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Abstract 

Background:  Data from the 2010–2012 Chinese National Nutrition and Health Survey showed that the vast majority 
of postmenopausal women in China had dual deficiencies in calcium and estrogen.

Objective:  This study aimed to clarify whether calcium supplementation alleviated bone loss caused by calcium 
restriction combined with estrogen deficiency in rats.

Methods:  Forty-eight female rats aged 9 weeks were assigned to 4 groups and fed a low-calcium diet: sham-oper-
ated (SHAM-LC), ovariectomized (OVX-LC), and ovariectomized rats treated with 750 mg/kg (OVX-LC-M) or 2800 mg/
kg CaCO3 (OVX-LC-H). CaCO3 or distilled water was administered orally for 13 weeks. Bone mineral density (BMD) and 
histomorphometry of the femur, serum biochemical parameters, and serum metabolites were analyzed.

Results:  The OVX-LC rats showed a significant increase in body weight and serum levels of lipid markers, a significant 
decrease in serum estradiol, calcium, phosphorus, and 25(OH)D levels, and deterioration of the femur. At 750 mg/
kg and 2800 mg/kg, CaCO3 reduced the deterioration of trabecular bone and increased the trabecular area percent-
age (Tb.Ar %) and BMD of the femur. Serum estradiol levels increased in a dose-dependent manner after CaCO3 
supplementation (p < 0.01). The administration of 2800 mg/kg CaCO3 decreased serum triglyceride and high-density 
lipoprotein levels (p < 0.05) and decreased the levels of the bone turnover markers osteocalcin, N-telopeptide of type I 
collagen and β-crosslaps. The results of the metabolomics analysis showed that the glycerophospholipid metabolism 
pathway was closely related to calcium supplementation, and more DG (44:6 n3), LysoPC (22:2) and PE (P-34:3) and 
less Cer (d43:0) and PE-NMe2 (46:3) were produced.

Conclusions:  The results clearly indicated that calcium supplementation was beneficial for decreasing bone loss in 
OVX-LC rats. The present study is the first to show that calcium supplementation increased the estradiol content in 
OVX-LC rats, and the effect of calcium on bone loss may be partially attributed to the increase in the estrogen level 
that subsequently induced the changes in metabolite levels, eventually increasing the bone mineral density to a 
relatively higher level to reduce bone deterioration.
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Introduction
Osteoporosis is a disease characterized by a decrease in 
bone mineral density and the destruction of the bone 
microstructure, which eventually leads to increased bone 
fragility and fracture [1–3]. With the aging of the popu-
lation, osteoporosis has become a common disease that 
endangers the health of elderly individuals worldwide 
and has imposed heavy economic and social burdens [4]. 
According to an epidemiological survey of osteoporosis 
in China in 2018, the incidence of osteoporosis in people 
over 50 years old was 19.2%, and the incidence was even 
higher at 30% and 50% for females over 50 and 65 years 
old, respectively [5].

Many factors contribute to osteoporosis, such as the 
insufficient intake of calcium (Ca) and protein, a low 
level of vitamin D, endocrine factors, heredity, and living 
habits [6–11]. For postmenopausal women, osteoporo-
sis is mainly caused by estrogen deficiency. The 2010–
2012 Chinese National Nutrition and Health Survey 
showed that the daily Ca intake of Chinese residents was 
366.1 mg/d, which was only half of the recommended Ca 
intake, and the Ca intake of 96.6% of Chinese residents 
was lower than the estimated average requirement for 
Ca [12]. Therefore, the vast majority of postmenopausal 
women in China are present with dual deficiencies in Ca 
and estrogen.

Ca is an important component of bone, and > 99% of Ca 
in the body is deposited in bone and teeth [13]. Ca sup-
plementation has been widely used to prevent osteoporo-
sis and subsequent fractures in postmenopausal women 
based on the hypothesis that an adequate Ca level is cru-
cial for maintaining bone health [14, 15]. This hypothesis 
has also been supported by many studies. A meta-anal-
ysis showed that Ca intake effectively postpones the 
decreasing trend in the BMD and reduces the risk of frac-
tures in postmenopausal women [16–19]. However, the 
effect of Ca on preventing postmenopausal osteoporosis 
was not consistent in recent data. Reid reported that the 
effect of calcium supplementation on fractures in healthy 
older women remained uncertain [20], and some meta-
analyses showed that the evidence of the effectiveness 
of Ca treatment for fractures in postmenopausal women 
remained limited [21].

Many explanations for the controversial results of 
meta-analyses of population studies have been proposed, 
such as different dietary Ca intake levels, national Ca 
recommendations, vitamin D intake statuses, Ca supple-
ment dosages and durations, and poor long-term compli-
ance. A rat bone loss model was induced by performing 
OVX and administering a low Ca diet to clarify whether 
Ca supplementation is beneficial for the prevention of 
osteoporosis induced by estrogen and Ca deficiencies. 
Then, different concentrations of calcium carbonate 

(CaCO3) were administered to rats to observe the effects 
of Ca supplementation on bone loss and explore the pos-
sible mechanism.

Metabolomics can be used to collect information on 
metabolites, including lipids, amino acids, sugars and 
vitamins, in blood, urine and tissues, and changes in 
metabolites are sensitive indicators of nutrition and 
metabolism [22–24]. Metabolomics has been widely 
used to identify biomarkers and explore the mechanism 
of osteoporosis [25–27]. Here, the mechanism underly-
ing the effect of Ca on osteoporosis was explored with 
metabolomics after rats were supplemented with differ-
ent concentrations of Ca for 13 weeks.

Methods
Rat maintenance
CaCO3 was obtained from the Harbin Pharmaceuti-
cal Group, China (Batch No. 20190227). Forty-eight 7- 
to 8-week-old female Sprague–Dawley rats with body 
weights of 250–300 g were purchased from Beijing Wei-
tongLihua Experimental Animal Technology Co. Ltd., 
license number: SCXK (Peking) 2016-0011. The rats were 
maintained on a standard 12 h light/12 h dark illumina-
tion cycle with water and chow provided ad libitum.

Experimental design
After 7  days of acclimation, all rats were anesthetized 
with an intraperitoneal injection of pentobarbital sodium 
(30 mg/kg BW). All rats underwent either bilateral OVX 
(n = 36) or sham operation (SO, n = 12). For the sham-
operated rats, bilateral abdominal incisions and sutures 
were performed without oophorectomy [28]. Uterine 
atrophy (observed during dissection) indicated a success-
ful operation in all OVX rats. After 7  days of convales-
cence, all rats were assigned to 4 groups and fed a low Ca 
diet: sham-operated rats fed a low Ca diet (SHAM-LC, 
n = 12), OVX rats fed a low Ca diet (OVX-LC, n = 12), 
OVX rats fed a low Ca diet and treated with 750  mg/
kg CaCO3 (OVX-LC-M, n = 12) or OVX rats fed a low 
Ca diet and treated with 2800  mg/kg CaCO3 (OVX-
LC-H, n = 12). The rats in the SHAM-LC and OVX-LC 
groups were administered distilled water. CaCO3 or dis-
tilled water was administered to rats by oral gavage for 
13  weeks. The experimental protocol was approved by 
the Animal Ethics Committee of National Institute of 
Nutrition and Health, Chinese Center for Diseases Con-
trol and Prevention.

Preparation of the low Ca diet
The low Ca diet was prepared according to the “Test 
method for improving bone mineral density function” 
inspection and assessment standard for health food 
issued by the Ministry of Health, People’s Republic of 
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China. The diet was composed of 32% corn starch, 30% 
sucrose, 23% casein, 5% fiber, 5% corn oil, 3.5% mineral 
mixture, 1% vitamin mixture, 0.3% DL-methionine, and 
0.2% choline tartrate. The following mineral mixture 
(per kilogram diet) was used: MnSO4 110  mg, CuSO4 
0.8  mg, FeSO4 1.2  mg, KI 18.0  mg, ZnSO4 2960  mg, 
CaHPO4 2890  mg, and MgSO4 12.5  g. The following 
vitamin mixture was used (per kilogram diet): vitamin A 
1.4 × 104 IU, vitamin D 1500 IU, vitamin E 120 mg, vita-
min K 3 mg, vitamin B1 12 mg, vitamin B2 20 mg, vita-
min B6 12 mg, vitamin B12 0.03 mg, nicotinic acid 60 mg, 
pantothenic acid 24 mg, folate 6 mg, and biotin 0.54 mg. 
The Ca content in the low Ca diet was 2.2 g/kg diet after 
examination.

Analyses of serum parameters
At the termination of the study, all rats were fasted over-
night, and abdominal aortic blood was collected. The 
levels of Ca, phosphorus (P), glucose (GLU), total choles-
terol (TC), triglycerides (TGs), high-density lipoprotein 
(HDL), low-density lipoprotein (LDL), and nonesteri-
fied fatty acids (NEFAs) in serum were examined with an 
automatic biochemistry analyzer (Hitachi 7600, Japan). 
The content of 25(OH)D in serum was determined with 
an ultra-performance liquid chromatography-tandem 
mass spectrometer (UPLC-MS/MS, Shimadzu 8060, 
Japan). Serum estradiol (E2) concentrations were assayed 
with an automatic immune analyzer (DXI800, Beckman, 
USA). Bone turnover markers (BTMs), including pro-
collagen I N-terminal peptide (PINP), osteocalcin (OC), 
N-telopeptide of type I collagen (NTX), and β-crosslaps 
(β-CTX), were detected with rat ELISA kits (Cusabio 
Biotech Co., China).

Femoral BMD analysis
The left femur was extracted and examined with a dual-
energy X-ray absorptiometry system (DXA, Hologic, 
USA). The BMD of the whole femur and distal end of 
femur was analyzed. The placement positions of each 
femur were consistent. The region of interest (ROI) was 
defined manually after the scouting scan. The densitom-
eter was calibrated using small animal quality assurance 
phantoms provided by the manufacturer and performed 
using established procedures before the series of meas-
urements was collected.

Histomorphometric analysis of the femur
After fixation with 10% buffered formalin for 5 days, the 
right femurs were decalcified with 10% EDTA for 3 days. 
Then, the distal metaphyses of femurs were dehydrated 
in ethanol, defatted in xylene, embedded in paraffin, and 
sliced into longitudinal sections (5-μm thick). H&E stain-
ing was performed on the sections. The morphology of 

the rat trabecular bone in the distal femoral metaphyses 
was observed, and the static parameter of Tb.Ar % within 
3  mm under the epiphyseal plate were calculated with 
Image-Pro Plus 6.0 software.

Metabolomics analysis
The metabolomics method described in previous studies 
was used [29, 30]. Serum (100 μL) was mixed with 0.9 mL 
of 80% methanol containing 0.1% formic acid (FA). After 
vortexing for 30 s and ultrasonication for 20 min, all sam-
ples were frozen for 1 h at − 20 °C for protein precipita-
tion. Then, the samples were centrifuged at 12,000 × g for 
10 min at 4 °C, and the supernatant (800 μL) of each sam-
ple was collected and transferred to a sample vial. Quality 
control (QC) samples were prepared by pooling aliquots 
of all serum samples for the serum metabolomics analy-
sis. Blank samples (80% methanol containing 0.1% formic 
acid) and QC samples were repeated every ten samples 
during data acquisition. The sample vials were stored at 
− 20 °C until detection.

The UPLC-QTOF MS analysis was performed using a 
UPLC system (ACQUITY UPLC I-Class, Waters) cou-
pled to an electrospray ionization quadruple time-of-
flight mass spectrometer (ESI-QTOF MS) (SYNAPT 
G2-Si HDMS, Waters). A Waters ACQUITY BEH C18 
column (1.7  μm; 100  mm × 2.1  mm) was used for LC 
separation, and the column temperature was maintained 
at 40  °C. The flow rate was 0.4 mL/min, and the sample 
injection volume was 10 μL. Mobile phase A was 0.1% FA 
in water, and mobile phase B was 0.1% FA in ACN. The 
following linear gradient was set: Initial to 1 min: 10% B, 
0–3 min 10% B to 80% B, 3–8 min: 95% B to 95% B, and 
8.1–10 min: 10% B.

High-accuracy MS data were recorded using MassLynx 
4.1 software. The capillary voltage was 2.5 kV for positive 
mode and 2 kV for negative mode, whereas the cone volt-
age was 30  V for both modes. The source temperature 
was set to 120 °C with a cone gas flow of 50 L/h, and the 
desolvation temperature was set to 500  °C with a desol-
vation gas flow of 800 L/h. Leucine-enkephalin (LE) was 
used as the lock mass, generating a reference ion at m/z 
556.2771 in positive mode and m/z 554.2615 in negative 
mode, which was introduced by a lockspray at a rate of 10 
μL/min for data calibration. The MSE data were acquired 
in continuum mode using ramp collision energy in two 
scan functions. For low-energy mode, a scan range of 
50–1200  Da, scan time of 0.2  s, and collision energy of 
6  V were used. For high-energy mode, a scan range of 
50–1200 Da, scan time of 0.2 s, and collision energy ramp 
of 15–45 V were used.

Raw data were imported into the commercial software 
Progenesis QI (Version 2.4, Waters) for data process-
ing, which included peak selection, peak alignment and 
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acquiring compound-associated information such as the 
m/z, retention time and intensity. Next, data filtering was 
performed to delete low-quality data. Ions with a rela-
tive standard deviation (RSD) of more than 30% in QC 
samples were filtered. These filtered ions fluctuated sub-
stantially among samples and were not included in fur-
ther analyses. PLS-DA (partial least squares discriminant 
analysis) was performed, and VIP (variable importance 
in projection) was calculated using MetaboAnalyst 4.0 
(https://​www.​metab​oanal​yst.​ca/) [31] and R project soft-
ware. R project software was also applied in further data 
processing and statistical analyses. The pathway analy-
sis was performed using MetaboAnalyst 4.0 software. 
The column graph was drawn using GraphPad Prism 8.0 
software.

Data analysis
All data are presented as the means ± SD. The differences 
between groups were analyzed using the T-test or one-
way ANOVA with SPSS 16.0 software. Differences were 
considered statistically significant at p < 0.05.

Results
Effect of CaCO3 on body weight
As shown in Fig. 1, all rats in the four groups had simi-
lar initial body weights. The body weight of rats in the 
OVX-LC group increased significantly after surgery 
compared to that of the SHAM-LC group (p < 0.01). A 

tendency of reduced body weight after CaCO3 treat-
ment was observed, although a significant difference 
was not observed among the OVX-LC, OVX-LC-M and 
OVX-LC-H groups. The results indicated that Ca supple-
mentation slightly inhibited the weight gain induced by 
OVX-LC.

CaCO3 significantly increased the E2 content
The induction of postmenopausal conditions by OVX 
resulted in a dramatic reduction in E2 levels. Compared 
to the SHAM-LC group, serum E2 levels in the OVX-LC 
group were reduced significantly (p < 0.01) by approxi-
mately threefold. Interestingly, serum E2 levels increased 
significantly in the OVX-LC-M and OVX-LC-H groups 
compared to the OVX-LC group (p < 0.01), and a signifi-
cant positive dose–response relationship between the 
dose of CaCO3 and serum E2 level was observed (Fig. 2). 
Ca supplementation increased the E2 concentration in 
OVX-LC rats, which might be an important factor to 
alleviate osteoporosis.

Effect of CaCO3 on biochemical parameters
As shown in Table  1, compared to the SHAM-LC 
group, the serum Ca, P, and 25(OH)D concentrations 
decreased significantly, and the serum TC, HDL and 
LDL concentrations increased significantly in the OVX-
LC group (p < 0.05 or p < 0.01). The results indicated 
that the induction of postmenopausal conditions by 

0 2 4 6 8 10 12 14
200

250

300

350

400

450

Time (weeks)

B
od

y
w
ei
gh

t(
g)

SHAM-LC

OVX-LC

OVX-LC-M

OVX-LC-H

a

a
a

Fig. 1  Effect of CaCO3 on body weight. a: p < 0.05 compared with the SHAM-LC group

https://www.metaboanalyst.ca/


Page 5 of 14Mao et al. Nutr Metab (Lond)           (2021) 18:76 	

OVX led to significant disorders of bone metabolism 
and lipid metabolism parameters. Compared to the 
OVX-LC group, the TG and HDL contents in the OVX-
LC-H group decreased significantly (p < 0.05), and 
an obvious dose–response relationship was observed 
among the three groups. No obvious differences were 
observed in the other parameters examined in serum 
among the OVX-LC, OVX-LC-M and OVX-LC-H 
groups. Based on the results, Ca supplementation par-
tially counteracted the disorder of lipid metabolism 
induced by OVX-LC.

Effect of CaCO3 on BTMs
As shown in Fig. 3, compared to the SHAM-LC group, 
no obvious differences were observed in the four 
examined BTMs in the OVX-LC group. Compared to 
the OVX-LC group, the content of OC in the OVX-
LC-M and OVX-LC-H groups decreased significantly 
(p < 0.01), and the contents of NTX and β-CTX in the 
OVX-LC-H group decreased significantly (p < 0.05).

Effect of CaCO3 on the BMD of the femur
As shown in Fig. 4, compared to the SHAM-LC group, 
OVX caused a significant decrease in the BMDs of the 
whole femur and distal end of the femur in the OVX-LC 
group (p < 0.01). The BMDs of the whole femur and dis-
tal end of the femur in the OVX-LC-M and OVX-LC-H 
groups increased significantly compared to those of the 
OVX-LC group (p < 0.05). These results confirmed that 
the rat bone loss model was successfully established by 
the OVX operation, while Ca supplementation partially 
reversed the decrease in BMD in the OVX-LC rats.

Effect of CaCO3 on the histomorphometry of the femur
As shown in Figs.  5 and 6, the structure of trabecu-
lar bone in the OVX-LC group became sparse, slen-
der and fractured compared to that of the SHAM-LC 
group. The changes induced by OVX were accompa-
nied by a significant decrease in the Tb.Ar % (p < 0.01). 
After 13  weeks of CaCO3 treatment, improved conti-
nuity, integrity and numbers of trabecular bone were 
observed in the OVX-LC-M and OVX-LC-H groups. 
Tb.Ar % also increased significantly in the OVX-LC-
M and OVX-LC-H groups compared to the OVX-LC 
group (p < 0.05 or p < 0.01). Therefore, Ca supplemen-
tation improved the structure of the bulk trabecular 
bone, thereby exerting a protective effect on the bones 
of OVX-LC rats.

Effect of CaCO3 on serum metabolites
PLS‑DA model analysis
Nine hundred sixty seven metabolites in rat serum were 
identified using metabolomics, including glycerophos-
pholipids, triglycerides, diglycerides, ceramides, organic 
acids, amino acids, fatty acids, and vitamins. Accord-
ing to the PLS-DA multivariate statistical model analy-
sis, obvious differences were discovered on the score 
graphs among the OVX-LC, OVX-LC-M and OVX-LC-
H groups, yet little difference was detected between the 
OVX-LC-M and OVX-LC-H groups (Fig. 7). The results 
indicated that calcium supplementation induced changes 
in metabolites, but no significant difference was observed 
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Table 1  Effect of CaCO3 on serum biochemical parameters

Results are presented as the means ± SD, n = 12
a p < 0.05 compared with the SHAM-LC group
b p < 0.05 compared with the OVX-LC group

Parameters SHAM-LC OVX-LC OVX-LC-M OVX-LC-H

Ca (mmol/L) 2.63 ± 0.07 2.52 ± 0.05a 2.43 ± 0.22a 2.55 ± 0.11

P (mmol/L) 2.54 ± 0.27 2.16 ± 0.31a 2.08 ± 0.18a 2.10 ± 0.21a

GLU (mmol/L) 5.53 ± 0.57 5.73 ± 0.78 6.10 ± 0.90 5.93 ± 1.00

TC (mmol/L) 2.29 ± 0.55 3.32 ± 0.79a 3.20 ± 0.40a 2.88 ± 0.41a

TG (mmol/L) 0.39 ± 0.25 0.63 ± 0.35 0.53 ± 0.31 0.38 ± 0.14b

HDL (mmol/L) 1.46 ± 0.32 2.00 ± 0.44a 1.87 ± 0.21a 1.72 ± 0.23b

LDL (mmol/L) 0.62 ± 0.22 1.17 ± 0.43a 1.19 ± 0.20a 1.01 ± 0.24a

NEFA (mmol/L) 0.74 ± 0.31 0.89 ± 0.37 0.82 ± 0.16 0.77 ± 0.21

25(OH)D (ng/
mL)

17.48 ± 3.42 12.49 ± 5.06 10.42 ± 4.01 13.17 ± 4.45
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after the administration of higher concentrations of the 
Ca supplement.

Pathway analysis
We used MetaboAnalyst 4.0 software to analyze and 
compare the metabolic pathways among the OVX-LC, 
OVX-LC-M and OVX-LC-H groups, and found that 
the glycerophospholipid and butanoate metabolic path-
ways play a major role in the effect of Ca supplementa-
tion on OVX rats. However, no significant difference was 
observed in the butanoate metabolic pathway (p values 
were 0.76, 0.23, and 0.8 for comparisons between the 
OVX-LC and OVX-LC-M groups, OVX-LC and OVX-
LC-H groups, and OVX-LC-M and OVX-LC-H groups, 
respectively), but a significant difference in the glycer-
ophospholipid metabolic pathway was identified (p val-
ues were 5.12E−7, 4.08E−8, and 0.26 for comparisons 
between the OVX-LC and OVX-LC-M groups, OVX-
LC and OVX-LC-H groups, and OVX-LC-M and OVX-
LC-H groups, respectively). The main differences in 
glycerophospholipid metabolism were identified in phos-
phatidylcholines, phosphatidylethanolamines and cera-
mides (Fig. 8).

Cross analysis of differentially altered metabolites
Through pairwise comparisons, numerous differen-
tially altered metabolites were identified, including 
239 metabolites between the OVX-LC and OVX-LC-
M groups, 365 metabolites between the OVX-LC and 
OVX-LC-H groups, 86 metabolites between the OVX-
LC-M and OVX-LC-H groups, and 46 metabolites in 

common among the three groups, as shown in the center 
of Fig. 9A. The results of the heatmap analysis of the 46 
metabolites showed that 6 of them were decreased signif-
icantly and 40 of them were increased significantly after 
Ca supplementation (shown in Fig. 9B).

Correlation analysis of Ca and estrogen with differentially 
altered metabolites
The Pearson method was used to analyze the correlations 
of 46 differentially altered metabolites with Ca and E2 
levels. Among the 46 metabolites, 10 were significantly 
correlated with Ca and E2 levels, and the correlation 
coefficient was greater than 0.6. The correlation diagram 
showed that 5 metabolites were positively correlated with 
Ca supplementation, including DG (44:6n3), LysoPC 
(22:2) and PE (P-34:3), while the other 5 metabolites were 
negatively correlated with Ca supplementation, includ-
ing Cer (d43:0) and PE-NMe2 (46:3), as shown in Fig. 10. 
This result indicated that Ca supplementation had a close 
correlation with changes in the levels of some metabo-
lites, especially changes in glycerophospholipid levels.

Discussion
Ca is an important micronutrient that regulates vari-
ous physiological activities in the human body, such as 
the formation of bone and teeth, and maintains the nor-
mal function of cells [32]. Sufficient dietary Ca intake is 
important for maintaining bone health. When Ca intake 
is insufficient, the organism is forced to increase the pro-
cess of osteolysis to maintain Ca homeostasis [33]. In the 
present study, a low Ca diet (22% Ca recommended dose) 
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was used to induce a severe Ca deficiency. Two doses of 
CaCO3 were administered to rats to produce a moderate 
deficiency and a sufficient Ca intake level to observe the 
effect of Ca on bone loss induced by OVX-LC.

Estrogen deficiency is the major factor contributing 
to postmenopausal osteoporosis. Many similarities have 
been observed between OVX-induced bone loss in rats 
and postmenopausal osteoporosis in humans. Thus, OVX 
rats have been widely used as an animal model to study 
postmenopausal osteoporosis [34, 35]. In the present 
study, a rat bone loss model was established by OVX-LC. 
A BMD measurement is considered the standard method 
for diagnosing osteoporosis in humans, and DXA has 
been used to measure BMD in rats in many studies [36, 
37]. As expected, a significant decrease in the BMD of the 

femur was observed in the OVX-LC group compared to 
the SHAM-LC group, which confirmed that estrogen is 
important for maintaining bone density. The BMD of the 
whole femur and distal end of the femur in the OVX-LC-
M and OVX-LC-H groups increased significantly after 
13 weeks of Ca supplementation compared to the values 
of the OVX-LC group. The changes in the BMD of the 
femur indicated that Ca supplementation is beneficial to 
counteract the decrease in bone loss induced by OVX-
LC. Gao also reported that a low Ca diet (0.1% calcium) 
accelerates bone loss in OVX rats [38], consistent with 
the results of our study.

Deterioration of trabecular bone has been implicated 
in the incidence of osteoporosis in humans. Thus, an 
assessment of trabecular bone structure is important to 

Fig. 5  Effect of CaCO3 on the histology of the femur. Histological sections (HE.25×) of trabecular bone from rats in different groups were observed. 
OVX caused an obvious loss of trabecular bone in the OVX-LC group, and the administration of 750 mg/kg or 2800 mg/kg CaCO3 significantly 
rendered the loss of trabecular bone in OVX-LC rats
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evaluate the quality of the femur in addition to BMD. In 
this study, a histomorphometric analysis of the femur 
was performed at the end of the study. The trabecular 
structure of the femur deteriorated obviously, and the 
Tb.Ar % decreased significantly compared to that of the 
SHAM-LC group. The deterioration of trabecular bone 
was induced by estrogen deficiency, which has also been 
reported in other studies. After 13  weeks of Ca supple-
mentation, the deterioration of trabecular bone of the 
femur was ameliorated, and the Tb.Ar % increased signif-
icantly in the OVX-LC-M and OVX-LC-H groups. Based 
on these findings, Ca supplementation contributed to the 
restoration of trabecular bone.

Decreases in the BMD and deterioration of trabecular 
bone of the femur were linked to an imbalance in bone 
remodeling. BTMs are enzymes associated with osteo-
blasts and osteoclasts [39, 40]. They are intermediate 
products in the process of bone remodeling. The con-
tents of BTMs in serum or urine reflect changes in bone 
remodeling before changes in BMD, and BTMs have 
been suggested as independent risk factors for osteo-
porotic fractures [41]. Many studies have reported a close 
association between an increase in the levels some BTMs 
and an increased risk of hip fracture in the population 
[42, 43]. For postmenopausal women, the BMD decreases 
markedly and BTMs increase significantly upon the with-
drawal of estrogen [44–46]. In our study, BTMs, includ-
ing ALP, PINP, OC, β-CTX and NTX, were detected to 
understand the process of bone formation and bone 
resorption. Compared to the SHAM-LC group, no sig-
nificant changes were observed in the OVX-LC group. 
The changes in BTMs induced by OVX in rats were not 

consistent with those documented in previous stud-
ies [47, 48]. Yan Zhang [49] reported increased urinary 
deoxypyridinoline (one biomarker of bone resorption) 
levels at the 4th week after OVX followed by a decrease 
at the 18th week, and serum ALP (one biomarker of bone 
formation) levels decreased early and increased late after 
OVX, indicating that the changes in BTMs after OVX 
were time-dependent. On the other hand, 2–3-month-
old OVX rats were used in the present study. N Patlas 
reported that rats at 1 and 3  months were more suit-
able for research on bone histomorphometric param-
eters [50]. However, continuous physiological bone 
growth occurs in rats of this age, which might lead to an 
increase in BTMs. In the present study, serum OC, NTX 
and β-CTX concentrations in the OVX-LC-H group 
decreased significantly compared to those in the OVX-
LC group, indicating that Ca supplementation slowed the 
bone remodeling process.

The results of the metabolomics analysis revealed 46 
differentially altered metabolites shared among the three 
groups after Ca supplementation, 6 of which decreased 
significantly and 40 of which increased significantly. A 
strong correlation was observed between Ca supplemen-
tation and 10 metabolites (correlation coefficient > 0.6), 5 
of which had a positive correlation and 5 of which had 
a negative correlation. These metabolites were mainly 
glycerophospholipids, including Cer (d43:0), PE-NMe2 
(46:3), DG (44:6n3), LysoPC (22:2), and PE (P-34:3). Jiaqi 
W also reported that one anti-osteoporosis medicine 
alleviates osteoporosis by regulating glycerophospholip-
ids [51], which is similar to our results showing that glyc-
erophospholipids play an important role in osteoporosis. 
In addition, studies have also reported that changes in 
glycerophospholipids are regulated by human hormones, 
such as estradiol, and glycerophospholipid metabolism is 
the main potential target pathway of E2 [52].

Estrogen plays an important role in maintaining the 
balance of bone absorption and bone formation, and 
estrogen deficiency is known to induce osteoporosis in a 
variety of animals and in humans [53]. In humans, estro-
gen replacement appears to be the most efficient method 
to alleviate postmenopausal osteoporosis regardless of 
its side effects [54]. In animal studies, estrogen supple-
mentation can also successfully prevent the reduction 
of BMD in OVX rats [55, 56]. In our study, the serum 
E2 content in rats increased significantly after Ca sup-
plementation, and an obvious dose–response relation-
ship between the E2 level and Ca content was observed 
among the OVX-LC, OVX-LC-M and OVX-LC-H 
groups. Researchers also reported that electroacupunc-
ture and traditional Chinese medicine induce an obvi-
ous increase in E2 levels in OVX rats [57, 58]. Since the 
rats used in our study were OVX rats, E2 was unable to 
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be produced by the ovary. Evidence from recent studies 
revealed that E2 is synthesized by many nongonadal sites, 
such as bones, neurons, pancreas, adipose tissue, mesen-
teric lymph nodes and Peyer’s patches [12, 59–62]. For 
OVX rats, the capacity of nongonadal sites to synthesize 
estradiol may be the determining factor in the eventual 
increase in the BMD.

The results of biochemical analyses in our study 
showed significant decreases in TG and HDL levels 
after Ca supplementation. For postmenopausal women, 
notable changes in blood lipid profiles have been 
observed upon the withdrawal of estrogen. The results 
of a meta-analysis showed higher serum HDL and TC 
concentrations in postmenopausal women with osteo-
porosis than in normal persons [63]. The results from 

Fig. 7  The score figures obtained using the PLS-DA model analysis. A Comparisons among the three groups: B OVX-LC and OVX-LC-M, C OVX-LC 
and OVX-LC-H, and D OVX-LC-M and OVX-LC-H
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our study indicated that Ca supplementation alleviated 
blood lipid disorders in OVX-LC rats.

We are the first to show that Ca supplementation 
partially restored the estradiol level in OVX-LC rats. 
According to the results of previous studies, we specu-
late that the effect of Ca on osteoporosis may be par-
tially mediated by an increase in E2 levels, which then 
induces changes in metabolites, especially changes in 
glycerophospholipid and serum lipid levels, and alters 
the contents of BMTs, eventually increasing the BMD 

to a relatively higher level to reduce the degree of 
osteoporosis.

There are two limitations of the study. First, as men-
tioned in the introduction, the 2010–2012 Chinese 
National Nutrition and Health Survey showed that the 
daily Ca intake of Chinese residents was less than half 
of the recommended intake, leading to Ca deficiency 
throughout life and not only after menopause. The 
OVX rats used in the study only mimics postmenopau-
sal Ca and estradiol deficiency. It does not represent the 

Fig. 8  Metabolic pathways that were altered after calcium supplementation in OVX-LC rats. A OVX-LC and OVX-LC-M groups, B OVX-LC and 
OVX-LC-H groups, and C OVX-L-M and OVX-L-H groups. The horizontal coordinates represent altered pathways, and vertical coordinates represent 
− log10 p values, which was 0 farther away from the lower left corner, indicating a larger difference in this metabolic pathway and a greater effect on 
the pathway. The three metabolic pathways listed above the plots indicated that the glycerophospholipid metabolic pathway showed the greatest 
difference and effect

Fig. 9  Crossover analysis of differentially altered metabolites between the three groups after calcium supplementation in rats. A The Venn diagram 
clearly shows the similarities and differences in differentially altered metabolites among the three groups, with 46 differentially altered metabolites 
shared among the three groups. B Heatmap analysis of the differentially altered metabolites showing that 6 differentially altered metabolites were 
downregulated significantly and 40 differentially altered metabolites were upregulated significantly
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premenopausal Ca deficiency. Second, the rats used in 
this study are equivalent to teenagers in humans. Old age 
is not just about menopause but a number of other fac-
tors that change during aging. The Ca supplementation 
proposed in the study may be effective in teenage equiva-
lent OVX rats, however, until proven, it may not produce 
the same results when tested in old age rats.

Conclusions
Our results clearly confirm that Ca supplementation 
is beneficial to reduce bone loss in OVX-LC rats. The 
main explanation may be that Ca supplementation par-
tially restores the level of estradiol, alters lipid metabo-
lism, induces the production of higher levels of DG 
(44:6n3), LysoPC (22:2) and PE (P-34:3), and lower levels 
of Cer (d43:0) and PE-NMe2 (46:3), eventually decreas-
ing the loss of trabecular bone and increasing the BMD 
of the femur. Originally, researchers proposed that Ca is 

directly deposited in bone to increase the BMD. A new 
mechanism by which Ca supplementation potentially 
increases BMD is by increasing estradiol levels and alter-
ing lipid metabolism was proposed. In the future, more 
studies will be performed to study the effect of Ca on 
estradiol, and multiomics technology will be used to ana-
lyze the upstream and downstream relationship to pro-
vide a deeper understanding of the relationship between 
Ca and osteoporosis.
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