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An optimal glycemic load range is better 
for reducing obesity and diabetes risk 
among middle‑aged and elderly adults
Fengyi He1†, Chaogang Chen1†, Feng Li2, Yiqin Qi2, Xiuhong Lin1, Ping Liang1, Meng Ren2 and Li Yan2* 

Abstract 

Background:  Due to the lack of evidence, advice pertaining to glycemic load (GL) can be misleading. Does the 
excessive restriction of GL, mostly through an extreme reduction in carbohydrate intake, result in a relatively high 
intake of fat and protein and result in overweight and obesity? This study was performed to initially explore the opti-
mal GL range.

Methods:  A cross-sectional study involving 2029 participants aged 40 years or older in Guangzhou, China was con-
ducted. Participants were divided into four groups according to cluster analysis. Dietary data were assessed using a 
previously validated 3-day food record.

Results:  Instead of participants with the highest [cluster 1, median (interquartile ranges) GL was 112(107–
119)/1000 kcal] and the lowest GL intake [cluster 4, 90(82–96)/1000 kcal], those with moderate GL intakes [clusters 2 
and 3, 93(85–102) and 93(85–99)/1000 kcal, respectively] had a lower prevalence of overweight, obesity and diabetes. 
In addition, clusters 2 and 3 were more consistent with the macronutrient intake reference with adequate micronutri-
ent intake. Therefore, the optimal GL range was determined to be (85–100)/1000 kcal, rather than “lower is better”.

Conclusions:  Reducing the GL intake to prevent diabetes deserves more attention in the context of a balanced diet. 
An appropriate GL may be better than excessive restriction.

Keywords:  Cluster analysis, Glycemic load, Diabetes, Obesity

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
The steady increase in the prevalence of diabetes over the 
past three decades in virtually all regions worldwide has 
received considerable interest; the number of people with 
diabetes in 2017 was 425 million, and this figure is pre-
dicted to increase to 629 million by 2045 [1]. In general, 
the prevalence of diabetes in China has sharply increased; 
the prevalence has been reported to be less than 1% in 
1980 [2], 5.5% in 2001 [3], 9.7% in 2008 [4], 11.6% in 2010 

[5], and 10.9% in 2013 [6]. Most diabetic patients suf-
fer from type 2 diabetes, which is mostly avoidable. The 
most important modifiable risk factors for type 2 diabe-
tes are overweight and obesity, an improper diet, a seden-
tary lifestyle and tobacco smoking [7].

Numerous observational studies and clinical trials 
have investigated the role of nutrition in the preven-
tion of diabetes. With respect to macronutrients, it has 
been shown that the quality rather than the quantity of 
carbohydrates is associated with increased diabetes risk 
[8]. Compared to the traditional view of carbohydrate 
restriction alone, the glycemic index (GI) was created as 
a tool to guide people with diabetes in selecting foods 
[9]. Subsequently, the glycemic load (GL), which con-
siders the GI and the amount of available carbohydrates 
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eaten [10], was introduced and considered the primary 
measurement of carbohydrate quantity and quality. 
Reducing the GL may provide a modest additional ben-
efit [11, 12]. Several prospective observational studies 
[13, 14] and meta-analyses [15, 16] have shown that 
the diabetes risk increases with a higher dietary GL. 
In addition, a low-GL diet may have favorable effects 
in individuals with prediabetes who constitute a broad 
group with a high risk of developing diabetes [17].

However, traditional association analyses in the field 
of nutritional epidemiology typically examine disease 
in relation to a single GL, regardless of the rationality 
of the energy ratio of macronutrients and food intakes. 
Although these analyses have been quite valuable, the 
results of the association between GL, health and dis-
ease may be affected. Whether the unsatisfactory effect 
of a low-GL diet should be attributed to its innate rea-
sons or irrationality of the energy ratio of macronutri-
ents and food intake is uncertain.

Previous studies were interested in indicating the 
benefit of reducing carbohydrate intake [18]. How-
ever, energy intake is derived from carbohydrates, fat 
and protein. The following question emerged: Can the 
excessive restriction of GL, mostly through an extreme 
reduction in the intake of carbohydrates, result in a 
relatively high intake of fat and protein and result in 
overweight and obesity [19]? Indeed, China is facing an 
emerging obesity epidemic, and the prevalence of over-
weight and obesity has doubled over the past decade 
[20]. However, few previous studies examining the rela-
tionship between dietary GL and diabetes risk consid-
ered physiological endpoints, such as obesity.

In addition, definitive data warranting the establish-
ment of evidence-based dietary GL recommendations 
are currently lacking. Several studies conducted outside 
of Asia have defined a low-GL diet as the maintenance 
of a GL less than 80 per day [21], the consumption of 
no more than 45 per 1000  kcal [22], or the consump-
tion of no more than one serving of high-GL foods per 
day [23–25]. Such targets are difficult to achieve based 
on the Chinese Dietary Guidelines. Grains such as rice 
and noodles form the base of nearly every meal in the 
Chinese diet. According to the Chinese dietary guide-
lines, an adult should intake 250–400  g/day of grains, 
of which 50–150  g should be whole grains or mixed 
beans and 50–100  g should be tubers. The GL of the 
recommended diet would be more than 130 per day or 
80 per 1000 kcal. Due to the existence of limited or no 
supporting evidence, advice pertaining to the GL can 
be misleading. This study, which involved 2029 mid-
dle-aged and elderly Chinese adults, was performed to 
examine the associations among GL, diabetes and obe-
sity while considering the rationality of nutrient intake; 

in addition, this study initially aimed to determine the 
optimal GL range.

Methods
Study population
This study is an ongoing multiethnic, epidemiological 
study investigating lifestyle and the glucose metabo-
lism state in China [26–28]. The data used in this cross-
sectional analysis were obtained from a baseline survey 
conducted between July 2011 and December 2011 and 
focused on a subsample in Guangzhou, China. The details 
of the study methodology have been previously published 
[29]. Briefly, all eligible adults who were (a) aged 40 years 
or older and (b) lived in Guangzhou for at least 3 years 
were recruited. The participants were excluded if they (a) 
had a previous diagnosis of diabetes and/or were using 
oral diabetes medication or insulin injection and/or (b) 
had a severe impairment in their cardiac, hepatic or renal 
function.

Dietary assessment
During the first face-to-face interview, all participants 
were trained in the level of detail required to adequately 
describe the foods and amounts consumed, including 
the name of the food (brand name, if possible), prepa-
ration methods, recipes for food mixtures, and portion 
sizes. Food models and measuring displays were used to 
ensure accurate portion sizes. Subsequently, the partici-
pants were instructed to record the amount and type of 
all foods and drinks they consumed during a continuous 
3-day period, which ideally included 2 weekdays and 1 
weekend day at home, highly suggesting that recording 
to be done at the time of the eating occasion in order 
to reliance on memory. The foods eaten daily, the brand 
name, and the food preparation method were recorded in 
detail. The amounts consumed may be measured using a 
scale or household measures (e.g., cups or tablespoons) 
or estimated using models or pictures. All records were 
received in real time, clarified entries and probed for for-
gotten foods by a dietitian prior to collection.

The Food Composition Table of China and interna-
tional GI tables [30, 31] were used to establish a software 
model to log, calculate and save the energy, nutrients, 
GI and GL values of the study subjects. An appropriate 
GI value was chosen based on the cooking method used 
(e.g. uncooked, boiled or fried). The mean GI value was 
calculated when multiple values were available. For foods 
without a published GI value, the GI value was estimated 
based on a standardized method [32]. The GL of each 
food was calculated by multiplying the carbohydrate con-
tent in each serving by the GI of that food, and the total 
GL was calculated as the sum of all GL values of each 
food consumed over the course of 1 day [32]. In addition, 
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for each participant, the energy and nutrient intake were 
adjusted by the ideal body weight by converting the total 
value into the value per 1  kg of ideal body weight [33]. 
The mean daily indices of dietary intake were calculated.

The nutrient adequacy ratios (NARs) were calculated 
for 14 micronutrients (vitamin A, thiamine, riboflavin, 
ascorbic acid, folic acid, calcium, potassium, magnesium, 
iron, zinc, selenium and manganese) by dividing the par-
ticipants’ actual intakes of each micronutrient by the rec-
ommended nutrient intake (RNI) or adequate intake (AI). 
An NAR equal to 0 indicates a diet devoid of that micro-
nutrient, whereas an NAR equal to 1 indicates a diet that 
achieved or exceeded the recommended nutrient intake 
of that micronutrient. To obtain an overall estimate of 
nutritional adequacy, a mean micronutrient adequacy 
ratio (MAR) was calculated based on the 14 NARs. Each 
NAR was truncated at 1 to avoid the possibility that a 
micronutrient with a high NAR compensates for a micro-
nutrient with a low NAR. Therefore, the maximum pos-
sible MAR value was 1, and the minimum possible MAR 
value was 0.

Reproducibility and validity tests of the 3-day food 
record were conducted using the answers obtained 
from 58 participants [34]. These participants completed 
the 3-day food record and food frequency question-
naire (FFQ) for the first time. Then, after approximately 
2 weeks, they completed a second 3-day food record. The 
Spearman correlation coefficients of the two food records 
were 0.62 for the GI and 0.65 for the GL and ranged from 
0.41 to 0.69 for the GLs of different food groups (P < 0.05 
for all). Similarly, the Spearman correlation coefficients of 
the food records and FFQ were 0.54 for GI and 0.42 for 
GL and ranged from 0.32 to 0.55 for the GLs of different 
food groups (P < 0.05 for all).

Nondietary exposure assessment
The data regarding the sociodemographic characteris-
tics and lifestyle information, including physical activity, 
educational history, smoking and alcohol drinking status 
were gathered by trained interviewers using a standard 
questionnaire. In addition, the participants were invited 
to complete an oral glucose tolerance test (OGTT).

Physical activity was expressed as the number of meta-
bolic equivalent hours per week (MET-h/week) [35]. The 
MET-h of an activity was calculated by multiplying the 
time spent performing the activity by the MET value cor-
responding to that activity. Then, the total MET-h/week 
of moderate to vigorous activities was calculated by add-
ing the MET-h values of different moderate and vigor-
ous activities in a week. Regular exercise was defined as 
performing at least 7.5 MET-h of moderate to vigorous 
activities per week.

The participant’s weight, height and waist circumfer-
ence were measured with the participants dressed in 
light clothing without shoes in the fasting state. Their 
body height and waist circumference were measured to 
the nearest 0.1 cm, and their weight was measured to the 
nearest 0.1 kg. High-quality and accurate techniques and 
mean measurements were used. The body mass index 
(BMI) was calculated as the weight in kilograms divided 
by the square of the height in meters. Overweight was 
defined as a BMI between 24.0 and 27.9 kg/m2, and obe-
sity was defined as a BMI greater than or equal to 28.0 kg/
m2. Central obesity was defined as a waist circumference 
greater than or equal to 85.0 cm for men and 80.0 cm for 
women.

The plasma glucose level was measured by a glucose 
oxidase assay (AU5821; Beckman Coulter, Miami, FL, 
USA). The intra- and interassay coefficients of variation 
were 2 and 3%, respectively. Peripheral blood samples 
were collected in the morning after 8–12  h of fasting. 
The fasting plasma glucose (FPG) and 2-h plasma glu-
cose (2-hPG) levels were measured at fasting and 2  h 
after the participants had ingested a standard 75-g glu-
cose solution, respectively. Diabetes was defined as an 
FPG level greater than or equal to 7.0 mmol/L, a 2-hPG 
level greater than or equal to 11.1  mmol/L, and/or a 
self-reported diagnosis of diabetes supported by reliable 
medical reports.

Data cleaning
The participants were considered fully eligible if it was 
verified that complete data were adequately recorded. In 
addition, to prevent the variables with larger ranges from 
having a greater contribution than the variables with 
smaller ranges, z-scores were calculated to standardize 
the data set before clustering. Univariate and multivariate 
outliers (> 3 SD) were removed.

Statistical methods
All statistical tests were performed using PASW SPSS 
Statistics for Windows, Version 18.0 (IBM SPSS, 
Armonk, NK, USA), and the significance level was set at 
P < 0.05. The continuous variables are expressed as the 
mean ± SD and were compared using one-way ANOVA 
followed by Student–Newman–Keuls (SNK) test for post 
hoc pairwise comparisons. The categorical variables are 
expressed as absolute values (relative frequencies) and 
were compared using the chi-squared test.

A dominant component analysis was performed to 
identify the underlying dietary patterns. Bartlett’s test of 
sphericity and the Kaiser–Meyer–Olkin (KMO, > 0.60) 
measure of sampling adequacy were used to verify the 
appropriateness of the component analysis. The com-
ponents were also orthogonally rotated (the varimax 
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option) to enhance the difference between loadings, 
which allowed for easier interpretability. Components 
were retained based on the eigenvalues > 1.0. A k-means 
cluster analysis was used to classify the participants 
into clearly distinct groups based on the dominant 
components.

The odds ratio (OR) and 95% confidence interval (CI) 
of the prevalence of disease according to the clusters 
were assessed by logistic regression. In the fully adjusted 
model, advanced age (≥ 65  years or no), sex (male or 
female), regular exercise (yes or no), current smoking sta-
tus (yes or no), current drinking status (yes or no), and 
diabetic family history (yes or no) were adjusted.

Results
Participant characteristics
After excluding outliers and participants with incomplete 
data, 2029 participants (628 men and 1401 women) with 
a mean age of 56 years were included in the analysis. Bar-
tlett’s test of sphericity and a KMO of 0.654 supported 
the appropriateness of the component analysis. Five prin-
cipal components were extracted through a dominant 
component analysis of 16 variables, explaining 73.8% of 
the variance in the model (Fig. 1).

The general, anthropometric, and laboratory charac-
teristics of the participants classified in different clus-
ters are shown in Table 1. Cluster 1 included more male 
subjects and tended to have an unhealthier lifestyle pat-
tern, such as smoking and less regular exercise. Clusters 2 
and 3 included more female subjects and tended to have 

a healthier lifestyle pattern. Cluster 4 tended to include 
more younger subjects.

Prevalence of obesity
Among the 2029 individuals, 783 were diagnosed with 
overweight and obesity by BMI, and 992 were diagnosed 
with central obesity by waist circumference, resulting in 
a prevalence of 38.6% and 48.9%, respectively. The low-
est prevalence of overweight and obesity was observed 
in cluster 3 (32.2%), with moderate GL intake of 93 (85–
102)/1000 kcal. Compared to cluster 3, the risk of over-
weight and obesity both increased in cluster 1 (with the 
highest GL intake of 112 (107–119)/1000 kcal) and clus-
ter 4 (with the lowest GL intake of 90 (82–96)/1000 kcal), 
with multivariable adjusted ORs (95% CIs) of 1.35 (1.01–
1.80) and 1.44 (1.10–1.90), respectively. A similar trend 
of the prevalence of central obesity was observed across 
the four clusters. Compared to cluster 3, the risk of cen-
tral obesity increased in cluster 4, with a multivariable 
adjusted OR (95% CI) of 1.42 (1.09–1.85) (Fig. 2).

Prevalence of diabetes
Among the 2029 individuals, 901 were diagnosed with 
abnormal glucose metabolism, and 134 were diagnosed 
with diabetes by OGTT, resulting in a prevalence of 
44.4% and 6.6%, respectively. The prevalence of both 
abnormal glucose metabolism and diabetes was rela-
tively lower in clusters 2 and 3. Compared to cluster 1, 
the multivariable adjusted ORs (95% CI) of abnormal 
glucose metabolism and diabetes in cluster 2 were 0.70 

Fig. 1  Four identified clusters on dominant component loadings after varimax rotation. RCM rotated component matrix, GL glycemic load, MAR 
micronutrient adequacy ratio
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Table 1  General, anthropometric, and laboratory characteristics of the study subjects classified in different clusters

Categorical variables are expressed as absolute values (relative frequencies) and were compared using the chi-squared test. Continuous variables are expressed as the 
mean ± SD and were compared using ANOVA and SNK. Advanced age was defined as an age ≥ 65 years; regular exercise was defined as ≥ 7.5 MET-h/w of moderate to 
vigorous activities

BMI body mass index, FPG fasting plasma glucose, 2-hPG 2-hour plasma glucose, AUCG​ area under the curve of glucose
a  Compared to Cluster 1, P < 0.05
b  Compared to Cluster 2, P < 0.05
c  Compared to Cluster 3, P < 0.05
d  Compared to Cluster 4, P < 0.05

Cluster 1 (n = 627) Cluster 2 (n = 374) Cluster 3 (n = 357) Cluster 4 (n = 671) χ
2/F P ϕ/η

Advanced age (n (%)) 79 (12.6) 40 (10.7) 50 (14.0) 58 (8.6) 8.573 0.036 0.065

Male (n (%)) 330 (52.6) 58 (15.5) 62 (17.4) 178 (26.5) 216.606 < 0.001 0.327

Current smoker (n (%)) 123 (20.1) 25 (6.9) 17 (4.9) 84 (12.9) 60.632 < 0.001 0.175

Regular alcohol drinkers (n (%)) 25 (4.0) 7 (1.9) 9 (2.5) 25 (3.7) 4.426 0.219 0.047

Regular exercise (n (%)) 93 (14.8) 88 (23.5) 84 (23.5) 121 (18.0) 17.211 0.001 0.092

Diabetic family history (n (%)) 107 (17.1) 59 (15.9) 60 (16.9) 109 (16.4) 0.327 0.955 0.013

BMI (kg/m2) 23.3 ± 2.90 23.3 ± 3.0 23.0 ± 3.1 23.5 ± 3.2 1.452 0.226 0.046

Waist circumference (cm) 81.7 ± 8.8bc 80.0 ± 8.8ad 79.2 ± 8.9ad 81.3 ± 9.5bc 7.797 < 0.001 0.107

FPG (mmol/L) 5.54 ± 0.96b 5.37 ± 0.61a 5.49 ± 0.90 5.43 ± 0.86 3.610 0.013 0.073

2-hPG (mmol/L) 7.85 ± 2.77bc 7.27 ± 1.89a 7.44 ± 2.06a 7.60 ± 2.33 5.269 0.001 0.088

AUCG​ 6.69 ± 1.72bd 6.32 ± 1.10a 6.47 ± 1.30 6.51 ± 1.44a 5.512 0.001 0.090

Fig. 2  Prevalence of obesity among the participants and adjusted ORs (95% CIs) by cluster based on a logistic regression analysis adjusted for 
advanced age (≥ 65 years or no), sex (male or female), regular exercise (yes or no), current smoking status (yes or no), current drinking status (yes 
or no), and diabetic family history (yes or no). Overweight and obesity were defined as a BMI ≥ 24.0 kg/m2; central obesity was defined as a waist 
circumference ≥ 85.0 cm for men or ≥ 80.0 cm for women
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(0.53–0.92) and 0.48 (0.27–0.87), and those in cluster 3 
were 0.72 (0.54–0.95) and 0.42 (0.23–0.78), respectively 
(Fig. 3).

The optimal GL range
Participants in cluster 1 consumed a typical high-car-
bohydrate/high-GL diet, with approximately 60% of the 
total energy derived from carbohydrates and 91% of 
carbohydrate derived from refined grains. In contrast, 
participants in cluster 4 consumed an improper low-car-
bohydrate/low-GL diet, with approximately 49% of the 
total energy derived from carbohydrates and 87% of car-
bohydrate derived from refined grains. The GLs of clus-
ters 2 and 3 were slightly higher than those of cluster 4; 
however, the contribution rates of the macronutrients to 
the total energy were more consistent with the reference 
and only approximately 75% was derived from refined 
grains.

The total GL was similar between clusters 2 and 3; 
however, the food composition differed. Cluster 2 con-
sumed the highest GL intake from fruit and nuts, while 
cluster 3 consumed the highest GL intake from whole 

grains, mixed beans, dairy, beans and nuts. The MARs 
were higher in clusters 2 and 3 (Fig. 4).

Given the associations among the clusters, nutrient 
intakes, obesity and diabetes risk, the optimal GL range 
was determined to be the interquartile of clusters 2 and 3, 
which was (85–100)/1000 kcal with the reference intake 
of carbohydrate, fat, and protein and proper food intake.

Discussion
Consistent with several previous cross-sectional stud-
ies [36, 37], our results suggest that a low GL is asso-
ciated with better glucose homeostasis. Nevertheless, 
our results contributed to the debate regarding whether 
excessive GL restriction may increase the risk of obe-
sity. In this study, participants with moderate GL intake 
(clusters 2 and 3) had a lower prevalence of overweight 
and obesity, while both those with the highest GL 
intake (cluster 1) and the lowest GL intake (cluster 4) 
showed an increased risk of overweight and obesity. 
Only one previous study suggested a negative asso-
ciation between GL and BMI [38], while other studies 
have indicated that GL is not associated with the BMI 
[37, 39, 40]. However, in addition to BMI, associations 

Fig. 3  Prevalence of diabetes among the participants and adjusted ORs (95% CIs) by cluster based on a logistic regression analysis adjusted for 
advanced age (≥ 65 years or no), sex (male or female), regular exercise (yes or no), current smoking status (yes or no), current drinking status (yes or 
no), and diabetic family history (yes or no). Abnormal glucose metabolism was defined as FPG ≥ 6.1 mmol/L and/or 2-hPG ≥ 7.8 mmol/L; diabetes 
was defined as FPG ≥ 7.0 mmol/L and/or 2-hPG ≥ 11.1 mmol/L
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with waist circumference have been examined, and 
both a positive association [41] and no association 
[39, 40] between GL and waist circumference have 
been reported. Based on our results, we considered 
both obesity and diabetes risk and nutrient intake and 

showed that the optimal intake, which is preliminarily 
set at (85–100)/1000 kcal, is better than the lowest GL.

In the present study, dietary GI and GL were assessed 
using a previously validated 3-day food record instead of 
an FFQ. This methodology was selected for three reasons. 

Fig. 4  Dietary characteristics of the four identified clusters. Whisker-box plot with boxes indicating the median and 25th and 75th percentiles and 
whiskers indicating the 10th and 90th percentiles. “+” indicates the mean. The shadow indicates the Chinese dietary reference intakes (a–e) or the 
interquartile range of cluster 3 (f). *P < 0.05. GL glycemic load, MAR micronutrient adequacy ratio
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First, FFQ usually overestimates food intake compared 
to other nutritional assessment methods, which leads to 
an overestimation of the energy and nutritional values of 
diets [42]. Second, possible errors include the omission 
or addition of food, as well as an inadequate assessment 
of the frequency and amount of consumed products 
[43]. Third, with a 3-day food record, details about the 
sources, preparation, and processing of foods and timing 
and location of meals together with quantitative data on 
all food sources of energy and nutrients can be captured. 
Last, a 3-day food record can be designed to be cultur-
ally sensitive and cognitively easy, making it especially 
suitable for respondents with limited education, such as 
elderly adults [44]. In addition, in our study, the 3-day 
food record is a prospective method that is independent 
of the participant’s memory and covers three consecutive 
days. Therefore, the food record provides relatively accu-
rate data concerning the intake of food and nutrients. In 
our reproducibility and validity test, the intake of certain 
foods was sometimes underestimated using 3-day food 
records. However, the intake of cereal, which is the domi-
nant source of GL, rarely changed.

Dietary pattern analyses using component [45, 46] or 
cluster analyses [47, 48] reflecting the complexity of die-
tary intake have recently received greater attention from 
nutritional epidemiologists [49–51]. Component analyses 
reduce the number of variables by identifying independ-
ent vectors that are combinations of original correlated 
variables; cluster analyses create groups or clusters of 
subjects with similar profiles and are very useful for 
descriptive purposes. In this study, we preliminarily used 
a cluster analysis to identify the GL intake patterns, and 
nonoverlapping groups of individuals who exhibited 
similar patterns of GL intake were created based on the 
dominant pattern of GL intake. To the best of our knowl-
edge, there are no comparable studies investigating GL 
clusters in terms of overweight and obesity or diabetes.

Traditionally, studies investigating dietary GL intake 
and chronic metabolic disease have focused on the total 
GL. However, food is typically consumed in combination, 
not in isolation, and therefore, comprehensive investiga-
tions are needed to understand the dietary patterns asso-
ciated with a lower risk of diabetes. Dietary GL decreased 
from cluster 1 to cluster 4. However, the lowest risks for 
overweight and obesity, central obesity, abnormal glu-
cose metabolism, and diabetes were observed in the mid-
dle clusters (cluster 2 or 3) rather than either the highest 
(cluster 1) or the lowest (cluster 4) cluster. Considering 
the food sources of the GL, although cluster 4 consumed 
the lowest total GL, approximately 87% of the GL was 
derived from refined grains, which seemed to increase 
the risk of type 2 diabetes [7]. In contrast, the total GLs 
in clusters 2 and 3 were slightly higher than those that 

in cluster 4; however, approximately 75% of both were 
derived from refined grains. Cluster 2 consumed the 
highest intake of GL from fruit and nuts, and cluster 3 
consumed the highest intake of GL from whole grains 
and mixed beans, dairy and beans. Numerous previous 
studies have suggested the favorable effects of such foods 
on obesity and diabetes [7].

Dietary patterns (i.e., the macronutrient ratios and 
sources) impact the inflammatory potential and obesity 
or diabetes risk. Compared to the Chinese dietary refer-
ence intakes of macronutrients, participants with mod-
erate GL intake (clusters 2 and 3) were more consistent 
with the macronutrient intake reference. In contrast, par-
ticipants with the lowest GL intake (cluster 4) consumed 
relatively higher fat and protein. Generally, accepted that 
consuming a high fat diet increases the likelihood of obe-
sity, which is one of the identified significant risk factors 
for diabetes. However, the role of proteins in diabetes 
prevention is conflicting. Dietary proteins have an insu-
linotropic effect and promote insulin secretion, which 
leads to an increased rate of glucose clearance from the 
blood [52]. However, the results from clinical trials and 
observational studies have been mixed. A meta-analysis 
showed beneficial effects of a high-protein diet on sev-
eral obesity and cardiometabolic parameters, including 
weight loss and fasting insulin [53]. Conversely, several 
large prospective cohort studies have shown detrimental 
associations between protein intake and diabetes risk [54, 
55]. A meta-analysis suggested that high total protein and 
animal protein intake were associated with an increased 
risk of diabetes while high plant protein intake was asso-
ciated with a decreased risk [56]. Therefore, the efficacy 
and safety of high-protein, low-carbohydrate diets have 
to be studied more extensively.

The relationship between individual micronutrients 
and a low-GL diet is still uncertain. Low-GI foods are by 
definition moderate to high sources of carbohydrates, yet 
some are also particularly rich in micronutrients, such 
as fruits, whole grains and dairy products. Several stud-
ies have reported that a low-GL diet is associated with 
higher intakes of micronutrients [57], whereas a diet with 
low or no gluten may lead to micronutrient deficiencies 
[58]. Combined with our results, a low GL with a proper 
food intake diet, which ideally contains many whole 
grains, mixed beans, vegetables, fruits, dairy, nuts and 
beans, should be fundamental for the adequate intake of 
micronutrients. A reasonable collocation dietary pattern 
could be better than a dietary pattern that excessively 
restricts the GL.

Our study has the following limitations. First, a cross-
sectional design and convenience sampling were used 
such that the majority of the study subjects were women 
(69%). Therefore, sex (male or female) was adjusted when 



Page 9 of 10He et al. Nutr Metab (Lond)           (2021) 18:31 	

analyzing the association between dietary GL and the 
prevalence of abnormal glucose metabolism. In addition, 
the data analyzed in this cross-sectional analysis were 
derived from a baseline survey of an ongoing multieth-
nic, epidemiological study. Therefore, the results could 
be further studied based on the following prospective 
observations. Second, all participants were Chinese with 
traditional high-GL dietary habits. The generalization of 
the results to other ethnic groups should be performed 
with caution. Third, measurements of dietary intake 
were secured by self-reported dietary records, as known 
recovery biomarkers of GL are limited. To secure a secur-
ing more accurate measurement of diet, all participants 
were trained on how to record the diet intake and were 
suggested to record at the time of the eating occasion. 
Despite these limitations, this study was the first to eval-
uate the associations among the GL, macro- and micro-
nutrient intake and the risk of obesity and diabetes. In 
addition, the optimal range of the GL for lowering both 
obesity and diabetes risk was preliminarily explored.

Conclusion
Our results demonstrate that reducing GL to prevent dia-
betes deserves more attention based on dietary patterns. 
An appropriate GL is better for reducing the risk of obe-
sity and diabetes than excessive GL restriction. This study 
underscores that required educational interventions 
should not only promote a specific GL limitation but also 
promote a more general healthy eating pattern.
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