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Abstract 

Background Serum albumin level is a crucial nutritional indicator for patients on dialysis. Approximately one‑third 
of patients on hemodialysis (HD) have protein malnutrition. Therefore, the serum albumin level of patients on HD is 
strongly correlated with mortality.

Methods In study, the data sets were obtained from the longitudinal electronic health records of the largest HD 
center in Taiwan from July 2011 to December 2015, included 1,567 new patients on HD who met the inclusion criteria. 
Multivariate logistic regression was performed to evaluate the association of clinical factors with low serum albu‑
min, and the grasshopper optimization algorithm (GOA) was used for feature selection. The quantile g‑computation 
method was used to calculate the weight ratio of each factor. Machine learning and deep learning (DL) methods were 
used to predict the low serum albumin. The area under the curve (AUC) and accuracy were calculated to determine 
the model performance.

Results Age, gender, hypertension, hemoglobin, iron, ferritin, sodium, potassium, calcium, creatinine, alkaline phos‑
phatase, and triglyceride levels were significantly associated with low serum albumin. The AUC and accuracy of the 
GOA quantile g‑computation weight model combined with the Bi‑LSTM method were 98% and 95%, respectively.

Conclusion The GOA method was able to rapidly identify the optimal combination of factors associated with serum 
albumin in patients on HD, and the quantile g‑computation with DL methods could determine the most effective 
GOA quantile g‑computation weight prediction model. The serum albumin status of patients on HD can be predicted 
by the proposed model and accordingly provide patients with better a prognostic care and treatment.
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Introduction
The prevalence of end-stage renal disease (ESRD) has 
been continually increasing in various countries. Accord-
ing to a 2020 US Renal Data System report, Taiwan 
ranks among the top five countries globally in terms 
of the incidence rate of ESRD per million population. 
ESRD is a condition in which a person’s renal function 
declines to < 15% of normal renal function [1]. Patients 
with ESRD experience the symptoms of uremia, includ-
ing loss of appetite, nausea, vomiting, itchy skin, facial 
and limb edema, and foul breath [2, 3]. Therefore, dialysis 
is required to alleviate symptoms and improve the qual-
ity of life of patients with ESRD [4]. Hemodialysis (HD) 
can effectively eliminate toxins and excess water from 
the kidneys. Patients with ESRD are required to undergo 
HD in a hospital two to three times per week through-
out their life. In addition, receiving HD adversely affects 
patients’ quality of life and requires them to maintain diet 
control in terms of potassium, phosphorus, salt, water, 
and protein intake [5, 6]. Although HD can prolong 
patients’ lives, it may cause other complications, such as 
hypotension, hypertension, nausea, and vomiting, which 
may affect their physiological function and quality of life 
[7, 8]. Therefore, appropriate care and diet control are 
crucial for patients on HD [9]. Malnutrition may lead to 
increased mortality in patients on HD, and serum albu-
min level is a vital nutritional indicator for these patients 
[5, 10, 11]. The nutritional status of patients on HD is 
closely related to their clinical parameters, most rep-
resented by serum albumin, which may affect their risk 
of mortality [12]. To effectively prolong the survival of 
patients on HD, their clinical parameters should be main-
tained at normal levels.

Many related risk factors affect patients’ disease sta-
tus, and appropriate medical care based on all possible 
risk factors cannot be currently provided. Therefore, 
the identification of the most crucial risk factors for dis-
eases based on numerous biomarkers is essential. Most 
previous studies on this topic have recommended con-
sultations with relevant disease specialists and the identi-
fication of risk factors for diseases; research and analysis 
should then be conducted by specialists [13]. Currently, 
machine learning (ML) methods have been widely used 
for disease diagnosis and prognosis, including artificial 
neural networks (ANN) [14], particle swarm optimiza-
tion (PSO) [15], biogeography-based optimization [16, 
17], and other hybrid technologies [18]. Previously, tra-
ditional statistical methods were used to compare data. 
ML and deep learning (DL) have the advantages of high 
accuracy, reproducibility, and objectivity. One of the 
major limitations of conventional ML techniques is the 
requirement of sometimes complex processing (fea-
ture engineering) to extract the requisite discriminative 

features [19]. Therefore, significant domain knowledge 
and data processing expertise were required to train 
non-deep learning models. Deep learning, however, is 
adept at learning abstract features directly from the raw 
data. Different layers of the network automatically learn 
abstract features representative of the data. A single well-
designed and well-trained network can yield state-of-the-
art results across many applications, without the need 
for significant domain knowledge [20]. It is clear that 
deep learning is an extremely powerful tool for learning 
complex, cognitive problems. However, it is not a com-
prehensive tool for all healthcare analytics applications. 
Several past commentaries on deep learning for clinical 
applications touch on how data issues such as low vol-
ume, high sparsity, and poor quality can limit the efficacy 
of deep learning methods. We find that conventional ML 
tools can achieve comparable, if not better performance 
in this context despite the complex nature of the data. 
Although deep learning can be applied to many of these 
fairly standard problems, conventional ML methods may 
provide simpler, cheaper, and more useful method for 
data modeling. Thus, their use for medical diagnosis and 
prognosis can be beneficial [18]. Traditional regression 
analysis may be inadequate for dealing with large and 
complex clinical data [21]. Studies have combined tradi-
tional statistics with ML and optimization algorithms to 
propose effective nursing strategies for patients on HD.

A metaheuristic optimization algorithm is com-
monly used to solve global optimization problems [22]. 
This algorithm is mainly used for searches by simulat-
ing nature and human intelligence to achieve optimal 
solutions. Heuristic optimization algorithms were first 
proposed in 1960 and are mainly divided into four cate-
gories: evolution, swarm intelligence, human intelligence, 
and physics and chemistry. Nature-inspired metaheuris-
tic algorithms based on crowd intelligence are the most 
commonly employed [23], including PSO, grey wolf 
optimization, and whale optimization algorithms. Many 
nature-inspired metaheuristic algorithms have been 
developed and used in combination with other methods 
to solve complex problems in various fields and obtain 
the most favorable solution.

The grasshopper optimization algorithm (GOA) is a 
novel metaheuristic algorithm used for global optimi-
zation [24]. The GOA simulates the behavior of locust 
swarms and applies it to challenging problems in struc-
tural optimization. Exploration and exploitation are the 
two main stages of nature-inspired algorithms. The goal 
of the GOA is to improve the convergence speed of a 
search target and avoid local optima. A deep neural net-
work is a DL method in machine learning [25]. Through 
imitation of the biological nervous system, models 
with different architectures are established for multiple 
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operations and training to develop the optimal and most 
effective prediction model [26, 27].

Studies have reported that the serum albumin level in 
patients on HD is highly correlated with mortality and 
is a crucial factor for predicting mortality [28, 29]. This 
study used the GOA to determine the most favorable 
combination of risk factors for predicting the low serum 
albumin levels. Because interference factors may affect 
data, we used the quantile g-computation method for 
weight adjustment. Finally, we used the DL method to 
identify the most effective prediction model. This model 
was used to predict the serum albumin status of new 
HD patients. The findings of this study can help develop 
comprehensive prognostic care and treatment strategies 
for improving the quality of life and survival of new HD 
patients.

Methods
Data sets
This study used the data sets that were obtained from the 
longitudinal electronic health records of the largest HD 
center in Taiwan. A total of 2298 patients who received 
HD for more than 3  months and continued receiv-
ing HD three times a week from July 2011 to December 
2015 were selected. We excluded the patients whose age 
was unknown, those aged < 18  years, those with a time 

interval of > 4 months between the end of dialysis and the 
last blood measurement, and those with incomplete data 
on baseline characteristics and laboratory measurements. 
Finally, we included 1567 patients who met the inclusion 
criteria in the analysis. All data were retrospectively col-
lected using an approved data protocol (201800595B0), 
and the requirement for patients’ informed consent was 
waived. This study was conducted in accordance with the 
Declaration of Helsinki. Figure  1 presents the flowchart 
for the data processing.

Serum albumin level is strongly associated with mortal-
ity. This study identified the risk factors for a low serum 
albumin level and determined whether patients had a 
low serum level before death to predict mortality. To col-
lect data on serum albumin levels, we recorded the lev-
els monthly and calculated the mean by adding the levels 
measured three months before the study’s end and three 
months before the patient’s death. The standard used to 
classify serum albumin was 3.5 g/dL, which is based on 
Chang Gung Memorial Hospital’s lower limit of the nor-
mal range in Taiwan. The patients were categorized into 
two groups: those with a mean albumin level ≥ 3.5 g/dL 
and those with a mean albumin level < 3.5 g/dL. In addi-
tion, we collected data on demographics; comorbidities; 
causes of mortality; and mean albumin level–related 
clinical laboratory data, namely age, gender, diabetes, 

Fig. 1 Data preprocessing workflow
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hypertension, heart failure, cancer, and mortality status. 
Baseline laboratory parameters included hemoglobin, 
serum albumin, iron, ferritin, sodium, phosphate, blood 
urea nitrogen, creatinine, alkaline phosphatase, intact 
parathyroid hormone, cholesterol, triglyceride, and fast-
ing glucose levels.

Figure  2 illustrates the analytical workflow for pre-
dicting low serum albumin levels in patients on HD. In 
the first step, data were extracted from the longitudinal 
electronic health records of the largest HD center in Tai-
wan. We collected data on diagnosis, complications, and 
laboratory measurements. Subsequently, we cleaned, fil-
tered, and merged the data. In the second step, we used 
the GOA for feature selection to determine the most 
favorable combination of risk factors for predicting low 
serum albumin levels. In the third step, we adjusted the 
weight of the data. The quantile g-computation method 
was used to examine the most favorable factor combina-
tions selected using the GOA; this method enabled the 
ranking of the importance of risk factors for low serum 
albumin levels and the calculation of the positive and 
negative weights of each risk factor for low serum albu-
min levels condition. The weights were used to adjust 
blood levels such that they significantly differed from 
each other. In the fourth step, we established the pre-
diction data. We used the synthetic minority oversam-
pling technique to solve data imbalances. This method is 
based on the concept of the K-nearest neighbor (KNN). 
The data set was split into training and testing sets at a 
ratio of 7:3; these data were then used to establish a pre-
diction model. Seven methods, namely the KNN, SVM, 
RF, GBDT, XGBoost, DNN, and Bi-LSTM, were used 
to establish three prediction models. In the fifth step, 
we evaluated the prediction model; plotted the receiver 
operating characteristic (ROC) curve of each model; and 
calculated the accuracy, prevalence, sensitivity, specific-
ity, and area under the curve (AUC) to determine and 
compare the quality of the prediction models. In the sixth 
step, we evaluated the correlation between the clinical 
factors, drew a Pearson correlation diagram, and used a 
visual heatmap method to evaluate positive and negative 
correlations between blood parameters by visual.

Grasshopper optimization algorithm (GOA)
The GOA, which was proposed by Saremi et al. in 2017, 
simulates the foraging behavior of grasshoppers [30]. 
Because of its high compatibility and ability to evaluate 
complex traits, the GOA has been used for the selection 
of multiple factors [31, 32]. The GOA can accelerate the 
integration of complex trait interactions among multiple 
factors. Moreover, the GOA can be used to solve vari-
ous optimization problems, including engineering, com-
puter, and feature selection problems [30]. The GOA is 

significantly superior to other classical algorithms, such 
as the PSO algorithm, the differential evolution (DE) 
algorithm, and the genetic algorithm (GA). In addition, 
the GOA can be used to manage different data sets [32]. 
The GOA can yield more favorable results and shorten 
calculation time of the criteria of fitness and average clas-
sification accuracy. In addition, the GOA can be com-
bined with other methods to develop other hybrid GOA 
[33]. The accuracy and performance of the original algo-
rithm can be improved, and these hybrid algorithms can 
be used in various fields. Therefore, we used a combina-
tion of the GOA and the bidirectional long short-term 
memory (Bi-LSTM) method to improve model perfor-
mance. In this study, we established an optimal multi-
factor correlation model by using GOA-based feature 
selection methods to determine the relationship between 
albumin level and clinical factors in patients on HD and 
to identify the related risk factors for low serum albumin 
levels for prediction of mortality risks in patients on HD.

The grasshopper is a herbivorous insect that usually 
appears alone in nature. However, millions of grass-
hoppers gathered in a cluster can act as pests. They can 
damage crops and are thus a concern in the agricul-
tural industry. The lifecycle of a grasshopper consists of 
three stages: egg, nymph, and adult. Grasshoppers can 
be found in swarms during the life stages of nymph or 
adult. Slow movement and small steps are the main char-
acteristics of grasshopper swarms in the larval phase. By 
contrast, sudden and long-distance movements are char-
acteristic of adult groups. Food source seeking is a cru-
cial feature of grasshopper swarms. The GOA is inspired 
by nature. Exploration and exploitation are the two main 
stages of nature-inspired algorithms. The algorithm aims 
to increase the convergence speed of searching for tar-
gets and avoid local optima. Search agents tend to move 
locally in the search space during the exploitation process 
but are encouraged to move suddenly during the explora-
tion process. Grasshoppers perform these two processes 
and naturally find their target (food source). The flight 
path of a group of grasshoppers is affected by three fac-
tors: social interaction ( Si ), gravity force ( Gi ), and wind 
advection force ( Ai).

The GOA-based feature selection was used to acceler-
ate convergence and identify associated risk factors for 
low serum albumin levels in patients on HD. In Eq.  (1) 
presents a simulation of the swarming behavior of 
grasshoppers.

where Xi defines the position of the i-th grasshopper, Si 
is the social interaction in Eq. (2), Gi is the gravity force 
on the i-th grasshopper in Eq.  (4), and Ai is the wind 

(1)Xi = r1Si+r2Gi+r3Ai



Page 5 of 21Yang et al. Nutrition & Metabolism           (2023) 20:24  

Fig. 2 Analysis flowchart
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advection in Eq.  (5). To ensure random behavior, r1 , r2 , 
and r3 are considered random numbers in the range [0, 
1].

where dij is the distance between the i-th and j-th grass-
hopper, calculated as dij = Xi − Xj  , and d̂ij =

Xi−Xj

dij
 is a 

unit vector from the  i-th grasshopper to the  j-th grass-
hopper. s is a function used to define the strength of the 
social force in Eq. (3) calculated as follows.

where f indicates the intensity of attraction, and l is the 
attraction length scale.

where g is the gravitational constant and êg is a unity vec-
tor toward the center of the earth.

where u is a constant drift and êw  is a unity vector in the 
direction of wind.

Nymph grasshoppers have no wings; thus, their 
movements are highly correlated with wind direction.

Equation (6) is used to determine the current position 
of the i-th grasshopper, the position of all other grass-
hoppers, and the position of the target (food source).

where ubd is the upper bound in the Dth dimension, lbd is 
the lower bound in the  Dth dimension  s(r) = fe

−r
r − er , 

T̂d is the value of the  Dth dimension in the target (the 
most favorable solution obtained thus far), and  c  is a 
decreasing coefficient used to shrink comfort, repulsion, 
and attraction zones. S is similar to S in Eq. (1). However, 
the gravity component G is not considered, and the wind 
direction A is assumed to be toward the target T̂d.

In Eq.  (6), the adaptive parameter c is used twice to 
simulate the deceleration of the locust that approaches 
the food source and that eventually consumes it. With 
an increase in the number of iterations, the outer c is 
used to reduce the search range of the target grasshop-
per, whereas the inner c is used to reduce the effect of 
the attraction and repulsion between grasshoppers 
in proportion to the number of iterations. To balance 

(2)Si =

N∑

j=1,j �=i

s
(
dij

)
d̂ij

(3)s(r) = fe
−r
l − er

(4)Gi = −g × êg

(5)Ai = u× êw

(6)

Xd
i = c




N�

j=1,j �=i

c
ubd − lbd

2
s
����xdj − xdi

���
�xj − xi

dij



+ �Td

exploration and exploitation, the parameter c needs to 
be reduced in proportion to the number of iterations.

where cmax is the maximum value of parameter c, cmin is 
the minimum value of parameter c, l is the current itera-
tion number, and L is the maximum number of iterations.

Quantile g‑computation
Quantile g-computation is a new method used to esti-
mate the combined effects of mixtures [34]. It was pro-
posed by Keil et al. in 2020 [35]. Quantile g-computation 
is based on parametric, generalized linear models. This 
method combines the simplicity of weighted quantile 
sum (WQS) regression with the flexibility of g-compu-
tation to estimate causal effects. Its advantages are that 
it is computationally efficient and can estimate positive 
and negative weights. Quantile g-computation does not 
require the assumption of direction homogeneity. This 
method redefines the positive and negative weights when 
directional homogeneity does not hold. The basic model 
of quantile g-computation is a joint marginal structural 
model given by the following formula.

where Y denotes outcomes, X refers exposures, and Z 
denotes some other possible covariates (e.g., potential 
confounders). g (⋅) is the link function in a generalized 
linear model (e.g., the inverse logit function of the prob-
ability of Y = 1 in a logistic model), ψ0 is the model inter-
cept, η is the model coefficient for a set of covariates, and 
Sq is an index representing the joint value of exposure.

Quantile g-computation (by default) converts all expo-
sures X to Xq. Xq converts exposure X to discrete frac-
tions such as 0, 1, and 2, etc. By default, each exposure 
has four quantile cutoff points with a uniform distribu-
tion. Thus, Xq = 0 means that X is below the 25th per-
centile observed for that exposure. The index Sq means 
that all exposures are set to the same value (by default, 
discrete values are 0, 1, 2, and 3). Thus, the parameter ψ1 
quantifies the expected change in results given that all 
exposures that are simultaneously increased by a quantile 
are possibly adjusted for Z.

The quantile g-computation allows the estimation of 
both ψ1 and weights when the directional homogeneity 
assumption holds, and when the directional homogene-
ity does not hold, it allows valid inferences to be made 
regarding the effects of the entire exposure mixture as 
well as individual contributions to that mixture. First, 

(7)c = cmax − l
cmax − cmin

L

(8)E
(
YXq |Z,ψ, η

)
= g

(
ψ0 +ψ1Sq + ηZ

)
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the quantile g-computation transforms the exposure Xj 
to discretize Xq

j  through quartiles. Next, a linear model 
is fitted (other confounders Z are omitted for notational 
simplicity, but they can also be included):

Third, under the assumption of directional homogene-

ity, ψ is given as 
d∑
j=1

βj ( βj is the impact size of exposure j), 

and each exposure weight is given by k. Weights are 
defined as the sum to 1.0.

When directional homogeneity does not hold, quantile 
g-computation redefines weights as negative or positive, 
which are interpreted as the proportion of negative or 
positive partial effects due to a particular exposure, and 
positive and negative weights are defined as the sum of 
both to 1.0.

Synthetic minority over‑sampling technique (SMOTE)
SMOTE is a synthetically sampled synthetic data algo-
rithm proposed by Chawla et  al. in 2002 [36]. SMOTE 
is used to solve the problem of data class imbalance by 
combining the oversampling minority and undersam-
pling majority classes to synthesize data. Class imbalance 
is a common problem in classifier model training and is 
often encountered in the medical field. Therefore, this 
method can be used to increase the number of predicted 
event samples to make the data easier to train. The fol-
lowing steps are involved in SMOTE: (1) Find the KNN 
to the positive individual Xi . (2) Randomly select one of 
the k neighbors called Xj ; this neighbor is used to gen-
erate new samples. (3) Calculate the difference between 
Xi and Xj in = Xj − Xi . (4) Generate a random num-
ber η between [0, -1]. (5) Generate a new sample point 
X
(new)
i = Xi − η . The data set was split into training and 

testing sets at a ratio of 7:3. Thus, training set has 1097 
and testing set had 470 patients. In this study, SMOTE 
had been implemented in the training set. And training 
set was increasing to 1715 patients.

K‑nearest neighbor (KNN)
The KNN algorithm was proposed by Peterson in 2009 
[37]. The KNN algorithm is among the most fundamen-
tal and simple classification methods and should be one 
of the first choices for a classification study when little 
or no prior knowledge is available on the distribution 
of data. KNN classification was developed to perform 

(9)Yi = β0 +

d∑

j=1

βj +
q
ji
+ εi

(10)Wk = βk l

d∑

j

βj

discriminant analysis when the reliable parametric esti-
mates of probability densities are unknown or difficult to 
determine. The traditional KNN method search an entire 
set of training data samples to classify an input test sam-
ple. Thus, memory requirements and massive computa-
tions are the main challenges during searches for nearest 
neighbors.

Support vector machine (SVM)
The SVM was proposed by Vapnik [38]. The algorithm 
builds a hyperplane to separate positive and negative 
samples, and the margin is as large as possible. However, 
in practice, samples are not linearly separable, and such 
a hyperplane does not exist. This can lead to poor algo-
rithm performance. Accordingly, the original SVM algo-
rithm is extended for nonlinear classification through the 
use of kernel functions.

Random forest (RF)
The RF is established using the numeral of decision trees, 
and every tree acquires its position arrangement through 
dissimilar classification [39]. This method permits the eval-
uation of sampling allocation by using random sampling, 
which is particularly appropriate for some simple models. 
The following steps are followed for RF classification.

(1) The unique training illustration set is developed, 
in which the number of cases is X and the number 
of contribution features is Y. This illustration is the 
training set for increasing the tree.

(2) A secondary training set is arbitrarily created 
through sampling with the substitution bootstrap 
technique for n tree times; hence, the subordinate 
training set for the RF with numeral n tree is cre-
ated.

(3) Ahead before the selection of characters (features) 
for every nonleaf node (internal node), this tech-
nique randomly chooses a definite number of char-
acteristics from all distinctiveness, uses them as 
division characteristics of the existing decision tree, 
and chooses the optimal one to divide nodes. The 
number of characters attempted at every division is 
indicated by mtry, mtry ≤ M.

(4) After pruning is considered, the tree expansion is 
increased.

(5) The created trees are joined with an RF. Every tree 
in the RF transmits an entity choice for the mainly 
accepted group, and the classifier result is resolute 
by a mass choice of the trees.
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Gradient boosting decision tree (GBDT)
The boosting method based on gradient descent and 
its corresponding model are called gradient boosting 
machines (GBMs) [40]. GBMs construct basic learners 
through repeated calculations by weighting misclassi-
fied observations. The prediction model is an ensemble 
of weak prediction models. GBMs determine weights by 
operating the negative partial derivative of the loss func-
tion in each training observation. In GBMs, a decision 
tree is the most common type of weak model used (i.e., 
gradient boosting decision tree (GBDT)). The GBDT is a 
model based on a phased manner and can be optimized 
based on the differentiable loss function. The GBDT 
uses a fixed-size regression tree as the basic model and 
uses an iterative calculation method to minimize the loss 
function. Each regression tree uses the residual of the 
previous tree to select features and segmentation points, 
and it sums the outputs of all regression trees as a trained 
GBDT model.

eXtreme gradient boosting (XGBoost)
The XGBoost was proposed by Chen and Guestrin in 
2016 [41]. XGBoost is an ensemble learning algorithm 
based on gradient boosting. It provides state-of-the-
art results for many bioinformatics problems. XGBoost 
is essentially an ensemble method based on the gradi-
ent boosted tree. The result of the prediction is the sum 
of scores predicted by trees, as shown in the following 
equation:

where  xi is  the i-th of the training sample, fk(xi)  is the 
score for the  k-th tree, and  F is the space of functions 
containing all gradient boosted trees. The objective func-
tion can be optimized using the following equation:

where 
n∑

i=1

l
(
yi, ŷi

)
  refers to a differentiable loss function 

that measures the fitness of model prediction yi and sam-

ples of training dataset ŷi, and 
K∑
k

�
(
fk
)
 is a regularization 

item that punishes the complexity of the model to avoid 
overfitting.

Deep learning (DL)
Deep learning is a branch of ML that uses artificial neural 
networks to imitate a learning model generated based on 

(11)ŷi =

K∑

k=1

fk(xi), fk ∈ F

(12)Obj(θ) =

n∑

i=1

l
(
yi, ŷi

)
+

K∑

k

�
(
fk
)

the structure of the human brain [42]. The basic unit of an 
artificial neural network is a neuron. Each neuron is con-
nected to other neurons, can input and output signals, and 
can transmit information [43]. In the era of big data, DL 
has been widely used to learn and train models by using 
large amounts of data to provide future predictions.

The deep neural network (DNN) model is a multilayer 
perceptron (MLP) neural network that consists of two or 
more hidden layers and is the basic model of DL [44]. MLP 
is a feedforward neural network whose architecture con-
sists of an input layer, a hidden layer, and an output layer. 
Each layer consists of multiple neurons. In the input layer, 
the neuron takes the input data X and transmits this data 
signal to the next layer of the network. In the next layer, the 
hidden layer is where each neuron acquires a data signal, 
which is the weighted sum of the outputs of the neurons in 
the previous layer. An activation function is applied inside 
each neuron to control the input. The network applies 
nonlinear mapping from the input vector to the output, 
parameterized by weights called the weight vector (W). The 
variables used in DNNs are bias b, input x, output y, weight 
w, calculation function σ, and start function f (σ ) . Each 
neuron in a DNN uses the following equation:

The input layer is i neurons, the hidden layer is k layers, 
the hidden layer is j neurons, and the output layer is x neu-
rons. The weights between layers are denoted as W, and 
these weights are randomly generated at the beginning of 
model create. The weights between layers are updated after 
consideration of the error rate between the model output 
and actual output. The formula for calculating the number 
of weights (W) between layers is as follows:

The MLP algorithm used in this study consisted of one 
input layer, three hidden layers, and one output layer. Both 
the input and hidden layers were used a rectified linear unit 
(ReLu) activation function, and the dropout probability 
was 0.1 before the last hidden layer. Because a classification 
problem was examined in this study, the output layer was 
used as a nonlinear sigmoid activation function. The ReLu 
and sigmoid activation function formulas are presented as 
follows, And Fig. 3 presents the DNN architecture.

(17)σ : Sum = w ∗ x + b

(18)y : f (σ ) = f (w ∗ x + b)

(19)

W =(I ∗H1)+

k−1∑

m=1

Hm ∗Hm+1

+

k∑

m=1

BiasHm + (Hk ∗ O)+ BiasO
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Bidirectional long short‑term memory (Bi‑LSTM)
The LSTM employs three custom-built gates to store 
information [45]. The original architecture is proposed by 
Hochreiter [46], the update of the cell output state is related 
to the previous hidden layer output and the current input. 
Moreover, Hochreiter attached a peephole connection and 
used the previous cell state as a parameter. For a single 
LSTM cell, data flow between gates and inputs is depicted 
in Fig. 4. At each time t, xt is the current input,  ht−1 is the 
previous hidden state, and ct−1  is the previous cell output 
state. The outputs of three gates can be calculated using 
Eqs. (22)–(24). The forget gate  ft decides if ct−1 is retained, 
the input gate decides if the state is updated by the current 
input xt , and the output gate ot decides if ht−1 is passed to 
the next cell. At each timestamp  t, at  is the candidate for 
updating the memory cell. The output of the current LSTM 
cell  ct  and the current hidden state ht  can be calculated 
according to Eqs. (25)–(27).

(20)σ(x) =

{
max (0, x), x ≥ 0

0, x < 0

(21)f (z) =
1

1+ e−z

(22)it = σ(Xixt +Hiht−1 + Cict−1 + bi)

(23)ot = σ(Xoxt +Hoht−1 + Coct−1 + bo)

(24)ft = σ
(
Xf xt +Hf ht−1 + Cf ct−1 + bf

)

(25)at = σ(Xaxt +Haht−1 + Cact−1 + ba)

(26)ct = ft ∗ ct−1 + it ∗ at

(27)ht = ot ∗ tanh(ct)

Fig. 3 Architecture of the DNN

ht

xt

σ

LSTM

LSTM

Forward layer

Backward layer

Fig. 4 Bi‑LSTM architecture
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In these equations, * represents the element-wise 
multiplication operator,  H  and C are the weights,  and 
b are biases.

Model evaluation
The data set was randomly divided into two groups: 70% 
for the training set and 30% for the testing set. We used 
the training data set to establish a prediction model.

In the binary classification model, the predicted results 
were combined with actual results to produce four ele-
ments, namely true positives, false positives, true nega-
tives, and false negatives, which are represented by TP, 
FP, TN, and FN respectively (T represents a correct pre-
diction and F represents an incorrect prediction). This 
process enables the formation of a confusion matrix 
using the following formula [47]:

The performance of the models was evaluated using 
criteria, namely accuracy, prevalence, sensitivity, speci-
ficity, the area under the curve (AUC). The area under 
the ROC curve was used to evaluate the model with the 
highest accuracy and calculate AUC [48]. The larger the 
AUC value is, the higher the accuracy is. The relevant 
equations are as follows:

Statistical analysis
Table  1 summarized the demographic characteris-
tics of the patients on HD and the distribution of albu-
min-related biomarkers, including the mean (standard 

(28)TPR =
TP

TP + FN

(29)FPR =
FP

FP + TN

(30)FNR =
FN

TP + FN

(31)TNR =
TN

FP + TN

(32)Specificity = TNR

(33)Sensitivity = TPR

(34)Prevalence =
TP + FP

TP + TN + FP + FN

(35)Accuracy =
TP + TN

TP + FP + FN + TN

deviation), frequency (percentage), and median (inter-
quartile range). Differences between the patients with 
a 3-month mean albumin level of ≥ 3.5  g/dL and those 
with a 3-month mean albumin level of < 3.5  g/dL were 
determined using independent two-sample t-tests or chi-
squared tests, as appropriate. Pearson’s correlation analy-
sis was performed, and correlation plots and correlation 
heatmaps were drawn to assess collinearity between 
mean albumin levels and biomarkers.

Associations between mean albumin levels and individ-
ual factors were analyzed using univariate logistic regres-
sion analysis. Multivariate logistic regression was used to 
analyze associations between mean albumin categories 
and multiple factors. The full adjusted model included 
all factors, whereas the GOA model selected factors by 
using the GOA. Odds ratios (ORs) and 95% confidence 
intervals (CIs) were calculated. The performance of mul-
tiple logistic regression models was compared based on 
the Akaike information criterion (AIC). A low AIC value 
indicated a low prediction error for the corresponding 
model. The g-computation method was used to calcu-
late the factor weights. These weights were used to adjust 
the original blood value and highlight the importance of 
factors. The SMOTE method was used to solve the data 
imbalance problem. All P values were two-tailed, and a P 
value of < 0.05 was considered statistically significant. All 
statistical analyses were performed using R version 4.0.5 
(R Development Core Team 2022). The relevant packages 
used are as follows: stats, My.stepwise, metaheuristicOpt, 
e1071, keras, tensorflow, etc.

Results
Baseline characteristics and laboratory measurement 
distributions of patients on HD
Table  1 presented the distribution of clinicopathologi-
cal characteristics between the patients with a 3-month 
mean albumin level of ≥ 3.5  g/dL and those with a 
3-month mean albumin level of < 3.5  g/dL. Among the 
1567 patients on HD included in this study, 1283 and 284 
had 3-month mean albumin levels of ≥ 3.5 and < 3.5 g/dL, 
respectively. The patients on HD with a 3-month mean 
albumin level of < 3.5 g/dL were older, had a higher preva-
lence of diabetes mellitus and heart failure, and a higher 
risk of mortality. Moreover, the laboratory measurements 
significantly different between the groups.

Individual factors affecting mean 3‑month albumin levels
Table  2 presented the results of the univariate logis-
tic regression analysis of mean 3-month albumin levels 
before death in patients on HD. The results revealed that 
older age (OR = 1.05, 95% CI = 1.04–1.06, P < 0.001), dia-
betes mellitus (OR = 1.39, 95% CI = 1.07–1.81, P = 0.013), 
heart failure (OR = 1.41, 95% CI = 1.04–1.89, P = 0.025), 
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and cancer (OR = 1.50, 95% CI = 1.16–1.95, P = 0.002) 
were associated with a mean 3-month albumin level 
of < 3.5  g/dL. In terms of laboratory measurements, 
low hemoglobin levels (OR = 0.63, 95% CI = 0.57–0.70, 
P < 0.001), low Fe levels (OR = 0.99, 95% CI = 0.99–
1.00, P < 0.001), high ferritin levels (OR = 1.001, 95% 
CI = 1.0007–1.0012, P < 0.001), low sodium levels 
(OR = 0.90, 95% CI = 0.87–0.94, P < 0.001), low potassium 
levels (OR = 0.54, 95% CI = 0.44–0.66, P < 0.001), low cal-
cium levels (OR = 0.61, 95% CI = 0.51–0.72, P < 0.001), 
low phosphate levels (OR = 0.70, 95% CI = 0.63–0.77, 
P < 0.001), low blood urea nitrogen levels (OR = 0.99, 

95% CI = 0.89–0.99, P < 0.001), low creatinine levels 
(OR = 0.67, 95% CI = 0.63–0.71, P < 0.001), high alkaline 
phosphatase levels (OR = 1.01, 95% CI = 1.0073–1.0124, 
P < 0.001), and low cholesterol levels (OR = 0.99, 95% 
CI = 0.99–1.00, P < 0.001) were associated with a 3-month 
mean albumin level of < 3.5  g/dL. The first blood values 
3 months prior to death of patients had significant asso-
ciations with the mean albumin levels in the 3  months 
prior to death according to a univariate analysis.

Table 1 Baseline characteristics of 3‑months mean albumin in new HD patients were divided into 2 categories (n = 1567)

Boldface was considered statistically significant (P value < 0.05)

Hb hemoglobin, Na sodium, K potassium, Ca calcium, BUN blood urea nitrogen, Cr creatinine, iPTH intact parathyroid hormone

Variables Total Mean albumin ≥ 3.5 g/dL Mean albumin < 3.5 g/dL P

Case no. (row%) 1567 (100.0%) 1283 (81.9%) 284 (18.1%)

Age (years) 67.0 ± 13.9 65.4 ± 13.5 74.2 ± 13.2 < 0.001
Gender 0.002

 Female 718 (45.8%) 564 (44%) 154 (54.2%)

 Male 849 (54.2%) 719 (56%) 130 (45.8%)

Comorbidity

 Diabetes mellitus 0.015
822 (52.5%) 654 (51%) 168 (59.2%)

 Hypertension 0.198

1262 (80.5%) 1025 (79.9%) 237 (83.5%)

 Heart Failure 0.030
326 (20.8%) 253 (19.7%) 73 (25.7%)

 Caner 0.003
545 (34.8%) 424 (33%) 121 (42.6%)

Mortality < 0.001
 Alive 1497 (95.5%) 1254 (97.7%) 243 (85.6%)

 Dead 70 (4.5%) 29 (2.3%) 41 (14.4%)

Laboratory measurements

 Hb, g/dL 10.5 ± 1.3 10.6 ± 1.2 9.9 ± 1.5 < 0.001
 Albumin, g/dL 3.8 ± 0.4 3.9 ± 0.3 3.2 ± 0.4 < 0.001
 Fe, ug/dL 68.8 ± 29.5 70.1 ± 27 63.1 ± 38.5 0.004
 Ferritin, ug/dL 479.7 ± 523.3 426.9 ± 395.3 718.3 ± 858.9 < 0.001
 Na, mEq/L 136.3 ± 3.3 136.5 ± 3.1 135.4 ± 3.8 < 0.001
 K, mEq/L 4.5 ± 0.7 4.6 ± 0.7 4.3 ± 0.7 < 0.001
 Ca, mg/dL 9.2 ± 0.8 9.3 ± 0.8 9.0 ± 0.9 < 0.001
 Phosphate, mg/dL 5.0 ± 1.4 5.1 ± 1.4 4.5 ± 1.5 < 0.001
 BUN, mg/dL 66.7 ± 19.9 67.5 ± 18.7 62.7 ± 24.5 0.002
 Cr, mg/dL 10.1 ± 2.7 10.5 ± 2.6 8.0 ± 2.6 < 0.001
 Alkaline phosphatase, U/L 83.4 ± 52.4 77.6 ± 42.1 109.3 ± 79.6 < 0.001
 iPTH, pg/dL 207.6 (97.7–408.3) 219.8 (105.9–423.6) 163.7 (67.7–323.5) 0.004
 Cholesterol, mg/dL 163.6 ± 38.8 165.7 ± 38.0 153.8 ± 40.9 < 0.001
 Triglyceride, mg/dL 156.5 ± 121.2 160.3 ± 124.6 139.5 ± 103.1 0.003
 Fasting glucose (AC), mg/dL 142.5 ± 77.3 139.4 ± 74.6 156.2 ± 87.3 0.003
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Multifactorial influencing factors of mean 3‑months 
albumin levels determined using GOA
Table 3 summarized the results of the multivariate logis-
tic regression analysis on mean albumin levels in new 
patients on HD 3 months prior to death, obtained using 
the fully adjusted model and the GOA feature selec-
tion model. Older age (OR = 1.01, 95% CI = 1.01–1.04, 
P < 0.001), low iron levels (OR = 0.99, 95% CI = 0.98–
0.99, P < 0.001), low creatinine levels (OR = 0.77, 95% 
CI = 0.71–0.84, P < 0.001), and high alkaline phosphatase 
levels (OR = 1.01, 95% CI = 1.00–1.01, P < 0.001) were 
determined to be significant in the fully adjusted logis-
tic regression model. Feature selection was performed 
using the GOA to select 12 out of 20 clinical factors, 
namely age; gender; hypertension; and hemoglobin, 
iron, ferritin, sodium, potassium, calcium, creatinine, 
alkaline phosphatase, and triglyceride levels. Older 
age (OR = 1.03, 95% CI = 1.02–1.04, P < 0.001), male 
(OR = 1.48, 95% CI = 1.07–2.06, P = 0.018), low hemo-
globin levels (OR = 0.83, 95% CI = 0.73–0.95, P = 0.006), 
low iron levels (OR = 0.99, 95% CI = 0.99–1.00, P < 0.001), 
high ferritin levels (OR = 1.001, 95% CI = 1.0004–1.0011, 
P < 0.001), low Na levels (OR = 0.94, 95% CI = 0.90–0.98, 

P = 0.005), low K levels (OR = 0.79, 95% CI = 0.64–0.98, 
P = 0.037), low Ca levels (OR = 0.72, 95% CI = 0.59–
0.86, P = 0.001), low creatinine levels (OR = 0.77, 95% 
CI = 0.71–0.83, P < 0.001), high alkaline phosphatase lev-
els (OR = 1.01, 95% CI = 1.00–1.01, P < 0.001), and low 
triglyceride levels (OR = 0.998, 95% CI = 0.9968–0.9998, 
P = 0.030) were all significant in the GOA feature selec-
tion model. The best AIC of the fully adjusted logistic 
regression model and the GOA feature selection model 
were 1173.52 and 1160.71, respectively. The results indi-
cated that the GOA feature selection model had a lower 
AIC and a higher accuracy in selecting risk factors for the 
low serum albumin.

Quantile g‑computation adjustment of factor weights
Figure  5 presented the risk factors for the low serum 
albumin selected using the GOA, and the weight ratio of 
each factor was calculated using the quantile g-compu-
tation method. Alkaline phosphatase was assigned the 
highest positive weight, followed by age and ferritin lev-
els. Creatinine was assigned the largest negative weight, 
followed by blood measurements such as iron and hemo-
globin levels. In addition, age and creatinine levels were 

Table 2 Regression analysis for 3‑months albumin mean univariate logistic (n = 1567)

Boldface was considered statistically significant (P value < 0.05)

Characteristics Comparison Unadjusted

OR 95% CI P

Age Years 1.05 1.04–1.06 < 0.001
Gender Male v.s Female 0.66 0.51–0.86 0.002
Comorbidity

 Diabetes mellitus Yes v.s No 1.39 1.07–1.81 0.013
 Hypertension Yes v.s No 1.27 0.91–1.8 0.171

 Heart Failure Yes v.s No 1.41 1.04–1.89 0.025
 Cancer Yes v.s No 1.50 1.16–1.95 0.002

Laboratory measurements

 Hb g/dL 0.63 0.57–0.70 < 0.001
 Fe ug/dL 0.99 0.99–1.00 < 0.001
 Ferritin ug/dL 1.001 1.0007–1.0012 < 0.001
 Na mEq/L 0.90 0.87–0.94 < 0.001
 K mEq/L 0.54 0.44–0.66 < 0.001
 Ca mg/dL 0.61 0.51–0.72 < 0.001
 Phosphate mg/dL 0.70 0.63–0.77 < 0.001
 BUN mg/dL 0.99 0.98–0.99 < 0.001
 Cr mg/dL 0.67 0.63–0.71 < 0.001
 Alkaline phosphatase U/L 1.01 1.0073–1.0124 < 0.001
 iPTH pg/dL 0.999 0.9987–0.9997 0.004
 Cholesterol mg/dL 0.99 0.99–1.00 < 0.001
 Triglyceride mg/dL 0.998 0.9969–0.9995 0.009
 Fasting glucose (AC) mg/dL 1.002 1.001–1.004 0.001

Optimal AIC 1272.75
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Table 3 Regression analysis for 3‑months albumin mean multivariate logistic (n = 1567)

Boldface was considered statistically significant (P value < 0.05)

GOA Grasshopper Optimization Algorithm, AIC Akaike information criterion

Characteristics Comparison Fully adjusted GOA feature selection

OR 95% CI P OR 95% CI P

Age Years 1.03 1.01–1.04  < 0.001 1.03 1.02–1.04 < 0.001
Gender Male v.s Female 1.41 1.00–1.99 0.051 1.48 1.07–2.06 0.018
Comorbidity

 Diabetes mellitus Yes v.s No 0.85 0.59–1.2 0.356

 Hypertension Yes v.s No 1.05 0.70–1.60 0.805 1.01 0.68–1.52 0.965

 Heart Failure Yes v.s No 1.05 0.74–1.49 0.778

 Cancer Yes v.s No 1.14 0.84–1.56 0.389

Laboratory measurements

 Hb g/dL 0.85 0.74–0.96 0.012 0.83 0.73–0.95 0.006
 Fe ug/dL 0.99 0.98–0.99  < 0.001 0.99 0.98–0.99 < 0.001
 Ferritin ug/dL 1.001 1.0003–1.0010  < 0.001 1.001 1.0004–1.0011 < 0.001
 Na mEq/L 0.94 0.90–0.98 0.005 0.94 0.90–0.98 0.005
 K mEq/L 0.79 0.62–0.99 0.045 0.79 0.64–0.98 0.037
 Ca mg/dL 0.71 0.59–0.86 0.001 0.72 0.59–0.86 0.001
 Phosphate mg/dL 0.99 0.87–1.13 0.873

 BUN mg/dL 1.00 0.99–1.01 0.951

 Cr mg/dL 0.77 0.71–0.84  < 0.001 0.77 0.71–0.83 < 0.001
 Alkaline phosphatase U/L 1.01 1.00–1.01  < 0.001 1.01 1.00–1.01 < 0.001
 iPTH pg/dL 1.00 0.9994–1.0005 0.951

 Cholesterol mg/dL 0.997 0.99–1.00 0.259

 Triglyceride mg/dL 0.999 0.9971–1.0003 0.133 0.998 0.9968–0.9998 0.030
 Fasting glucose (AC) mg/dL 1.00 0.9981–1.0022 0.885

Optimal AIC 1173.52 1160.71

Fig. 5 Weights representing the proportion of the positive or negative partial effect of biomarkers selected using the GOA in the quantile 
g‑computation method
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identified as more crucial risk factors for low serum albu-
min levels than other clinical factors.

Prediction of the low serum albumin
In this study, we used three models and seven methods 
to predict the low serum albumin. The three models were 
the fully adjusted, GOA, and GOA quantile g-computa-
tion weight models. Subsequently, we compared the pre-
diction performance of the three models by using seven 
methods, namely KNN, SVM, RF, GBDT, XGBoost, 
DNN, and Bi-LSTM. We examined the predictive perfor-
mance of the three models by using the seven methods 
based on their accuracy, prevalence, sensitivity, speci-
ficity, and AUC (Table  4 and Fig.  6). Table  4 presented 
the prediction results for the three models. The results 
revealed that the seven methods predicted the perfor-
mance of the three models, respectively, and the accuracy 
and AUC of the GOA quantile g-computation weight 
model were higher than those of the other two models. 
Compared with the GOA model, the accuracy of the 
GOA quantile g-computation weight model improved 
by 0.1, 0.3, 0.6, 0.3, 0.5, and 0.12 when the KNN, SVM, 
RF, GBDT, XGBoost, and DNN methods were used, 
respectively. However, compared with the fully adjusted 
model and GOA model, the accuracy of the Bi-LSTM 
combined with the GOA quantile g-computation weight 
model improved by at least 0.16 and at the most by 0.21. 

The Bi-LSTM method combined with the GOA quantile 
g-computation weight model yielded the most favorable 
results for predicting the low serum albumin. In order to 
prove the performance of the proposed model objective, 
the data set was cut five times using cross-validation, and 
the average results are shown in Table 5.

Figure  6 presented a comparison of the ROC curves 
of the seven methods for the three models. The results 
revealed that the AUC of the GOA quantile g-compu-
tation weight model was higher than that of the other 
two models. The seven methods with the GOA quantile 
g-computation weight model were used to obtain AUC 
values. The AUC values obtained using the KNN, SVM, 
RF, GBDT, XGBoost, DNN, and Bi-LSTM methods were 
0.87, 0.86, 0.91, 0.95, 0.94, 0.96, and 0.98, respectively. 
Moreover, the results revealed that the prediction perfor-
mance of the Bi-LSTM method combined with the GOA 
quantile g-computation weight model was significantly 
higher than that of the other methods.

Correlations between biomarkers and serum albumin
Figure  7 presented a heatmap depicting the correlation 
between serum albumin levels and 15 biomarkers. The 
saturation and size of the circle indicate the magnitude of 
correlations. Blue indicates a positive correlation, and red 
indicates a negative correlation.

Table 4 Comparison of the prediction performance of 3‑months albumin average with 2 categories

Method Model Accuracy Prevalence Sensitivity Specificity AUC 

KNN Full 0.79 0.20 0.05 0.97 0.64

GOA 0.79 0.20 0.11 0.96 0.61

GOA quantile g‑computation weight 0.80 0.36 0.70 0.85 0.87

SVM Full 0.83 0.19 0.16 0.99 0.58

GOA 0.85 0.16 0.22 0.98 0.60

GOA quantile g‑computation weight 0.88 0.37 0.82 0.91 0.86

RF Full 0.85 0.19 0.23 0.99 0.64

GOA 0.86 0.17 0.37 0.96 0.67

GOA quantile g‑computation weight 0.92 0.36 0.87 0.96 0.91

GBDT Full 0.82 0.19 0.24 0.95 0.80

GOA 0.85 0.17 0.28 0.97 0.82

GOA quantile g‑computation weight 0.88 0.36 0.78 0.94 0.95

XGBoost Full 0.83 0.19 0.24 0.96 0.82

GOA 0.83 0.20 0.30 0.96 0.84

GOA quantile g‑computation weight 0.88 0.35 0.79 0.93 0.94

DNN Full 0.78 0.20 0.29 0.91 0.74

GOA 0.79 0.20 0.24 0.93 0.73

GOA quantile g‑computation weight 0.91 0.36 0.87 0.94 0.96

Bi‑LSTM Full 0.74 0.20 0.24 0.86 0.68

GOA 0.76 0.20 0.15 0.95 0.66

GOA quantile g‑computation weight 0.95 0.36 0.92 0.97 0.98
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Fig. 6 ROC curves for the A KNN, B SVM, C RF, D GBDT, E XGBoost, F DNN, and G Bi‑LSTM methods
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Strong positive correlations were observed between 
mean albumin and creatinine levels [49], between creati-
nine and phosphate levels [50], and between phosphate 
and blood urea nitrogen levels.

Strong negative correlations were observed between 
age and creatinine levels, between age and mean albumin 
levels, and between alkaline phosphatase and mean albu-
min levels.

In summary, positive and negative correlations were 
noted between the biomarkers. The factors with strong 
correlations were related to nutritional status and clin-
ical significance [51]. For example, advanced age may 
affect basal metabolism and nutrient absorption, and 
creatinine is mainly related to metabolites released due 
to muscle activity. For patients on HD, dietary control 
is crucial to health. Phosphate is obtained from the 
human diet, and its intake should be balanced.

Discussion
This study used data from the longitudinal electronic 
health records of the largest HD center in Taiwan. Many 
studies have reported that serum albumin level is a 
nutritional indicator for HD, and previous studies using 
long-term clinical data have demonstrated a relationship 
between hypoalbuminemia and mortality in patients on 
HD [52, 53]. In this study, we observed that the albumin 
levels of Taiwanese patients receiving maintenance HD 
was unstable  3  months before death, and their albumin 

Table 5 Comparison of the prediction performance of GOA 
quantile g‑computation weight with 5 cross‑validation

Times Accuracy Prevalence Sensitivity Specificity AUC 

1 0.93 0.37 0.91 0.95 0.98

2 0.94 0.37 0.89 0.96 0.98

3 0.96 0.38 0.95 0.96 0.99

4 0.95 0.37 0.95 0.95 0.98

5 0.94 0.38 0.92 0.95 0.98

Fig. 7 Pearson correlations between studied biomarkers and serum albumin levels
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value was mostly less than the normal value of 3.5 g/dL. 
Therefore, in this study, we used the DL method to pre-
dict whether the mean albumin level of patients on HD 
was low 3 months before their death, and the first meas-
urement obtained 3  months before death was used to 
predict the low serum albumin. The results of this study 
indicated that the use of the GOA quantile g-computa-
tion weight model combined with the DL method can 
improve the efficiency of clinical factor screening and the 
accuracy of the low serum albumin prediction.

Principal results
A complex interaction exists between clinical biomark-
ers. The findings of preliminary analysis in this study 
revealed that the 3-month mean albumin level in patients 
on HD was 3.8 ± 0.4  g/dL. Furthermore, the 3-month 
mean albumin level before the end of the study follow-
up and before death were 3.8 ± 0.4 and 3.4 ± 0.5, respec-
tively, and the levels did not significantly differ between 
the patients who survived and those who died (P < 0.001). 
The 3-month mean albumin level before death was cor-
related with mortality. This study identified risk factors 
associated with the low serum albumin. The results of 
univariate logistic regression analysis revealed that the 
first three laboratory values of the patients on HD before 
death were significantly correlated with their albumin 
level in the 3 months before death. Furthermore, the find-
ings of multivariate logistic regression analysis indicated 
that the factors determined to be significantly correlated 
with albumin level in the univariate model exhibited non-
significant correlations in the fully adjusted multivariate 
model; this finding might be due to interactions among 
factors. Therefore, we used the GOA feature selection 
method to identify crucial risk factors for the low serum 
albumin. The advantage of the GOA feature selection 
method is its high compatibility and its ability to accel-
erate convergence to provide a global optimal solution. 
Using the GOA for feature selection, we selected 12 out 
of 20 clinical factors, namely age; gender; hypertension; 
and hemoglobin, iron, ferritin, sodium, potassium, cal-
cium, creatinine, alkaline phosphatase, and triglyceride 
levels; all these factors were significant.

We determined that the women (OR = 0.66, 95% 
CI = 0.51–0.86, P = 0.002) had a significantly higher 
risk of the low serum albumin in the univariate model, 
whereas the men had a nonsignificantly higher risk 
of the low serum albumin in the multivariate fully 
adjusted model (OR = 1.41, 95% CI = 1.00–1.99, 
P = 0.051). Among the factors selected by the GOA, male 
(OR = 1.48, 95% CI = 1.07–2.06, P = 0.018) was associ-
ated with a higher risk of the low serum albumin. Moreo-
ver, we observed that a low triglyceride level (OR = 0.999, 
95% CI = 0.9971–1.0003, P = 0.133) was associated with 

a higher risk of the low serum albumin in the multivari-
ate fully adjusted model; however, this association was 
not significant. Similarly, among the factors selected by 
the GOA model, a low triglyceride level (OR = 0.998, 95% 
CI = 0.9968–0.9998, P = 0.030) was significantly associ-
ated with a higher risk of the low serum albumin. The 
findings indicate that these factors can be used in com-
bination to predict the low serum albumin, and they pos-
sibly reflect interactions between biomarkers.

For prediction, this study used three models, namely 
the fully adjusted, GOA, and GOA g-computation weight 
models, and seven methods, namely the KNN, SVM, 
RF, GBDT, XGBoost, DNN and Bi-LSTM. The GOA 
quantile g-computation weight model used the GOA 
to select the most favorable combination factors asso-
ciated with the low serum albumin. Subsequently, the 
g-computation method was used to calculate the weight 
of each factor. This weight was used to adjust the origi-
nal blood value such that the important blood factors 
have a greater impact on the fitness through the weight 
adjustment, thus improving the predictive ability of the 
model. In addition, the problem of data imbalance often 
occurs when medical data are used. Thus, we used the 
SMOTE method to solve this problem and subsequently 
used each of the seven methods to compare the perfor-
mance of the models. The results revealed no significant 
differences between the accuracy and AUC of the fully 
adjusted model and those of the GOA model determined 
using all the aforementioned seven methods. However, 
the accuracy and AUC of the GOA quantile g-compu-
tation weight model determined using the seven meth-
ods in combination were significantly higher than those 
of the other two models. Moreover, the accuracy and 
AUC of the GOA quantile g-computation weight model 
determined using the DL method were higher than those 
of the other two models. This finding may have arisen 
because DL involves the simulation of the basic operat-
ing principles of the nervous system in the human brain. 
Thus, with the adjusted value of the weight, coupled 
with the powerful self-learning ability of the DL method, 
model constantly recalculates weights and training. The 
DL method exerted the multiplier effect and improved 
the prediction ability of model.

Comparison with prior studies
Hypoalbuminemia in patients on HD is associated with 
malnutrition, inflammation, and increased mortality [54, 
55]. Figure 8 presents the distribution of albumin levels 
in the 3 months before the death of patients on HD. The 
dots on the left side represent the distribution of albumin 
levels 1 month before death, and those on the right side 
represent the distribution of albumin levels 3  months 
before death. The blue dots represent the albumin levels 
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of the patients who survived, and the red dots represent 
the albumin levels of the patients who died. When the 
distribution line segment in Fig.  8 is viewed from right 
to left, we can observe that patients who died had lower 
levels of albumin 3  months before death compared to 
patients who survived. The middle dots present the dis-
tribution of albumin levels 2  months before death. The 
albumin levels of the patients 2  months before death 
exhibited a downward trend, and most of these patients 
eventually had an albumin level of 3 ≤ g/dL. Finally, the 
distribution of the albumin levels for the month before 
death of the deceased patient is shown on the far left. 
The albumin levels of these patients were between 2 and 
3 g/dL, and a few extreme values were noted below 2 g/
dL. This finding indicated that the low serum albumin is 
associated with mortality; this result is consistent with 
those of previous studies.

This study identified and predicted factors associated 
with the low serum albumin. These factors can be used to 
predict the mortality risk of patients on HD. We used the 

GOA quantile g-computation weight model combined 
with the DL method to determine the optimal combina-
tion of factors associated with low serum albumin lev-
els in patients on HD. The related factors included age; 
gender; hypertension; and hemoglobin, iron, ferritin, 
sodium, potassium, calcium, creatinine, alkaline phos-
phatase, and triglyceride levels. According to previous 
studies and clinical viewpoints, organ failure eventually 
occurs in older patients, resulting in the impairment of 
some repair and absorption mechanisms, which may eas-
ily lead to malnutrition and indirectly increase the risk of 
mortality [56, 57]. Patients with chronic kidney disease 
often experience loss of appetite. Inflammation is highly 
correlated with appetite, and men have a higher risk of 
anorexia than have women [55]. Because of differences 
in body composition between men and women, such as 
in hormones, muscle mass, and body water content, the 
severity of related symptoms may be different [56, 57]. 
Female patients on HD appear to have a survival advan-
tage over male patients on HD because of the presence 

Fig. 8 Scatter diagram of the distribution of albumin levels in the 3 months before the death of patients on HD
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of sex hormones, which reduce the likelihood of women 
developing anorexia and malnutrition [58]. In addition, 
appetite may affect biomarkers and physical indicators, 
and decreased appetite may lead to decreased concen-
trations of nutrition-related biomarkers, such as serum 
albumin and creatinine [55]. Moreover, dialysis concen-
tration may affect dialysis efficacy [59]. A study reported 
that the dialysis efficacy of patients who died was lower 
than that of those who survived; lower dialysis efficacy 
results in lower levels of calcium, creatinine and a lower 
ultrafiltration volume [60]. Impaired nutritional status 
results in lower levels of triglycerides, lower levels of den-
sity lipoprotein cholesterol, and a lower body mass index 
[61, 62]. In summary, the optimal factors associated with 
low serum albumin levels in patients on HD determined 
using the GOA appeared to be strongly correlated with 
nutritional status.

Limitations
This study has some limitations due to its retrospec-
tive nature. First, previous studies have reported that 
albumin indicators are related to nutritional status. This 
study did not consider patients’ body composition and 
the discomfort caused by inappropriate dialysis doses. 
Second, our results may be limited by potential residual 
confounding effects, such as daily physical activity, die-
tary intake, and quality of life. Finally, factors associated 
with the low serum albumin might differ between gen-
der, and this study did not consider gender differences in 
individual analysis. Previous studies have reported that 
gender differences affect biomarkers. In this study, we 
observed that gender affected albumin levels. Therefore, 
a separate analysis based on gender should be conducted 
in future studies and can improve the improve clinical 
care. Furthermore, studies should examine the effects of 
additional clinical factors on patients on HD, including 
comorbidities, medication, and dietary intake.

Conclusions
Malnutrition is often observed in patients receiving 
long-term HD treatment. Previous studies have reported 
that the all-cause mortality of patients on HD is related 
to nutritional status. In this study, the GOA was used to 
select the factors most associated with the low serum 
albumin. Because data may be affected by interference 
factors, we used the quantile g-computation method to 
calculate the weights for adjustment. Finally, we used 
the DL method to determine the most effective predic-
tion model. The GOA selected 12 parameters, namely 

age; gender; hypertension; and hemoglobin, iron, ferritin, 
sodium, potassium, calcium, creatinine, alkaline phos-
phatase, and triglyceride levels, which were significantly 
associated with the low serum albumin. By selecting fac-
tors through the GOA and using the quantile g-computa-
tion method for weight adjustment in combination with 
the DL method, we determined the most effective pre-
diction model. The GOA quantile g-computation weight 
model combined with the DL method can help in accu-
rately predicting the low serum albumin in new patients 
on HD. The selected factors should be considered for fur-
ther nutritional management of patients on HD. Appro-
priate prognostic care and treatment are essential for 
improving the quality of life of patients on HD.
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