animals and supple-
mentation of pure yT3 versus TRF are considered as
possible major contributing factors in achieving incon-
sistent outcomes.

Recent studies found out new transcriptional compo-
nents such as PRDM1I16, C/EBPB, and CEREBI, which
control BAT development and promote brown adipo-
genesis in inducible WAT. PRDM16 induces thermo-
genic program by interacting with peroxisome
proliferator-activated receptor-gamma (PPARy) C/EBP-
3, peroxisome proliferator-activated receptor gamma co-
activator ~ l-alpha  (PGC-1a), and  peroxisome
proliferator-activated receptor alpha (PPARa) in the
regulatory promoter site of the UCP1 gene [8, 32, 33].
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Our data revealed that, R] treatment for CDR-fed obese
rats induced PRDMI16 and CREBI mRNA levels; how-
ever, it did not induce C/EBPS mRNA in both WAT
and BAT. It was identified that, HDEA and HDAA, as
the main functional compounds in R], are responsible
for its biological activity [16]. Also, HDEA and HDAA
act as agonists of temperature-sensitive Transient recep-
tor potential (TRPs) channels, specially TRPA1 in sen-
sory neurons of the gastrointestinal tract, provoke
thermogenesis via a [p-adrenergic receptor-mediated
pathway in classic brown and inducible white adipocytes,
and in addition, simulate cold-induced non-shivering
thermogenesis [16].Therefore, in this study, the TRP-
SNS-UCP1 pathway activity is the proposed mechanism
for thermoregulatory effects or R]. Figure 7 demonstrate
the suggested molecular mechanisms of R] effect on
thermogenesis induction and browning of WAT. Despite
the increasing trends, we found no significant effects of
TRF treatment on PRDM16, C/EBPf5, and CEREBI in-
duction during 8-week experiment. The reason why the
expression of key thermoregulatory components was not
remarkably up-regulated by TRF, remains currently un-
clear; however, the inhibitory effect of a-tocopherol on
the absorption of y-tocotrienol and suppression of its ac-
tivity, insufficient doses of TRF or limitations of treat-
ment duration may be the reasons. The downstream

molecular signaling in the TRP-SNS-UCPI pathway
mainly includes discharging of norepinephrine from the
sympathetic nerve terminals; provoking the tissue that
mostly acting through p3-adrenergic receptors; and finally
cAMP-dependent protein kinase A (PKA) activation.
Phosphorylated PKA leads to the P38MAPK phosphoryl-
ation, which in turn activates CREBI and PGCI-a co-
activators, and ultimately results in transcription of UCP1
[32]. Also, the proposed pathways are depicted in Fig. 7.
The P38MAPK signaling has been defined as one of the
important pathways triggering beiging and thermogenic
machinery in various models [8]. Our results robustly
demonstrated the potency of R], but not TRF, to induce
the P38MAPK mRNA level in white and brown adipose
tissues of CRD-fed rats. Therefore, these data support the
theory of agonistic activity of RJ at TRPA1 channels in the
TRP-SNS-UCPI pathway.

BMPs are the components of the Transforming growth
factorp (TGEF-b) superfamily acting as extracellular sig-
naling proteins and affecting the adipogenesis in WAT
and development of BAT. BMP7 promotes the differen-
tiation of brown preadipocytes to mature brown adipo-
cyte through PRDMI16, PGC-Ia induction, and the
increased expression of UCP1 by P38MAPK dependent
pathways [13]. BMP8Bs are signaling molecules, which
are mostly expressed and active in mature BAT and also
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Fig. 7 Suggested pathways for browning of white adipose tissue and brown fat activation by RJ. RJ with agonistic activity, activate temperature-
sensitive TRP channels in the Gl, triggering thermogenesis through the activation of the TRP-SNS-UCPT axis. B3-AR (33-adrenoceptor), BMPSB
(bone morphogenetic protein8B), cCAMP (cyclic adenosine monophosphate), CREBT (CAMP response element-binding protein1), NE
(norepinephrine), PROM16 (PR domain containing16), PPARy (peroxisome proliferator-activated receptor-gamma), PGC-Ta (peroxisome proliferator-
activated receptor gamma coactivator 1-alpha), PPARa (peroxisome proliferator-activated receptor alpha), P38 MAPK (P38 mitogen-activated
protein kinase), PKA (cAMP-dependent protein kinase A), TRP (transient receptor potential) and UCPT (uncoupling protein 1)

Central nervous system (CNS).Therefore, BMP8B has
both central and peripheral actions, which its consonant
performance in CNS and BAT can regulate thermogen-
esis and energy balance through the increased response
to noradrenaline in mature BAT and the enhancement
of p38MAPK/CREB signaling [12, 34]. Moreover, in the
brain, BMP8B can increase the level of thermogenesis
sympathetic activation. Our data demonstrated that, R]
but not TRF added to CRD induced the expression of
BMPS8B in BAT, WAT, and hypothalamus. Although the
molecular mechanism by which R] induced the BMP8B,
is not known yet, it is suggested that, R] may cooperate
with BMP8B to increase the response to noradrenaline
in adrenergic receptors and trigger the thermogenic pro-
gram (Fig. 7). Despite the increment of the BMP7
mRNA level resulted from R] treatment, it did not reach
a significant level. Also, longer duration of intervention
along with more dosages may give rise to considerable
results.

Conclusion

Here, our results suggest that, R] induced thermogenic
gene expression and activation of BAT and brown-like
phenotype emergence in WAT, which is called browning
or beigeing. Hence, R] regulates adaptive thermogenesis

by increasing the expression of thermogenic genes.
Moreover, our data demonstrated that, RJ treatment
could lower body weight in comparison with CRD alone,
and prevent the thermogenesis decline or even cessation
usually occurring in CR.

These findings suggest an important role for R] in
obesity treatment, and moreover, these outcomes ex-
pand our vision toward dietary compounds and fat
browning factors, and also propose a new approach in
the treatment of obesity through the browning process
of adipose tissue. It was the first study assessing the ef-
fects of R] and TRF on CRD —fed obese rats; however,
there are few limitations on it. We used no genetically
modified rats to confirm the involvement of RJ firmly in
TRP-SNS-UCPI axis. Therefore, further studies using
TRPs or UCP-1 Knockout models or performing the
treatments with p-adrenergic blockers seem highly desir-
able to support the proposed pathway. Also, we found
no striking effect of TRF on BAT thermogenesis and/or
browning of WAT, since all isoforms of tocotrienols and
also a-tocopherol are available in TRF. Therefore, inter-
preting the results would be difficult, due to the possible
interactions of tocopherol and tocotrienols. Also, add-
itional studies with single y-tocotrienol are required to
fill these knowledge gaps.
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