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Abstract 

Background: We aimed to estimate salt intake among an Iranian population using spot urine-based equations and a 
dietary-based method.

Methods: Adult men and women (n = 2069) were recruited from the Tehran Lipid and Glucose Study (2014–2017). 
Urinary sodium (Na), potassium (K), and creatinine (Cr) concentrations were measured in the morning spot urine sam-
ples. The 24-h urinary Na excretion and predicted salt intake was estimated using five equations, i.e., Kawasaki, Tanaka, 
Intersalt, Toft, and Whitton. A validated food frequency questionnaire (FFQ) was used to obtain dietary intake of salt. 
The agreement of each urinary- and FFQ-based salt estimation with the overall mean of the methods, considered as 
the gold standard, was assessed using the Bland–Altman method.

Results: Mean age of the participants was 45.6 ± 14.8 y, and 45.4% were men. Mean (SD) estimated salt intake, 
derived from the overall mean of the methods, was 9.0 ± 2.2 g/d (10.2 ± 2.1 and 7.9 ± 1.7 g/d in men and women, 
respectively). Mean bias of the estimations from the overall mean ranged from − 0.2.42 to 2.75 g/d, with the Tanaka 
equation having the least bias (mean bias = 0.13 ± 1.10, 95% CI − 2.37, 2.30 g/d). Tanaka estimated a mean salt intake 
of 8.9 g/d (range 2.1 to 18.7 g/d); accordingly, only 5.1% of participants adhered to the recommendation (< 5 g/d salt 
intake), whereas 26.8% and 2.4% exceeded the recommendation by 2- and threefold.

Conclusion: The Tanaka equation could provide a more accurate mean-population estimated salt intake from casual 
urinary Na concentration in our population. About 95% of the Iranian population exceeded the current recommenda-
tions of salt intake.
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Introduction
Cardiovascular diseases (CVD) and hypertension (HTN) 
are growing global health problems; in 2019, 523 and 
18.6 million prevalent cases of  CVD and CVD deaths 
and 33% global age-standardized prevalence of HTN in 
adults were reported [1, 2]. The first‐line antihypertensive 

agents are thiazide diuretics, beta-blockers, calcium 
channel blockers, angiotensin-converting enzyme (ACE) 
inhibitors, angiotensin II receptor antagonists, or alpha 
adrenergic blockers [3]. Complementary medicine and 
dietary approaches have also been proposed to manage 
CVD risk factors and HTN [4–7].

Excess salt intake is suggested to be responsible for a 
global 3 million deaths, and 70 million disability-adjusted 
life-years (DALYs) lost every year [8]. Current litera-
ture confirms the biological plausibility of the associa-
tion between high intake of sodium (Na) and HTN and 
CVD events [9]. Although excessive Na intake remains 
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undefined [10, 11], monitoring population salt intake is 
suggested as a global health priority [12, 13]. The World 
Health Organization (WHO) recommends less than 
85 mmol/day of Na (< 2 g/d Na or ~ 5 g/d salt) for adults 
[14]. The Dietary Guidelines for Americans (DGA) rec-
ommends a reduction of Na intake to 100  mmol/day 
(< 2.3 g/day) and 65 mmol/day (1.5 g/day) in the general 
population and individuals with hypertension, diabetes, 
or chronic kidney disease [15]. The global estimation of 
mean intake of salt is around 2- to 3-fold higher than the 
current limit (10 g/d [16] to 14 g/d [8] of salt), and 95% of 
the World’s population have a mean salt intake between 6 
and 12 g/d [17].

Although the 24-h urine sampling is the gold standard 
for assessing Na excretion and estimating salt intake [18], 
the WHO considers spot urine sampling a less-burden 
and more feasible method of population salt intake moni-
toring [12]. Several equations have been developed to 
predict 24-h Na excretion from Na concentration of spot 
urine samples along with urinary creatinine and potas-
sium (K) concentration, age, height, weight, and sex [19]; 
however, the validity and reliability of the equations are 
varied across populations due to diverse ethnicity and 
different patterns of Na intakes [19, 20]. Dietary methods 
tend to underestimate population salt intake [19, 21], and 
poor agreement is reported between estimated-Na from 
the food frequency questionnaire (FFQ) and 24‐h urine 
[22].

Choosing a valid method to monitor population salt 
intake over time as an alternative to more expensive and 
less feasible methods like 24-h urine collection or food-
based estimation is now a research priority in the public 
health area. We aimed to estimate salt intake among an 
Iranian urban population using spot urine-based equa-
tions and the FFQ-based method.

Material and methods
Study population
This cross-sectional sectional study was conducted in 
the framework of the Tehran Lipid and Glucose Study 
(TLGS), an ongoing population-based cohort study ini-
tiated in 1999 on a representative sample of males and 
females aged ≥ 3  years to investigate and prevent non-
communicable diseases [23]. For this study, adult men 
and women (age ≥ 19 years) were recruited from the sixth 
examination of the TLGS (2014–2017) and included in 
the analyses if they had completed measurements on spot 
urinary Na, K, and creatinine, as well as demographics, 
anthropometrics, biochemical measurements, and usual 
dietary intakes. Under- or over-reported daily energy 
intake (< 800  kcal/d or > 4200  kcal/d, respectively) were 
considered as exclusion criteria, and final analyses were 
conducted on 2069 subjects (940 men and 1129 women).

Demographic and anthropometric measurements
Detailed measurements of the variables, including 
demographics and anthropometric measurements, were 
reported elsewhere [24]. In brief, body weight was meas-
ured using a digital scale (Seca, Hamburg, Germany) 
while the participant was minimally clothed, without 
shoes, and was reported to the nearest 100 g. Height was 
measured using a tape meter in a standing position with-
out shoes and was reported to the nearest 0.5 cm. Body 
mass index (BMI) was calculated as weight (kg) divided 
by the square of the height  (m2). Waist circumference 
was measured to the nearest of 0.1 cm at the level of the 
umbilicus, over light clothing, using a soft tape meter, 
and without any pressure to the body.

The physical activity was assessed using the Modifiable 
Activity Questionnaire (MAQ); the frequency and time 
spent on light, moderate, hard, and very hard intensity 
activities according to the list of everyday activities of 
daily life over the past year were documented and physi-
cal activity levels expressed as metabolic equivalent hours 
per week (MET-hour/week) [25]. Reliability and validity 
of the Persian version of the MAQ have previously been 
investigated [26].

Systolic (SBP) and diastolic (DBP) blood pressures were 
measured using a standard mercury sphygmomanom-
eter calibrated by the Institute of Standards and Indus-
trial Research of Iran [27]. Blood pressure was measured 
twice on the participants’ right arm, after a 15-min rest 
in a sitting position, with at least a 30-s interval between 
two measurements. The two measurements’ mean was 
considered the participant’s BP.

Urine sampling and measurement of urinary metabolites
Casual urine samples were obtained between 7:00 and 
9:00 AM following overnight fasting. Aliquots of the cas-
ual urinary samples were frozen and sent to the central 
laboratory of the TLGS. Urinary concentrations of Na 
and K were measured by flame photometry (Screen lyte, 
Hospitex Diagnostics, Florence, Italy). Intra- and inter-
assay coefficients of variation (CVs) were ≤ 2.8% and 4.8% 
for Na and K, respectively. Spot urinary Cr concentra-
tions were measured using the Jaffe method; both inter- 
and intra-assay CVs were ≤ 5%.

Estimation of 24‑h Na from the spot urine sample
Although the 24-h urine sampling is the gold standard 
for estimation of Na intake [18], it is criticized for poten-
tial bias due to under- and over-collection of samples, 
imposing considerable burden for participants, and low 
response rates (~ 10–40%), which affects data collection 
in representative population-based studies [21, 28]. In 
contrast, spot urine sampling has received much recent 
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attention because it can easily incorporate into popula-
tion-based settings without potential inaccuracy of sam-
ple collections [21, 28].

Due to the lack of an accurate and reliable predic-
tive equation developed explicitly for our population, we 
applied the most commonly used and validated equa-
tions to estimate 24-h urinary excretion (mg/d) from Na 
concentration (mmol/L) of spot urine sample, including 
Kawasaki [29], Tanaka [30], Intersalt (also includes spot 
urine K concentration) [31], Toft [32], and Whitton [20]. 
Table  1 provides details of the equations with a brief 
description. The Kawasaki, Tanaka, and Whitton equa-
tions have been developed among Asian populations, 
while Intersalt and Toft equations have been developed 
among Western populations [20, 29–32].

The values of Na intake (mg/d) were converted to salt 
intake (g/d) by multiplying the value of Na excretion 
(mg/d) by 0.00254 (2.54 ÷ 1000). The estimated 24-h uri-
nary excretion from a single spot urine sample provided 
the Na status of the participants in a single day.

Dietary assessment
The usual dietary intakes of the participants over the pre-
vious year were assessed using a validated semi-quanti-
tative 147-item FFQ. Details of dietary assessment in 
the TLGS were described elsewhere [33]. In brief, the 
frequency of food items consumed during the past year 
was asked daily, weekly, or monthly. Portion sizes of con-
sumed foods reported in household measures were con-
verted to the gram. Since the Iranian Food Composition 
Table is incomplete and has limited data on raw foods 
and beverages’ nutrient content, the US Department 
of Agriculture Food Composition Table was used [34]. 
Usual dietary intake of Na and K were also obtained from 
nutritional data and are reported as mmol/d. The FFQ 
provided the mean intake of Na and K of the participants 
over the last year.

Statistical methods
Statistical analyses were conducted using SPSS for Win-
dows version 20 (SPSS Inc., Chicago, IL, USA) and the 
GraphPad Prism version 8.00 for Windows (GraphPad 
Software, CA, USA). A two-tailed P value < 0.05 was con-
sidered statistically significant. Dietary intakes of Na and 
K were adjusted for total energy intake using the residu-
als’ method [35]. Mean, and standard deviation (SD) of 
values and the frequency (%) of characteristics of the par-
ticipants were compared between men and women using 
an independent sample t-test or Chi-square test.

Due to the lack of accessibility to 24-h urine samples, 
as the gold standard, we compared each estimation with 
the mean of all estimations (spot urine-based equations 
and FFQ-based estimation). In the case of lacking a gold 

standard method for method comparison, mean of avail-
able assay methods can be considered as the reference 
[36, 37].

Bland–Altman difference plots were used to assess 
the agreement between each assay and the overall mean 
(i.e., provided as estimated mean bias and 95% CI). The 
regression equation (slope and intercept) for bias [dif-
ference of each estimation as dependent variable (y) vs. 
overall mean of 6 estimations as independent variables 
(x)] was determined using least squared perpendicu-
lar distance regression analysis (Deming’s method) [38], 
which is preferred over ordinary linear regression (OLR) 
for method comparison studies in which both variables 
are measured with error [39]. In OLR, it is assumed that 
random error, arising from inherent limitations of meas-
urements, is constant over the range of the data whereas, 
in the Deming’s regression, random errors of both com-
pared method are taken into account [40]. In Deming’s 
regression, both x and y variables are subject to error, and 
the squares of the perpendicular distances of the x and y 
points from the regression line are minimized [38].

Result
The mean age of the participants was 45.6 ± 14.8 y, and 
45.4% were men. Table 2shows the characteristics of the 
study participants. Mean casual urinary Na concentra-
tion was 135 ± 56.5  mmol/L (143 ± 54.9 and 127 ± 56.8 
in mmol/L, in men and women, respectively, P < 0.05); 
urinary Na-to-K ratio was higher in men compared to 
women (2.39 ± 1.45 vs. 2.19 ± 1.34, P < 0.05). The mean 
estimated Na intake was 144 ± 36.3  mmol/d (142 ± 37.3 
and 145 ± 35.4, in men and women, respectively).

Mean (SD) estimated salt intake, derived from the over-
all mean of the methods, was 9.0 ± 2.2 g/d (10.2 ± 2.1 and 
7.9 ± 1.7 in men and women, respectively). Compared 
with the gold-estimated salt intake, derived from the 
average of all methods, the mean bias ranged from − 2.42 
to 2.75 g/d, with the Tanaka equation, had the least bias 
(mean bias = 0.13 ± 1.10, 95% CI − 2.37, 2.30  g/d) and 
the Kawasaki (mean bias = 2.75 ± 2.46, 95% CI − 2.01, 
7.59  g/d) and Whitton (mean bias = − 2.42 ± 1.90, 95% 
CI − 6.10, 1.31 g/d) equations had the most bias (Fig. 1).

The slope and intercept for bias of each estimation vs. 
the overall mean of 6 estimates, obtained by the least 
squared perpendicular distance regression analysis, are 
reported in Table 3. The table also shows the least-biased 
point of each equation, i.e., the mean bias of the estima-
tion to the overall mean was tended to be zero. The val-
ues showed that the most accurate equations for low- and 
high-salt intake levels are Intersalt and FFQ, respectively 
(least-biased point = 4.3 and 8.5  g/d salt intake). The 
least-biased point for the Tanaka equation was 7.6  g/d. 
The difference to overall mean at the low, medium, 
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and high-salt intake for the estimations are provided in 
Table 3. The Tanka equation showed a mean bias < 1 g/d 
(range − 0.2 to 0.7  g/d) at all levels of salt intake. The 
Intersalt underestimated salt intake at low-, medium-, 
and high-level of salt intake, while Kawasaki, Toft, and 
Tanaka underestimated at low intake (< 5 g/d) and over-
estimated at high intake (> 15  g/d). Inversely, the Whit-
ton equation and FFQ overestimated at low intake and 
underestimated at a high level of salt intake.

The Tanaka, the most fitted equation for salt estimation 
among our population, estimated a mean salt intake of 
8.9 g/d (9.5 and 8.3 g/d, in men and women, respectively) 
with a range of 2.1 to 18.7 g/d. Only 5.1% (1.9% and 7.7% 
in men and women, respectively) adhered to WHO 

recommendation (< 5  g/d salt intake), whereas 26.8% 
(33.5% and 21.5% in men and women, respectively) and 
2.4% (3.0% and 1.9% in men and women, respectively) 
exceeded the recommendation by more than 2- and 
threefold. About 6.6%, 12.0%, 15.4%, 16.9%, and 14.8% 
of the population exceeded the recommendation of salt 
intake by 1, 2, 3, 4, and 5 g/d, respectively.

Discussion
Our study indicated that the Tanaka equation, con-
ducted based on urinary Na, K, and Cr concentrations 
from casual urine specimens may be a helpful method for 
estimating mean 24-h Na excretion and population salt 
intake. Compared with the gold-estimated salt intake, 

Fig. 1 Mean bias, SD and 95% CI of each method compared to the gold-estimated salt intake (derived from the average of all methods), along with 
the slope and intercept for bias of each estimation vs. overall mean of 6 estimations
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i.e., derived from the average of urine-based and FFQ-
based procedures, the Tanaka equation provided the 
least biased estimation with a mean bias < 1 g/d at low-, 
medium-, or high-level of salt intake among our popula-
tion. Population salt estimation using the Tanaka equa-
tion showed that most of the Iranian population (about 
95%) exceeded the current recommended limits of salt 
intake.

The performance of usual equations used for 24-h Na 
excretion from spot urine samples has remained incon-
sistent among different populations [19]. The estimated 
24-h urinary Na using the usual equations (i.e., Kawasaki, 
Tanaka, and Intersalt) were reported to be systematically 
biased with overestimation at lower levels and underes-
timation at higher levels of Na intake; other variables in 
the equations seem to contribute to the biased estimates 
since a similar systematic bias occurred where Na con-
centration was kept constant (41). Similar to our obser-
vation, the Kawasaki equation overestimates mean Na 
intake among several populations [41–43]. The Intersalt 
was more accurate than other equations estimating salt 
intake among different populations [41]. Dietary meth-
ods are also used to estimate population salt intake; how-
ever, they tend to underestimate Na intake due to the 
under-reporting of discretionary sources of salt [19, 21].

In our study, about 5.1% met salt intake recommenda-
tions, and about 26.8% and 2.4% exceeded by more than 
2- and 3-fold. A recent national report of estimated Ira-
nian salt intake indicated a mean population of 9.52 g/d 
(95% CI 9.48–9.56) and ~ 97.7% overconsumption of salt 
among the population [44].

It remains disputable whether there is a “healthy” or 
“normal range” of Na intake [45]; a range of 0.5–1 [46] 
up to 55 [47] g/d salt intake was reported (based on uri-
nary Na excretion) among populations. The WHO tech-
nical report on “Reducing Salt Intake in Populations” in 

Table 2 Characteristics of the study participants

* P < 0.05 compared to men using independent sample t-test or Chi-square was 
used
† Based on Kawasaki equation
‡ Residual-energy adjusted

BMI, body mass index; FFQ, food frequency questionnaire; Na, sodium; K, 
potassium; Cr, creatinine

Total
(n = 2069)

Men
(n = 940)

Women
(n = 1129)

Age, y 45.6 ± 14.8 46.7 ± 15.7 44.6 ± 13.8*

BMI, kg/m2 27.9 ± 5.2 27.4 ± 4.4 28.2 ± 5.7*

Waist circumference, cm 93.5 ± 12.5 95.9 ± 11.6 91.5 ± 12.9*

Systolic blood pressure, mmHg 114 ± 17 119 ± 16 109 ±  17*

Diastolic blood pressure, mmHg 75.6 ± 10.5 78.2 ± 10.4 73.4 ± 10.2*

Casual urinary Cr, mmol/L 13.8 ± 6.1 14.2 ± 6.0 13.5 ± 6.2*

Estimated† 24-h urinary Cr, 
mmol/d

13.0 ± 4.0 16.5 ± 3.3 10.0 ± 10.3*

Casual urinary Na, mmol/L 135 ± 56.5 143 ± 54.9 127 ± 56.8*

Casual urinary K, mmol/L 71.6 ± 36.2 72.8 ± 35.3 70.7 ± 36.9

Casual urinary Na-to-K ratio 2.28 ± 1.39 2.39 ± 1.45 2.19 ± 1.34*

FFQ-estimated‡ Na intake, 
mmol/d

144 ± 36.3 142 ± 37.3 145 ± 35.4

FFQ-estimated‡ K intake, 
mmol/d

109 ± 28.5 104 ± 28.6 112 ± 28.2*

FFQ-estimated Na-to-K ratio 1.48 ± 2.16 1.59 ± 3.14 1.38 ± 0.57

Energy intake, kcal/d 2300 ± 811 2501 ± 896 2134 ±  690*

Dietary protein, g/d 90 ± 41.6 98.4 ± 44.9 83.0 ± 37.2*

Dietary fat, g/d 75.7 ± 32.5 79.7 ± 36.7 72.4 ± 28.2*

Dietary carbohydrate, g/d 342 ± 125 376 ± 135 313 ±  108*

Dietary fiber, g/d 45.1 ± 22.3 49.3 ± 23.9 41.6 ± 20.2*

Physical activity, METs h/week 69.4 ± 42.6 85.6 ± 46.5 56.1 ± 33.8*

Current smoking, % 16.7 30.2 5.40*

Educational level

 Illiterate, % 1.50 1.00 2.00*

 Diploma, % 59.5 58.6 60.3

 Academic, % 40.5 41.4 39.7

Table 3 The slope and intercept for bias of each estimation vs. overall mean of 6 estimations

Methods of 
estimation

Linear regression model Zero difference to 
overall mean

Difference from overall mean at the low, 
medium and high salt intake (g/d)

Slope Intercept 5 10 15

Kawasaki 1.14
(1.10, 1.18)

− 7.52
(− 7.91, − 7.12)

6.6 − 1.8 3.9 9.6

Tanaka 0.09
(0.06, 0.18)

− 0.71
(− 1.02,− 0.39)

7.6 − 0.2 0.2 0.7

Intersalt − 0.12
(− 0.15, 0.09)

 + 0.51
(0.25, 0.76)

4.3 − 0.1 − 0.7 − 1.3

Toft 0.31
(0.27, 0.35)

− 2.09
(− 2.45, − 1.73)

6.7 − 0.55 1.0 2.6

Whitton − 0.63
(− 0.73, − 0.54)

 + 3.28
(2.39, 4.16)

5.2 0.1 − 3.1 − 6.2

FFQ − 1.36
(− 1.44, − 1.28)

 + 11.60
(10.88, 12.32)

8.5 4.8 − 2.0 − 8.8
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2006 represents a wide range of 24-h urinary Na (from 
0.8 to 299  mmol/d) among different populations; this 
report indicates that most people appear to have mean 
24-h urinary Na over 100 mmol/d, and among the Asian 
countries this value exceeded 200 mmol/d [48]. Combin-
ing 197 datasets (69 799 subjects) over a 3-decade period 
indicates that human Na intake follows a classic nor-
mal distribution that depicts a narrow range with strict 
lower and upper limits of normality (mean = 159.2, range 
90–248 mmol/d; mean after removal of outliers = 159.4, 
range 114–210 mmol/d) [17].

The WHO Global Non-communicable Diseases Action 
Plan 2013–2020 sets a 30% relative reduction in the mean 
population Na intake by 2025 [49]. Despite 4-decade 
comprehensive public policies, the distribution of popu-
lation Na intake has not changed over time [17], and 
long-term low-Na-diet trials (85  mmol/d Na) could not 
achieve a significant reduction in Na intake [50]. Meta-
analysis of both randomized clinical trials and observa-
tional studies resulted in a weak association between salt 
intake and BP, especially among non-obese individu-
als with normal BP [51, 52]; an effect size of 1  mm Hg 
in BP following a low-Na diet does not justify a general 
restriction for Na intake [52]. On the other hand, a salt 
intake lower than 5.8 g/d was reported to be associated 
with the activation of the renin–angiotensin–aldoster-
one system, increased plasma lipids, and increased mor-
tality [51]; risk of myocardial infarction, cardiovascular 
diseases, and all-cause mortality was increased among 
hypertensive patients with increased plasma renin activ-
ity and low-urinary levels of Na [53, 54]. Furthermore, 
a meta-analysis of population Na intake showed a "U 
shape" relationship with the risk of mortality [55], and 
mean estimated Na intake was inversely associated with 
mortality at a level of < 4 g/d (10 g/d salt) [41]. Previous 
studies among our population also showed no significant 
association between dietary intake of Na and the risk of 
hypertension, CVD, and renal dysfunction [56, 57]. Cur-
rent evidence relating Na intake to hypertension and 
CVD has significant limitations [9] and could not provide 
a strong statement on the adverse effect of Na intake on 
CVD outcomes and all-cause mortality [58].

Na intake appears to be set by human physiology, main-
taining a minimal Na intake close to the lower limit of the 
normal range and approaching the upper limit obtained 
by global estimation of urinary Na excretion [45]. Such 
evidence may call for revisiting the dietary salt guidelines 
and maintaining optimal Na intake within the normal 
range identified by worldwide 24-h urinary Na surveys of 
populations [51].

Although it can be different among populations, 
about 75% of dietary Na is attributed to processed 
foods, 10–12% is naturally occurring in foods, and the 

rest of 10–15% is discretionary salt intake (salt used in 
home-cooking or at the table) [48, 59]. Bread products, 
cereal, and grains have been responsible for about 40% 
of total Na intake [48]; meat and dairy products are the 
major contributors to dietary Na intake in most pop-
ulations [60]. More than half of their daily salt intake 
is from discretionary sources in some countries (i.e., 
Brazil, China, Costa Rica, Guatemala, India, Japan, 
Mozambique, Romania) [60].

As a strength, this was the first study among an Iranian 
urban population with a relatively large sample size that 
estimated salt intake using several urine-based methods 
and an FFQ-based approach. Our study also had some 
limitations; first, due to the lack of 24-h urinary samples 
as the gold standard method for measuring Na’s urinary 
excretion and salt intake, we used the overall mean of 
the estimations to assess the performance of equations. 
The second and the most critical limitation of the pre-
sent study was that the equations used for salt estimation 
were initially developed and validated for other popula-
tions; we, therefore, need to establish a best-fitted equa-
tion for our population. Finally, FFQ provided the mean 
Na intake of the participants over the last year, however, 
spot urine sample possibly provided Na status of a sin-
gle day, and therefore, FFQ seems to be different from a 
urine sample in estimating Na intake.

Conclusion
In conclusion, our study also showed that about 95% of 
the Iranian population exceeded current salt intake rec-
ommendations. The study also indicated that the Tan-
aka equation might be the best model for population 
salt intake using spot specimens among our people. 
Since the performance of casual urine samples for esti-
mating Na excretion was reported to be independent 
of the time of urine sample collection (i.e., overnight, 
morning, afternoon, and evening), this method seems 
to have priority as the best alternative of 24-h urine 
sample collection for estimating population salt intake.
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