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Abstract 

Background:  Hypertriglyceridemia (HTG) is one of the most important comorbidities in abnormal glucose patients. 
The aim of this study was to identify lncRNAs functional modules and hub genes related to triglyceride (TG) in 
prediabetes.

Methods:  The study included 12 prediabetic patients: 6 participants with HTG and 6 participants with normal triglyc-
eride (NTG). Whole peripheral blood RNA sequencing was performed for these samples to establish a lncRNA library. 
WGCNA, KEGG pathways analysis and the PPI network were used to construct co‐expression network, to obtain 
modules related to blood glucose, and to detect key lncRNAs. Meanwhile, GEO database and qRT-PCR were used to 
validate above key lncRNAs.

Results:  We found out that the TCONS_00334653 and PVT1, whose target mRNA are MYC and HIST1H2BM, were 
downregulating in the prediabetes with HTG. Moreover, both of TCONS_00334653 and PVT1 were validated in the 
GEO database and qRT-PCR.

Conclusions:  Therefore, the TCONS_00334653 and PVT1 were detected the key lncRNAs for the prediabetes with 
HTG, which might be a potential therapeutic or diagnostic target for the treatment of prediabetes with HTG according 
to the results of validation in the GEO database, qRT-PCR and ROC curves.
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Introduction
According to the 2020 National Diabetes Statistics 
Report from the U.S. Center of Disease Control and Pre-
vention, it was estimated that 34.5% of the adult U.S. 
population and 46.6% of those aged 65  years and older 
were prediabetic patients, but only 15.3% of them have 
known about their prediabetes state [1]. Prediabetic 
patients will not only develop type 2 diabetes (T2DM), 
but also have noteworthy risk factors for macrovascular 
disease [2]. However, the increased risk of cardiovascular 
events in prediabetic patients might be mediated by lipid 
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abnormalities caused by hyperglycemia [3, 4]. Moreover, 
atherogenic dyslipidemia (AD) with hypertriglyceridemia 
(HTG) are the most important comorbidities in T2DM 
patients, and it was reported that diabetic patients with 
AD had higher risk of CVD in [5]. It was reported that 
HTG may be as prevalent as 50% in T2DM [6] and that 
triglyceride (TG) levels were closely related to insulin 
resistance-compensated hyperinsulinemia, rather than 
that simply increased with the increase in hyperglycemia 
[7]. Therefore, the prevention of HTG in the patients with 
prediabetes might be significantly important to reduce 
the risk of CVD.

LncRNAs represent a class of transcripts longer than 
200 nucleotides with abilities of DNA-, RNA- and pro-
tein-binding [8]. Various studies have reported that their 
function in the regulation of gene expression, cellular 
differentiation, and lots of diseases, although the signifi-
cance of most of lncRNAs has not been identified [9]. It 
was suggested that lncRNA were involved in the entire 
prediabetes biological process [10]. For example, lncRNA 
MALAT1 can regulate renal tubular epithelial pyroptosis 
by modulating miR-23c targeting of ELAVL1 in T2DM 
[11]. The plasmacytoma variant translocation 1 (PVT1), 
a 1.9  kb long lncRNA, is highly expressed in podocytes 
and mesangial cells after high glucose exposure [12]. It 
was also suggested that PVT1 to be dramatically upregu-
lated in mice with streptozotocin (STZ)-induced diabetes 
[13]. However, conventional method usually described 
the correlation structure between thousands of genes 
and a sample trait [14]. Fortunately, weighted gene co-
expression network analysis (WGCNA) could solve the 
problem.

WGCNA is used to explore the clusters (modules) 
of highly correlated genes, to summarize such clusters 
using the module eigengene or an intramodular hub 
gene. WGCNA could also relate modules to one another 
and to external sample traits (using eigengene network 
methodology), and calculate module membership meas-
ures [15]. In the WGCNA algorithm, the elements in the 
co‑expression matrix of the genes were no longer the cor-
relation coefficients of the genes, but rather the weighted 
value of the correlation coefficients [16]. Based on the 
above advantages of WGCNA, we aimed to identify 
lncRNAs functional modules and hub genes related to 
TG in prediabetes, which to find a potential therapeutic 
or diagnostic target for the treatment of prediabetes with 
HTG.

Materials and methods
Participants
This study involved 12 patients with prediabetes, 6 par-
ticipants were diagnosed as HTG and the other 6 partici-
pants had normal TG level (NTG). All participants were 

Chinese aged 40–65  years, which were recruited at the 
First Hospital of Jilin University from July to September 
2020. Patients who have used drugs or other treatments 
to control blood glucose or TG in the past, or have a his-
tory of coronary artery disease (CAD), hypertension, 
atrial fibrillation, myocardial infarction, tumor, acute 
infectious disease, immune disease, hematological dis-
ease were excluded in our study. All participants have 
written informed consent and the study was approved by 
Ethics Committee of the Public Health of the Jilin Uni-
versity, and the privacy of the participants are strictly 
confidential.

The diagnostic criteria of prediabetes and HTG were 
based on the “Guidelines for the Prevention and Con-
trol of Type 2 Diabetes in China” (2017 Edition) and the 
“Guidelines for Prevention and Treatment of Dyslipi-
demia in Adults in China” (2016 Edition). Patients with 
prediabetes were defined as whose fasting blood glucose 
(FBG) ranging from 6.1 to 7.0  mmol/L or oral glucose 
tolerance test (OGTT) two-hour blood glucose ranging 
from 7.8 to 11.1 mmol/L. Patients with TG > 1.7 mmol/L 
were defined as HTG.

Blood sample collection and RNA sequencing
Trizol (TAKARA BIO INC., CA, Japan) was added 
immediately after the blood samples were collected. Total 
RNA extraction kit was used to isolate and purify the 
total RNA. The RNA purity was tested using NanoPho-
tometer® spectrophotometer (IMPLEN, CA, USA) and 
the RNA integrity was evaluated using RNA Nano 6000 
Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent 
Technologies, CA, USA).

The chain-specific library was constructed with ribo-
somal RNA removing, and was sequenced according to 
pooling of the effective concentration of the library and 
the data output requirements, which using the Illumina 
PE150. The reads with adapter, with the nucleobase 
information cannot be determined (N) ≥ 0.002, and with 
low-quality from raw data were removed for followed 
sequencing with calculating Q20, Q30, and GC content 
additionally. All analyses in the study were based on the 
clean data obtained through the above criteria.

Construction of WGCNA
The “WGCNA” [17] package in R-Studio 4.0.4 soft-
ware was used for data analysis, which is a comprehen-
sive collection of R functions for performing various 
aspects of weighted correlation network analysis [18]. 
WGCNA analysis focuses on the association between 
the sample trait and a few modules, instead of describ-
ing the correlation structure between thousands of genes 
and a sample trait [14]. In the WGCNA algorithm, the 
elements in the co‑expression matrix of the genes are 
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no longer the correlation coefficients of the genes, but 
rather the weighted value of the correlation coefficients 
[16]. The lncRNAs whose Median Absolute Deviation 
(MAD) > 0.01 were selected for the subsequent analysis 
to ensure heterogeneity and accuracy of bioinformat-
ics for co‐ expression network analysis. Pearson correla-
tion coefficient were calculated for all the genes, and an 
appropriate soft threshold β was automatically selected 
through the pickSoft-Threshold function in the WGCNA 
package whose function was to amplify the correlation 
between genes [19], it was 0.85 in this study.

Finally, a dynamic tree was used to divide the modules 
of hierarchical clustering results, and merge the modules 
with lncRNAs < 30 and cutting height < 0.25 [20].

Screening for key modules
Based on the above analysis, we subdivided nearly two 
thousand genes into several modules. Modules were 
defined as a set of genes in which the expression mode 
highly correlated with the sample and the first principal 
component module characteristic genes (MEs) were cal-
culated to express the expression level of the gene mod-
ule. The strongest correlation module with prediabetic 
HTG was determined whose absolute value of Pearson’s 
correlation coefficient > 0.8 and P-value < 0.1 [21] in this 
study.

Identification of key lncRNAs and functional enrichment 
analysis
We put the genes of the strongest correlation module 
whose Module membership (MM) > 0.5 and gene sig-
nificance (GS) > 0.2 into the representative Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways 
analysis for further elucidation of the functional prop-
erties. The Search Tool for the Retrieval of Interacting 
Genes (STRING; Szklarczyk et  al.) was used to dissect 
the protein–protein interaction (PPI) network. In this 
study, we calculated the degree of genes by network ana-
lyzer (a tool in Cytoscape software (https://​cytos​cape.​
org/)). Genes with degree ranked top 10 were selected to 
be hub genes in the PPI network.

Validation in the GEO data set
GSE130991, is a previously published GEO data which 
data and sample collection took place in France between 
2006 and 2016 [22]. There were 97 prediabetic patients 
who met criteria of our study aim, 28 of them with 
HTG and 69 of them with normal TG level. Data for 
GSE130991 were obtained by GPL20265 (HTA-2_0) 
Affymetrix Human Transcriptome Array 2.0. Data were 
analyzed in Partek Genomics Suite 6.6, normalized using 
RMA, and log2 transformed. Based on this database, 

differential expression analyses of genes in GSE130991 
were performed using a t-test.

Individual p values and log2 values (fold change) were 
obtained. Then, the expression change of selected lncR-
NAs between prediabetic patients with HTG and NTG 
groups in the RNA sequencing results was validated by 
GSE130991.

Quantitative real‐time polymerase chain reaction (qRT‐
PCR) and ROC curves of relative expression of lncRNAs 
and HTG
The blood samples in qRT-PCR experiment were col-
lected at the First Hospital of Jilin University from July 
to September 2020 and July 5th to 19th 2021, includ-
ing participants from previous RNA sequencing. There 
were 99 prediabetes patients with HTG and 98 predia-
betes patients with NTG who met the inclusion crite-
ria, respectively. The total RNA was extracted using the 
MolPure® Blood RNA Kit (19241ES50, YEASEN) based 
on the manufacturer’s instructions. Subsequently, we 
used lnRcute lncRNA First-Strand cDNA Kit (KR202, 
TIANGEN) to conduct reverse transcription. The cDNA 
was then analyzed by qRT-PCR using lnRcute lncRNA 
qPCR Kit (FP402, TIANGEN) on QuantStudio 3 sys-
tem (Applied Biosystems). The PCR amplification was 
performed with one cycle at 95  °C for 3  min, followed 
by 40 cycles at 95  °C for 5  s, at 55  °C for 10  s, and at 
72  °C for 15  s. The following PCR primers were used: 
TCONS_00334653 primers, forward: 5′- AGG​AGT​TGG​
AGA​CAG​CGA​CTA​GAG​ -3′, reverse: 5′- CGT​GAT​GCT​
TGT​TTG​CCC​AGT​TTC​ -3′; PVT1 primers, forward: 5′- 
GCT​GTG​GCT​GAA​TGC​CTC​AT -3′, reverse: 5′- TCT​
CAA​CCC​TCT​CAG​CCA​GC -3′. Expression data were 
normalized to the expression of β-actin with the 2−ΔΔCt 
method.

Pearson correlation analysis was used to determine the 
correlation between the relative expressions of lncRNAs 
and HTG, the significance was set as P < 0.05. Roc curves 
were used to explore the diagnostic efficacy of the relative 
expression level for HTG.

Results
WGCNA constructions
1742 lncRNAs were involved in subsequent analysis after 
screening all of them based on the mad value greater than 
0.01 among total of 7324 lncRNAs. As shown in Fig. 1a, 
b, the scale-free topology index was 0.85 when the soft-
threshold power was defined as 4, which the network 
conformed to the power-law distribution and closer to 
the real biological network state. The dynamic hierarchi-
cal tree cutting algorithm was used to detect co-expres-
sion module according to the weight of lncRNAs, and the 
results of modules were shown as Fig. 2. We have merged 
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the modules with the number of lncRNAs was less than 
30 and the height of the merged module was set to 0.25.

Finally, black, blue, brown, green, greenyellow, grey, 
magenta, pink, purple, red, salmon, tan, turquoise, yellow 
(different colors represent different modules) 14 modules 
were obtained, and the number of every modules were 
shown in Additional file 1: Table S1.

Identifying key clinically significant modules
Figure 3 was the heat map plot of the adjacencies of mod-
ules which represented the correlation between different 
modules. The most representative gene set in each module 
represented the overall level of gene expression in the mod-
ule as the first principal component of the module eigen-
gene (ME). Two modules corresponding to the sample trait 
were finally extracted for further functional enrichment 
analysis, and it was the salmon module had the strongest 

Fig. 1  Analysis of the scale-free fit index for various soft-thresholding powers. a The chart showed the correlation coefficients of log(k) and log(p(k)) 
corresponding to different soft thresholds; b the chart showed the mean values of gene adjacency coefficients corresponding to different soft 
thresholds, reflecting the average connectivity level of the network

Fig. 2  Hierarchical clustering tree and co-expression module of lncRNAs. At the top of the graph was a clustering tree of lncRNAs, and at the 
bottom were different modules cut from the dynamic cutting tree (different colors represent different modules)
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negative correlation with TG in 6 samples in this study 
(correlation coefficient = − 0.94, P < 0.001) (Fig. 4).

Hub gene identification and functional annotation
We screened out lncRNAs in the salmon module accord-
ing to MM > 0.5 and GS > 0.2, 374 target genes were 
finally selected for subsequent analysis. KEGG pathways 
for further elucidation of the functional properties, and 
it was shown in Fig.  5. The top 7 pathways were sig-
nificantly different in the results of KEGG, which were 
Alcoholism, Systemic lupus erythematosus (SLE), Viral 
carcinogenesis, NF-kappa B signaling pathway, Tran-
scriptional misregulation in cancer, TNF signaling path-
way and NOD-like receptor signaling pathway, as shown 
in Additional file 1: Table S2.

PPI network
The STRING database was used to dissect the PPI net-
work. There were 216 nodes and 450 edges in the PPI 

network, which represented proteins and interactions. 
The expected number of edges was 233 and the P-value 
of PPI enrichment was less than 0.001.

A visual PPI network based on target genes was con-
structed using Cytoscape software, which confidence 
score > 0.4 was set as significant, and the top 11 proteins 
of connectivity were obtained by cytohubba plug-in. The 
results of PPI network were shown in Fig. 6 and the degree 
of top 11 proteins was shown in Additional file 1: Fig. S1. 
In PPI networks, which the depth of color represented the 
strength of the connection, “hubs” was regarded as pro-
teins with highly strength of the connection with several 
other proteins. In this study, the nodes with the higher 
degree were selected as central proteins that may contrib-
ute to prediabetes with HTG in PPI networks.

Validation in the GEO data set and qRT‑PCR
The expression patterns of the top 11 genes were verified 
by the GSE130991 data set. RNA sequencing is superior 
to microarray for characterizing transcriptomes, how-
ever, data for GSE130991 were obtained by GPL20265 
(HTA-2_0) Affymetrix Human Transcriptome Array 
2.0. The probes in the data set are early and not enough 
to detect all genes. Two hub genes of mRNA (MYC and 
HIST1H2BM, the corresponding lncRNAs of them 
are PVT1 and TCONS_00334653) met the differential 
expression criteria of p < 0.05 (Additional file 1: Table S3). 
The HIST1H2BM was also corresponding to the top 3 
pathways in the results of KEGG.

Therefore, we selected the PVT1 and 
TCONS_00334653 as final lncRNA to validate by the 
qRT-PCR. As shown in Fig. 7, there were significant dif-
ference between prediabetes with HTG and NTG, both 
of PVT1 (z = 40.400, P < 0.001) and TCONS_00334653 
(z = 5.757, P = 0.016).

Moreover, the correlations between relative expres-
sions of lncRNAs and HTG were statistically signifi-
cant (PVT1: correlation coefficient = − 0.366, P < 0.001; 
TCONS_00334653: correlation coefficient = − 0.212, 
P = 0.003). The ROC curves for the relative expressions 
of lncRNAs PVT1(AUC = 0.724, 95%CI 0.653–0.795, 
P < 0.001) and TCONS_00334653 (AUC = 0.599, 95%CI 
0.520–0.678, P = 0.016) in the prediabetes with HTG were 
shown in the Fig. 8. These curves and corresponding AUCs 
showed that lncRNAs PVT1 and TCONS_00334653 as 
biomarkers have diagnosed ability to discriminate HTG 
from NTG in the prediabetes patients.

Discussion
Dyslipidemia in T2DM is very common and is charac-
terized by HTG with decreased levels of high-density 
lipoprotein (HDL)-cholesterol [23]. It is important to 

Fig. 3  The heat map plot of the adjacencies of modules (Red 
represented high adjacency (positive correlation), while blue color 
represented low adjacency (negative correlation))
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find a potential therapeutic or diagnostic target for the 
treatment of prediabetes with HTG, and the main find-
ing of our study are as following. Firstly, top 4 pathways 
(Alcoholism, SLE, Viral carcinogenesis, and NF-kappa 
B signaling pathway) might be functionally significant. 
Secondly, two hub genes of mRNA were HIST1H2BM 
and MYC, and the corresponding lncRNAs of them are 
TCONS_00334653 and PVT1. Lipid metabolism is com-
plex due to that included de novo biosynthesis and oxida-
tive catabolism, which products and intermediates within 
numerous metabolic pathways could contribute to lipo-
genesis [24].

TCONS_00334653, one of the different lncRNA 
between prediabetic patients with HTG and NTG, 
which the target mRNA is HIST1H2BM, was cor-
responding to the pathways of Alcoholism, SLE and 
Viral carcinogenesis. Previous study has indicated 
that damage occurred to the lipid metabolic function 

in the animal models of ethanol-induced liver-injury, 
which was manifested by increased levels of TC and 
TG [25]. Moreover, alcohol emits toxicity when it is 
just ingested, and the alcohol metabolite acetaldehyde 
is highly toxic in the body, which can affect multiple 
organs and cause physiological effects, resulting in vari-
ous metabolic diseases [26]. Previous studies suggested 
that alcohol use is a risk factor for the development of 
IR [27, 28] and the toxic effect of alcohol on pancreatic 
B cells has been shown to contribute to the develop-
ment of T2DM [29]. Besides, it is the dose-dependent 
effect of alcohol consumption in the development of 
prediabetes [30]. TG level was found as an independ-
ent risk factor for i-IGT among men and resulting in 
a 23.4% increase in the prevalence of i-IGT with each 
1-mmol/L increase in TG level [31].

It was reported that the prevalence rate of diabetes, 
dyslipidemia, elevated TG was found significantly higher 

Fig. 4  Heatmap of the module–trait relationships. It was represented the Pearson correlation coefficients and P-values of the correlation. Each row 
corresponded to a module gene, column to a trait. The cells were color coded by correlation according to the color legend
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in a retrospective study in lupus patients than those in 
healthy population [32]. The impaired activity of lipo-
protein lipase (LPL) in SLE patients, which resulting in 
accumulation of chylomicrons and very low-density lipo-
protein (VLDL), while increased TG and decreased HDL 
levels [33]. The chylomicron TG could be split off by LPL, 
using apolipoprotein CII (Apo-CII) allowing the delivery 
of free fatty acids to adipose tissue and muscle [34]. It was 
indicated that chylomicron transport is supposed to play 
a crucial role in the “lupus pattern” of dyslipoproteinemia 
[35]. Previous studies have found that viral carcinogen-
esis was associated with glucose and lipid metabolism. 
For example, Epstein-Barr virus (EBV) is a gamma her-
pesvirus that is highly prevalent in the human popula-
tion, which almost all adults are seropositive [36]. It was 
reported that the prevalence of EBV was significantly 
higher in diabetic patients than in the individuals without 

diabetes [37]. EBV has been indicated to manipulate 
host cell lipid metabolism in both epithelial and B cells, 
and it was indicated that manipulation of lipid metabo-
lism may play a role in host cell transformation and car-
cinogenesis [36]. Therefore, the mRNA HIST1H2BM in 
the above pathways might play a role in participating in 
lipid metabolism. Moreover, the downregulating protein 
HIST1H2BM was also found that may be involved in reg-
ulating lipid metabolism or other signaling pathways in 
the acute phase of spinal cord injury [38].

MYC could encode a transcription factor, which is 
delicately regulated due to its central role in cell prolif-
eration and apoptosis [39]. Previous studies suggested 
that the MYC oncogene is often activated and/or over-
expressed in cancers [40, 41]. It was demonstrated that 
MYC regulates virtually all stages of lipogenesis, which 
is required for the initiation and maintenance of tumor 

Fig. 5  Top 20KEGG pathways of lncRNAs in prediabetes with HTG. The X-axis shows the rich factor and the Y-axis showed the KEGG terms
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growth [42]. And other oncogenes depending on FA syn-
thesis appear to have higher sensitivity to inhibition of 
lipogenesis when MYC overexpressed [43]. Moreover, in 
cancer, although MYC overexpression maximizes unre-
strained growth, it is vulnerability to the inhibition of 
lipogenesis [42]. As for PVT1, the corresponding lncRNA 
of MYC, although it was confirmed to be associated with 
a variety of malignancies and promote tumor cell pro-
liferation, migration, tumor growth and metastasis [44, 
45], and adipogenic potential [46], the lipid metabolism 
of PVT1 regulating is still unclear. Previous studies indi-
cated that upregulated PVT1 could lead to the damage of 
biosynthesis [13]. However, our study found out PVT1 
was downregulating in the prediabetes with HTG, it 
might be consistent with that overexpressed MYC is vul-
nerability to the inhibition of lipogenesis [42]. Besides, 
it was also found that the PVT1 expression was lower in 

the gestational diabetes mellitus and preeclampsia pla-
centas than normal placentas [47]. Therefore, downregu-
lated PVT1 could also cause to damage in some extent 
and it might play a role for the lipid metabolism in the 
prediabetes.

We also found the correlation between lncRNAs 
TCONS_00334653 and PVT1 were statistically signifi-
cant. Therefore, based on the results of present study, we 
suggested that lncRNAs TCONS_00334653 and PVT1 
might be the potential therapeutic or diagnostic target 
for the treatment of prediabetes with HTG. However, our 
study has some limitations. In order to obtain reliable 
information, the results need to be extended to a larger 
population for exploration. Besides, more molecular biol-
ogy experiments and functional studies are required to 
explore the mechanism by the key lncRNAs regulate lipid 
metabolism in the prediabetes.

Fig. 6  The PPI analysis of target gene of hub lncRNAs. Edge stood for the interaction between two genes. A degree was used for describing the 
importance of protein nodes (red represented high degree and blue represented low degree). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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Fig. 7  The relative expression and its standard deviation of lncRNA (PVT1 and TCONS_00334653) in the prediabetes with HTG and NTG, respectively

Fig. 8  The ROC curves for the relative expressions of lncRNAs PVT1 (green) and TCONS_00334653 (blue) in the prediabetes with HTG
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Conclusions
The TCONS_00334653 and PVT1 were detected the key 
lncRNAs for the prediabetes with HTG, which might be 
a potential therapeutic or diagnostic target for the treat-
ment of prediabetes with HTG.
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