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Abstract
Background Regular physical activity elicits many health benefits. However, the underlying molecular mechanisms 
through which physical activity influences overall health are less understood. Untargeted metabolomics enables 
system-wide mapping of molecular perturbations which may lend insights into physiological responses to regular 
physical activity. In this study, we investigated the associations of habitual physical activity with plasma and urine 
metabolome in adolescents and young adults.

Methods This cross-sectional study included participants from the DONALD (DOrtmund Nutritional and 
Anthropometric Longitudinally Designed) study with plasma samples n = 365 (median age: 18.4 (18.1, 25.0) years, 
58% females) and 24 h urine samples n = 215 (median age: 18.1 (17.1, 18.2) years, 51% females). Habitual physical 
activity was assessed using a validated Adolescent Physical Activity Recall Questionnaire. Plasma and urine metabolite 
concentrations were determined using ultra-high-performance liquid chromatography-tandem mass spectroscopy 
(UPLC-MS/MS) methods. In a sex-stratified analysis, we conducted principal component analysis (PCA) to reduce the 
dimensionality of metabolite data and to create metabolite patterns. Multivariable linear regression models were then 
applied to assess the associations between self-reported physical activity (metabolic equivalent of task (MET)-hours 
per week) with single metabolites and metabolite patterns, adjusted for potential confounders and controlling the 
false discovery rate (FDR) at 5% for each set of regressions.

Results Habitual physical activity was positively associated with the “lipid, amino acids and xenometabolite” pattern 
in the plasma samples of male participants only (β = 1.02; 95% CI: 1.01, 1.04, p  = 0.001, adjusted p = 0.042). In both 
sexes, no association of physical activity with single metabolites in plasma and urine and metabolite patterns in urine 
was found (all adjusted p > 0.05).

Conclusions Our explorative study suggests that habitual physical activity is associated with alterations of a group of 
metabolites reflected in the plasma metabolite pattern in males. These perturbations may lend insights into some of 
underlying mechanisms that modulate effects of physical activity.
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Introduction
A large body of evidence emphasizes health benefits of 
physical activity and an active lifestyle, from early child-
hood through adolescence into adulthood. High level of 
physical activity has been associated with lower risk of 
cardiovascular diseases [1, 2], type 2 diabetes and meta-
bolic syndrome [3, 4], all-cause mortality [1, 2, 5] and 
mental disorders [6]. The effect of physical activity on the 
immediate fuel utilization through aerobic and anaerobic 
metabolism is well elucidated [7]. However, molecular 
mechanisms modulated by physical activity, or through 
which regular physical activity benefits overall health is 
less clear.

Physical activity is heterogeneous behavior, varying in 
type of exercise, frequency, intensity, and duration. Some 
studies have reported marked individual variability in 
the responsiveness to exercise training [8, 9], suggest-
ing idiosyncratic biological responses and physiological 
gains. In one study, researchers identified a set of plasma 
proteomic profiles whose baseline composite score pre-
dicted an individual’s ‘trainability’ and how they benefit 
or respond to an exercise training protocol [10]. Genetic 
factors may be important even though their mediating 
role is not firmly established [11–13]. Previous stud-
ies have also identified potential quantitative trait loci 
linked to an individual’s response to exercise training 
such as changes in plasma insulin [14], glucose and insu-
lin metabolism [15], and lipid and lipoprotein levels [16].

As research in exercise physiology continues to expand, 
metabolomics has become a popular technique for map-
ping molecular responses to physical activity and exer-
cise-associated metabolism. For example, global shifts in 
the levels of lipids and lipid-related metabolites during 
and after exercise training has been described in several 
metabolomics-based studies [17–19]. There is also cir-
cumstantial evidence linking physical activity with amino 
acid metabolism in the skeletal muscles, where higher 
levels of habitual leisure time physical activity were asso-
ciated with an elevated branched-chain amino acids 
(BCAAs) catabolic processes [20] and reduced concen-
tration of circulating BCAAs in serum [21]. Given that 
an elevated concentration of circulating BCAAs is associ-
ated with obesity and metabolic syndrome [22–25], these 
studies underscore the utility of metabolomics in explor-
ing physiological responses to physical activity and the 
biochemical pathways to health status.

There is evidence of clear and concrete benefits for 
encouraging development and tracking of leisure time 
physical activity over the life course [26]. But there are 
far fewer metabolomics-based studies focused on physi-
cal activity in adolescents and young adults. Two small 
intervention studies examined short-term exercise-
induced physiologic effects on the metabolome of young 
adults [27, 28] while one study explored longitudinal 

associations of physical activity and serum circulating 
amino acids concentration in peripubertal girls [29]. In 
the present study, we explore potential associations of 
habitual leisure time physical activity (LTPA) with the 
plasma and urine metabolome in adolescents and young 
adults.

Methods
Study design
This analysis involved participants from the Dort-
mund Nutritional and Anthropometric Longitudinally 
Designed (DONALD) study. Detailed description of the 
study design and population is provided elsewhere [30]. 
Briefly, the DONALD study is an open-cohort study that 
was started in 1985, with the primary objective of assess-
ing diet and nutrition and their complex interrelations 
with metabolism, growth and development from infancy 
to early adulthood. Regular annual assessments include 
dietary intake using 3-day weighed dietary records (3d-
WDR), anthropometric and medical measurements, 
24-h urine sample collections, and interviews on lifestyle 
factors such as physical activity. The first examination 
starts at the age of three months, with three assessments 
planned during the first year, two annual assessments in 
the second year, and afterwards, one annual assessment 
until the age of eighteen, after which, examinations are 
performed once in a five-year period. For this analysis, 
unless otherwise specified, we used participants’ data 
before or at the same follow-up visits as the blood and 
urine sample collection.

Study participants
The present cross-sectional analysis included participants 
from singleton, full term births (36–42 weeks of gesta-
tions) and had a birthweight of at least 2500 g. We used 
two subsets of the DONALD study participants based on 
the untargeted metabolome profiling of either the blood 
(plasma) samples (n = 418) or the urine samples (n = 369), 
described in previous studies [31, 32]. Overall, a sample 
of n = 365 for plasma and n = 215 for urine who had physi-
cal activity measurements were included. Out of these, 
n = 136 had both plasma and urine measurements.

Assessment of physical activity
Habitual LTPA as assessed in the DONALD study 
reflects physical activities performed at the discretion of 
the participant that are not essentially part of their daily 
living. These included sporting and recreational activities 
in their leisure time as individuals, with friends, in orga-
nized groups or sports clubs and any other after-school-
but-in-school physical activity, but excludes activities 
during physical education. Using a questionnaire based 
on the validated Adolescent Physical Activity Recall 
Questionnaire (APARQ) [33], participants were required 
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to estimate, on average, the amount of time they spent 
per week in organized and unorganized sports within the 
last 12 months. From the age of 12 onwards, participants 
were interviewed in person or with the help of their par-
ents if accompanied, to find the most possible correct 
responses. The amount of total reported LTPA was cal-
culated as weekly energy expenditure given by metabolic 
equivalent of task (MET)-hours per week. After explor-
atory data analysis, we used the Tukey’s interquartile 
range rule for outlier detection and excluded the extreme 
physical activity observations. For this analysis, we used 
LTPA assessment closest in time before blood and urine 
collection, as the exposure variable. The time difference 
(in days) between LTPA assessment and urine and blood 
draw collection dates was also determined and consid-
ered in data analyses.

Metabolite measurement
Untargeted metabolomics analyses of plasma samples 
(n = 418) and 24-h urine samples (n = 369) were per-
formed by Metabolon Inc. (Morrisville, NC, USA) using 
Ultra-high-performance liquid chromatography-tandem 
mass spectroscopy (UPLC-MS/MS) methods. Briefly, 
through Metabolon’s global metabolomics platform 
and a host of standardized processes related to sample 
accessioning, sample preparation, instrumental analysis, 
peak quantification and batch correction, metabolites 
are characterized in reference to their database of over 
3300 registered chemical compounds and mass spec-
tral entries of structurally unnamed biochemicals. In 
the plasma, 1042 features were annotated, of which 811 
compounds were of known chemical identity and 231 
of unknown structural identity. 1407 biochemical com-
pounds were annotated in the urine of which 940 com-
pounds were of known or named biochemical identity 
and 467 compounds were of unknown structural identity. 
For a detailed description of these methods and analytic 
quality control procedures, we refer the interested reader 
to Additional file 1 in supplementary materials.

Assessment of other variables
Demographic data as well as socioeconomic and life-
style factors were collected at study entry and during 
annual measurements. These included sex, age, dietary 
intake using 3-day weighed dietary records (3d-WDR), 
body mass index (BMI, calculated as participant’s weight 
divided by the square of height in meters – Kg/m2). From 
the dietary intake, we calculated total daily energy intake 
(kilocalories/day) and macronutrients (carbohydrates, fat 
and protein) following our in-house food composition 
database [34]. Other covariates assessed include smok-
ing and alcohol status, household factors (i.e., smok-
ing household – yes/no) and social economic factors 
(i.e., maternal occupation and educational level). These 

covariates are potential confounders and were included a 
priori based on existing literature [35–37].

Statistical analyses
Participants’ characteristics were summarized using 
median with 25% and 75% percentile for continuous 
variables and count (percentage) for categorical vari-
ables. All data processing and downstream analyses were 
sex-stratified because of the well-established sex differ-
ences in physical activity levels and intensity [2, 38, 39], 
human metabolome [40–42] and the interrelationship 
between some metabolites such as tryptophan [43]. As a 
data processing step, we excluded metabolites with more 
than 20% missing values as per the “80% rule” described 
in [44]. This threshold strikes a good balance between 
filtering out features and preserving “data quality” for 
which imputation should work reasonably well [44, 45]. 
In plasma samples, this exclusion represented 251 and 
265 metabolites in males and females, respectively and in 
urine samples, this represented 222 and 229 metabolites 
in males and females, respectively. Most metabolites were 
not normally distributed; thus, concentrations were natu-
ral-log transformed and standardized to a mean of zero 
[45]. All missing data were imputed through a Random 
Forest (RF) algorithm using missForest R package. The 
RF-based imputation has been show to outperform other 
imputation methods for metabolomics data, especially, 
when the patterns of missingness are unknown [46].

We used principal component analysis (PCA) to reduce 
the dimensionality of the metabolites data, transforming 
them linearly to a smaller set of composite factors (i.e., 
principal components - PCs) that are orthogonal and 
uncorrelated while still explaining most of the variance in 
the original data [47]. The function “prcomp ()” from the 
R Stats package was used to perform PCA of the covari-
ance matrix. The PCs that explained a cumulative vari-
ance of at least 70% of total variability were retained [47]. 
These PCs represented metabolite patterns and were 
used in multivariable linear regression models.

In regression modeling of metabolome data, individual 
metabolites are usually analyzed one by one with cor-
rection for multiple testing. Despite the benefit of this 
approach in correcting for type I error rate and provid-
ing a measure of association for each metabolite, single 
metabolite associations might be too small to detect, and 
relationships among metabolites are ignored. In contrast, 
the PCA approach addresses these issues by incorporat-
ing most of the information of the metabolite matrix into 
few uncorrelated variables (PCs). As such, we were also 
interested in patterns of variation in the whole metabo-
lite matrix that may be related to physical activity rather 
than focusing only on individual metabolites. We con-
sidered both approaches and analyzed both individual 
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metabolites and PCA factor scores as outcome variables 
in multivariable linear regression models.

Thus, using multivariable linear regression, we 
regressed (i) each of the single metabolites and (ii) each 
of the PCA factor scores on LTPA scores, adjusting for 
other covariates. Given the high number of metabolites 
and the exploratory approach of these analyses, we cor-
rected for multiple comparisons by controlling the false 
discovery rate at 5% for each set of regressions using 
the Benjamini-Hochberg procedure. For interpretation, 
log-transformed regression coefficients were back-trans-
formed. All statistical analyses were performed using the 
R statistical software version 4.1.3.

Results
Description of study population
Table  1 provides a summary of the basic characteristics 
of the study participants. The plasma sample included 
365 participants (58% females) with a median age of 18 
years, BMI of 22  kg/m2, LTPA of 26 MET-hours/ week 
and energy intake of 2034 Kcal/day. The urine sample 

included 215 participants (51% females) with a median 
age of 18 years, BMI of 22 kg/m2, LTPA of 33 MET-hours 
/week and energy intake of 2135 Kcal/day.

Summarizing metabolites into groups using PCA
Table 2 summarizes the results of the PCA of the metab-
olite datasets in which the high number of plasma and 
urine metabolites were reduced to fewer PCs (henceforth 
referred to as metabolite patterns) representing pat-
terns of correlated metabolites that may have biologically 
related information.

Associations between leisure time physical activity and 
metabolome
In multivariable linear regression models of single metab-
olites as response variables and LTPA and covariates as 
predictor variables, we found no associations between 
LTPA and the metabolites after controlling the false dis-
covery rate at 5% in both plasma and urine samples for 
both sexes (all fdr-adjusted p > 0.05). In multivariable 
linear regression with metabolite patterns as response 

Table 1 Basic characteristics of the study population
Plasma Metabolome Urine Metabolome

Characteristic N = 365  N = 215
Sex, femalesa 365 213 (58.4) 215 109 (50.7)

Age at sample collection, yearsb 365 18.4 (18.1, 25.0) 215 18.1 (17.1,18.2)

BMI at sample collection (kg/m2)b 365 22.3 (20.5, 24.7) 215 21.9 (19.9, 24.2)

Physical activity (MET-h /w)b 365 26.0 (12.0, 47.0) 215 33.0 (13.0, 53.0)

Energy intake (Kcal/day)b 276 2034 (1637, 2457) 214 2135 (1759, 2518)

Protein intake (E%)b 276 13.9 (12.3, 15.7) 214 13.7 (12.2, 15.4)

Fat intake (E%)b 276 33.1 (29.4, 38.1) 214 33.0 (30.1, 38.0)

Carbohydrate intake (E%)b 276 50.0 (45.2, 55.1) 214 50.0 (45.0, 55.1)

Smoking statusa 301 154

 Never 194 (64.5) 109 (70.7)

 Former 51 (16.9) 21 (13.6)

 Current 56 (18.6) 24 (15.5)

Alcohol consumptiona 325 170

 Never 26 (8.0) 21 (12.3)

 Former 42 (12.9) 30 (17.6)

 Current 257 (79.1) 119 (70.0)

Smoking household: Yesa 260 83 (31.9) 157 49 (31.2)

Maternal occupation (working full or part-time): Yesa 283 187 (66.1) 174 138 (79.3)

Maternal education ≥ 12 years of education: Yesa 284 158 (55.6) 174 113 (52.6)
Data presented as a n (%) where n = count, % = percentage, b Median (25%, 75% percentile), BMI, body mass index calculated as weight (kg)/height (m2), E% indicates 
percentage of total energy intake per day, Physical activity reflects the leisure time physical activities in MET-h /w, metabolic equivalent of task-hours per week. 
Differences in N due to missing data for that variable

Table 2 Summary of plasma and urine metabolome PCA results
Plasma metabolome Urine metabolome
Metabolites PCs Cumulative variance (%) Metabolites PCs Cumulative variance (%)

Female 777 37 70.4 1185 25 70.6

Male 791 34 70.7 1178 24 70.4
PCs – Principal components through PCA on covariance matrix. The PCs column represents the total number of principal components explaining at least 70% of 
variance of the metabolite data
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variables and LTPA and covariates as predictor vari-
ables, LTPA was positively associated with PC15 in male 
plasma samples (β = 1.02; 95% CI: 1.01, 1.04, fdr-adjusted 
p = 0.042) (Table  3). No other LTPA-metabolite patterns 
associations were found in female plasma samples as well 
as in urine samples for both sexes (p > 0.05 after correc-
tion for multiple testing). Complete results of these anal-
yses are provided in the Additional file 2: Table S1.

Metabolite patterns associated with leisure time physical 
activity
To describe the metabolite pattern, PC15 (Table  3), we 
investigated metabolite loadings and the biochemical 
identities of the top ranking metabolites. Note that PC15 

is defined by a weighted combination of the log-trans-
formed and centered metabolite values. Thus, the weights 
or loadings of the individual metabolites would be equal 
in absolute value if all metabolites contributed equally to 
PC15. We determined the median of individual metabo-
lite contributions to PC15 and considered those above 
the median to represent the most significant metabolites 
contributing to the observed pattern. Additionally, using 
the factoextra R package, we graphically inspected indi-
vidual metabolite contributions or weights. Based on this 
selection criteria, n = 82 metabolites were selected (more 
details on this methods provided in Additional file 3: 
Figure S1, Figure S2). Notably, PC15  variation was pri-
marily driven by metabolites from the lipid, amino acid, 

Table 3 Regression coefficients for the association between plasma PCA factors and LTPA scores in male participants
Metabolite patterns
(PC factors)

Variance (%) Cumulative variance (%) Estimate 95% Confidence interval
Β Lower Upper pvalue§ p(fdr)

PC1 7.65 7.65 0.996 0.974 1.020 0.756 0.914

PC2 6.77 14.42 0.987 0.961 1.014 0.347 0.655

PC3 5.00 19.42 0.998 0.976 1.021 0.852 0.918

PC4 4.63 24.05 1.004 0.985 1.024 0.689 0.914

PC5 3.62 27.68 0.978 0.960 0.997 0.023 0.391

PC6 3.10 30.78 1.011 0.993 1.029 0.241 0.556

PC7 2.82 33.60 0.999 0.983 1.016 0.918 0.918

PC8 2.68 36.28 0.988 0.972 1.005 0.156 0.556

PC9 2.49 38.77 1.013 0.997 1.029 0.122 0.556

PC10 2.20 40.97 1.003 0.988 1.018 0.714 0.914

PC11 2.03 43.00 0.992 0.979 1.006 0.250 0.556

PC12 1.92 44.92 0.992 0.979 1.006 0.261 0.556

PC13 1.82 46.74 1.009 0.995 1.023 0.197 0.556

PC14 1.63 48.37 1.003 0.990 1.017 0.627 0.914

PC15 1.58 49.94 1.022 1.009 1.035 0.001 0.042
PC16 1.55 51.49 1.003 0.991 1.016 0.595 0.914

PC17 1.50 52.99 0.989 0.976 1.002 0.088 0.556

PC18 1.39 54.38 0.997 0.984 1.009 0.584 0.914

PC19 1.36 55.74 1.011 0.999 1.024 0.066 0.556

PC20 1.29 57.03 1.010 0.998 1.021 0.106 0.556

PC21 1.18 58.20 0.999 0.988 1.011 0.895 0.918

PC22 1.15 59.36 0.999 0.988 1.010 0.866 0.918

PC23 1.12 60.48 0.994 0.983 1.005 0.258 0.556

PC24 1.08 61.56 1.001 0.991 1.012 0.807 0.914

PC25 1.06 62.61 1.003 0.992 1.013 0.596 0.914

PC26 1.04 63.66 0.994 0.984 1.004 0.225 0.556

PC27 0.97 64.63 0.994 0.984 1.004 0.232 0.556

PC28 0.95 65.58 0.998 0.988 1.008 0.751 0.914

PC29 0.91 66.49 0.999 0.989 1.009 0.801 0.914

PC30 0.90 67.39 1.005 0.995 1.015 0.322 0.643

PC31 0.86 68.25 1.001 0.992 1.011 0.782 0.914

PC32 0.85 69.10 0.994 0.984 1.004 0.211 0.556

PC33 0.81 69.91 0.996 0.987 1.006 0.411 0.736

PC34 0.78 70.69 1.005 0.996 1.015 0.262 0.556
Estimates from multivariable linear regression with principal component analysis scores (PCA factors) modelled as outcome variable and leisure time physical 
activity as explanatory variable. The models were adjusted for all covariates and estimates back-transformed for interpretation. § represents the uncorrected 
p-value, p(fdr), p value corrected for multiple comparison using the FDR method
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and xenobiotic super pathways i.e., lipids (n = 25) amino 
acids (n = 15) xenometabolites (n = 13) cofactors and vita-
mins (n = 3), carbohydrate (n = 2), nucleotide (n = 2), pep-
tide (n = 1) and unknown or non-annotated metabolites 
(n = 21). We named this PC15 pattern “lipid, amino acid, 
and xenometabolite pattern”. Detailed information on the 
biochemical identities, super-and-sub pathways of the 
metabolites is summarized in Additional file 3: Table S2.

Discussion
This study explored sex-stratified associations between 
physical activity and single metabolites as well as metab-
olite patterns in plasma and urine samples from young 
adults. The major findings from our analyses was that 
independent of the covariates, physical activity was posi-
tively associated with the “lipid, amino acids and xeno-
metabolite” pattern, specifically, in the plasma samples of 
males.

The unsupervised PCA approach created uncorrelated 
patterns, with each PC representing an independent pat-
tern of variation, and metabolite weights reflecting their 
contribution to that pattern [47]. These patterns repre-
sent a mixture of biological processes and pathways and 
may reflect metabolome perturbations as a response to 
a physiological state, or related to a phenotype of inter-
est [48, 49]. These may include diet, body composition, 
aging, physical activity among others. We emphasize 
the exploratory nature of our analyses; therefore, sev-
eral biological explanations exist for these findings. For 
example, that physical activity was associated with a pat-
tern of metabolites and not with single metabolite could 
reflect the complexity of the multiple biological processes 
involved. It could also mean that leisure time physical 
activity elicits only small effects on individual metabolites 
that are not detectable after multivariable adjustments 
and multiple testing corrections as observed in our single 
metabolite models. Therefore, we do not attribute the 
effects of habitual physical activity on metabolome on 
specific metabolites, but rather on groups of metabolites 
given that the observed association reflect the variation 
or combined effects of small changes in multiple metabo-
lites in the pattern.

In the present study, twenty-five of the top loading 
metabolites in the metabolite pattern associated with 
physical activity are from lipid metabolism super path-
way. The most represented sub-pathways were fatty acid 
metabolism (dicarboxylate (4), monohydroxy (2), dihy-
droxy (1), acyl choline (1), Acyl carnitine (1) and long-
chain polyunsaturated fatty acids (1), BCAA metabolism 
(2), endocannabinoid (1)), bile acid metabolism (5), ste-
roids (5), and phospholipid metabolism (2). Broadly, 
exercise-induced perturbations of multiple lipid-related 
metabolites is reported in other epidemiologic stud-
ies. Three separate experimental studies investigating 

exercise-induced shifts in lipids reported significant 
changes in the concentration of fatty acid oxidation 
metabolites, particularly, dicarboxylate fatty acids, mono-
hydroxy fatty acids and acylcarnitines [17], ketones, 
dicarboxylate fatty acids and long-chain fatty acids sub 
pathways [19], and two-fold or higher increase in lipid/
carnitine metabolites with significant decrease in lyso-
lipid and bile acid metabolites [18].

In other plasma-based metabolome studies, long-term 
leisure time physical activity was also associated with 
alterations in lipid profiles, particularly, elevated concen-
tration of high-density lipoprotein (HDL) cholesterol [21, 
50], and similarly, in a 2-day ultramarathon study [51]. 
In line, studies investigating cardiorespiratory fitness 
observed significant differences in concentrations of ben-
eficial lipid metabolites and fatty acids among individu-
als with high and low fitness [21, 52, 53]. We note that 
during physical exercise, increased demand for energy 
is fulfilled through oxidation of glucose or hydrolysis of 
triacylglycerols into free fatty acids depending on among 
other factors, the prandial state and intensity and dura-
tion of the exercise [54, 55].

We found that plasma glucose and mannose — which 
is mechanistically a glucose-associated metabolite — also 
loaded in the metabolite pattern associated with physical 
activity. Plasma glucose is extensively documented source 
of energy for aerobic and anaerobic metabolism. Mod-
erate-intensity habitual physical activity is associated 
with lower fasting plasma glucose levels [21, 56]. Several 
molecular mechanisms through which physical activity 
promotes glucose homeostasis have also been proposed 
[4, 57].

Additionally, 15 of the top ranking metabolites in the 
pattern associated with physical activity were from 
amino acid metabolism super pathway. Of note, these 
metabolites predominantly represented the branched-
chain amino acids (BCAAs) sub-pathway (i.e., leucine, 
isoleucine and valine amino acids). Other important 
amino acid-related metabolites observed included gua-
nidinoacetic acid (GAA) which is involved in cellular 
energy metabolism and believed to improve exercise per-
formance among physically active individuals [58]. More-
over, circulating kynurenine, a tryptophan catabolite is 
mechanistically influenced by physical activity, with stud-
ies reporting exercise-induced kynurenine pathway mod-
ulations in both animal and human populations [59]. Of 
note, a wide variety of studies have reported significant 
associations between physical activity and alterations in 
the levels of plasma metabolites related to BCAA metab-
olism [20, 21, 28, 29, 60–62].

We also found xenometabolites were noticeably loaded 
in the metabolite pattern associated with physical activ-
ity. Xenobiotics are a group of chemicals not endog-
enously produced in organisms or in the environment. 
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Humans are principally exposed to xenobiotics through 
dietary intake such as dietary supplements like antioxi-
dants or drugs, antibiotics [63]. There are limited metab-
olomics studies exploring the associations of physical 
activity and circulating plasma xenobiotic metabolites 
[53, 64, 65], which hampered further interpretation of 
our findings.

Several studies have highlighted sex-differences in 
not only exercise habits and intensity [2, 38, 39, 66] but 
also within the phenotype of physiological systems and 
responses to exercise [67, 68]. Sex-differences in metabo-
lite concentrations have also been described [40–42]. In 
the present study, we found no associations of physical 
activity with metabolome in females after correcting for 
multiple comparisons. We note that even though there is 
a dearth of evidence on leisure time physical activity and 
metabolome in young people, a recent longitudinal study 
found some alterations of serum amino acids in Finnish 
girls, specifically, isoleucine, leucine and tyrosine levels 
independent of BMI [29]. Their study differs from the 
present study in several ways. For example, the choice of 
serum vs. plasma, their methodology, and the potential 
confounders adjusted. Future metabolomics-based stud-
ies in this research area may consider these mixed find-
ings and potential sources of variation. In light of growing 
evidence, other confounding variables such as hormonal 
contraceptive use should additionally be considered. 
For example, in a study exploring general variability of 
plasma metabolites in young adults, 97 metabolites dif-
fered significantly between females on hormonal contra-
ceptives and those not on hormonal contraceptives [42].

Moreover, in our multivariable regression models, we 
found no associations of physical activity with single 
metabolites in plasma and urine in both sexes after cor-
rections for multiple comparisons. Conscious of Alt-
man and Bland’s “absence of evidence is not evidence 
of absence” [69], we offer a few considerations for inter-
pretation of these non-significant findings. First, mul-
tiple-hypothesis-testing approach controlling for false 
discovery at 5% is demonstrably plausible at controlling 
type I errors for exploratory purposes, but may also be 
at a stringent level that increases the chances of type II 
errors, potentially rejecting biologically and statistically 
compelling associations. This is especially true when the 
effect sizes of the true positive hypotheses are small, or 
when the null hypothesis is true for a large number of 
tests, hence; true associations are missed due to the cor-
rection for multiple testing. The perils of our approach 
and future considerations are discussed in detail else-
where [70, 71]. Nonetheless, to support future studies in 
this area, especially for integrative analysis purposes, we 
provided full list of metabolites, unadjusted and adjusted 
p-values, including metabolites with non-significant 
associations (Additional file 2: Table S1).

Additionally, previous non-metabolomics studies have 
reported associations of acute exercise with alterations 
in levels of single metabolites, especially those involved 
in energy metabolism such as lactate [72–74]. Increased 
energy demand in muscles during physical training acti-
vates several metabolic pathways leading to increased 
production of lactate whose levels increase with exer-
cise intensity [74]. In metabolomics-based studies, 
many of the metabolites whose global concentrations 
change significantly following exercise training are lip-
ids and lipid-related metabolites such as free fatty acids 
and acylcarnitines [17–19, 75]. We considered that some 
metabolic pathways and enzymes that modulate levels 
of these metabolites such as lactate become activated 
by exercise and may be inactive at rest [75–77]. Altera-
tions in such metabolite levels during and shortly after 
exercise training suggest acute physiological responses 
to physical exercise, perturbations that may not strongly 
persist when modelling habitual leisure time activities. 
In the present analysis, the implications of unmeasured 
variables such as the intensity and time lapse between 
last exercise activity and urine and blood collection are 
also unknown. However, by looking at habitual physi-
cal activity rather than a bout of exercise, we were more 
interested in the long-term effects of physical activity 
on metabolome because many health benefits of physi-
cal activity become apparent over extended timeframes, 
ranging from weeks to months, and even years as dis-
cussed here [12].

Choosing the ideal biological sample is critical in 
metabolomic profiling studies, but the most suitable 
choice for a specific research objective is an issue of sci-
entific interest. For exercise physiology, blood (plasma or 
serum) is the most commonly used biosample in many 
studies as reported in this review [12]. However, there 
are inconsistencies in evidence as to whether the same 
metabolomic changes can be observed in different bio-
logical samples or tissues [12]. Although we observed 
statistically significant variation in a plasma metabolite 
pattern among males, it is not possible to definitively 
determine if the same metabolite variations or closely-
related metabolite changes would have been observed 
in urine samples. This is because our analysis included 
overlapping samples to maximize the sample size, and 
only 136 participants had both urine and blood mea-
surements and physical activity assessment. For a more 
robust comparison, the same set of participants should 
have both biosamples and physical measurements taken 
during the same period. We noted that metabolites 
with higher weights in our metabolite pattern were also 
reported in other exercise-metabolome studies in blood 
(plasma, serum) samples (Additional file 3: Table S2). 
Most of the studies included only male population and 
considered together with our results, it is still unclear if 
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these findings reflect a sex-specific metabolite response 
to exercise or it is simply imbalanced research focus 
towards male subjects in most of exercise physiology 
studies.

Overall, our exploratory findings are quite intrigu-
ing and warrant further investigation in independent 
cohorts. The perturbations of the plasma metabolome 
in males are in molecular pathways of some health 
states and phenotypes. Non-esterified fatty acids, acyl-
carnitines, and phospholipids are suggested biomarkers 
for obesity as observed in many studies summarized by 
Rauschert et al. [78]. Circulating BCAA metabolites are 
widely recognized markers of body composition and obe-
sity [23, 31, 79, 80] and proposed potential biomarkers of 
cardio metabolic health and diabetes [22–25]. Given the 
associations of physical activity and metabolic syndrome, 
further investigations may lend insights into some of 
the metabolic pathways through which habitual physical 
activity may influence metabolic health.

The present study has specific strengths that are worth 
highlighting. We used both untargeted metabolomics 
and untargeted lipidomics, which provided a comprehen-
sive system-wide approach to explore and map molecular 
networks and perturbations in plasma and urine that may 
be associated with habitual physical activity. The study 
also explored two widely used biosamples — plasma and 
urine — and a relatively large sample size compared to 
other metabolomics studies. The sex-stratified investi-
gations ensures that sex-specific relationships between 
metabolome and external stressors such as physical activ-
ity are not obfuscated. Our priori defined analyses inves-
tigating both single metabolites and metabolite patterns 
and correcting for type I errors, permitted a compre-
hensive exploration of the relationship between habitual 
physical activity urine and plasma metabolome, while 
also controlling for false positives associations.

There were nonetheless some notable limitations. Even 
though we used widely recognized and validated assess-
ment instruments, dietary intake and physical activity 
data were self-reported; hence, subject to measurement 
errors such as an overestimation of physical activity as 
reported in other studies [81]. Multiple studies have 
reported a low to moderate correlation between objec-
tively measured physical activity and self-reported mea-
sures in adolescents [82, 83]. The discrepancies between 
these measures may affect the associations observed in 
our study, but without objective measurements, the pre-
cise effects could not be determined. Lastly, the PCA 
approach is entirely unsupervised, and even though this 
may be a positive feature of the method depending on 
the research objective; it may also be a limitation as the 
relevant structures of the data do not consider varia-
tion with respect to the outcome or response variable 
[84]. Therefore, using factor weights to select top loading 

metabolites where PCA scores are associated with phe-
notype of interest or group information such as physical 
activity is data-driven, and its utility is descriptive and 
exploratory rather than inferential. Furthermore, 21 of 
the 82 top loading metabolites in PC15 are of unnamed 
biochemical compounds; hence, no meaningful biologi-
cal information could be discerned.

Conclusion
In summary, the current study suggests that habitual 
physical activity is associated with perturbations in the 
plasma metabolome. We observed that physical activ-
ity potentially influences the joint lipid, amino acid, and 
xenobiotics metabolism. Such metabolic alterations may 
reflect some of the important biological pathways that 
mediate the health effects of physical activity. However, 
these findings are exploratory and warrant further inves-
tigation in confirmatory studies.
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