
R E V I E W Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Shao et al. Nutrition & Metabolism           (2023) 20:30 
https://doi.org/10.1186/s12986-023-00748-x

Individuals with NAFLD mostly present hallmarks of ste-
atosis. In 60% of NAFLD patients, non-alcoholic steato-
hepatitis develops and is associated with inflammatory 
infiltration and significant fibrosis [3]. Over time, 22% of 
NASH-related fibrosis patients progress to cirrhosis, and 
2% progress to hepatocellular carcinoma [3][4]. The risk 
of cardiovascular conditions and malignant carcinoma 
associated with mortality is increased in individuals with 
NAFLD (Fig. 1a) [5, 6].

However, patients with NAFLD are typically asymp-
tomatic until the disease progresses to cirrhosis [7]. 
Initially, symptoms of right upper quadrant pain and 
fatigue are most commonly noticed. Then, excessive tri-
glyceride accumulation in the liver is detected by imag-
ing examination [8], and increased levels of liver-related 
enzymes, alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST), in serum typically reflect hepa-
tocellular damage [9]. The clinical strategy is limited to 

Introduction
With well over 25% of the world’s population suffering 
from non-alcoholic fatty liver disease (NAFLD), it is cur-
rently the most prevalent chronic liver disease worldwide 
[1]. Moreover, it is proposed that the NAFLD population 
in China will increase by 29.1% to 314.58 million during 
2016–2030 [2].

The development of NAFLD is progressive with a 
sophisticated clinicopathological classification system. 
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Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, 
and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies 
approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and 
cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated 
with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising 
benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics 
of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, 
and provide insight into pharmacological targets. In addition, we present updates on the progresses in the 
development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to 
new opportunities for NAFLD drug development.
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ameliorating progression through diet modification and 
exercise; this strategy improves only simple steatosis 
due to the unsustainability of long-term intervention 
[10, 11]. In addition, while liver transplants are a reliable 
treatment for NASH, they are highly expensive, difficult 
to obtain and carry traumatizing risks. Thus, potential 
drugs that can replace this treatment in clinical practice 
are urgently needed [12]. Unfortunately, to date, there is 
still a lack of clinically approved drugs targeting NAFLD.

The metabolic disorders associated with NAFLD are 
characterized by dysregulation of lipid metabolism, glu-
cose homeostasis [13] and intestinal-hepatic crosstalk 
[14], supporting the movement to rename NAFLD as 
metabolic-associated fatty liver disease (MAFLD) [15]. 
Moreover, it is helpful to decelerate the progression of 
NAFLD by improving whole-body metabolic homeosta-
sis to improve associated conditions, such as diabetes 
and hypertension [16].

In this article, we mainly focus on the metabolic char-
acteristics involved in the development of NAFLD, 
including glucose metabolism, lipid metabolism and 
intestinal metabolism, and propose some promising tar-
gets for further investigation. Moreover, we assess phar-
maceutical targets for NAFLD from the perspective of 
metabolic intervention and development status at pres-
ent globally, which might provide new drug development 
prospects.

Definition of NAFLD
The stages of NAFLD include non-alcoholic fatty liver 
(NAFL), NASH, liver fibrosis and liver cirrhosis. NAFLD 
is first characterized by intrahepatic triglyceride levels 
exceeding 5.5%, as detected by magnetic resonance spec-
troscopy or liver biopsy, and the exclusion of secondary 
causes, such as alcohol abuse, viral infection, other meta-
bolic liver diseases including Wilson’s disease, and drugs, 
including tamoxifen and amiodarone [8, 17]. Broadly, 

Fig. 1 Multiple metabolic dysfunctions contribute to the progression of non-alcoholic fatty liver disease (NAFLD). a NAFLD is defined as intrahepatic 
triglyceride content exceeding 5.5% within hepatocytes and has a sophisticated clinicopathological classification system [8]. Gradually, excessive lipid 
levels could overwhelm the capacity to deal with inflammation and hepatocyte ballooning due to lipotoxicity, which are characteristic of non-alcoholic 
steatohepatitis (NASH). Progressively, hepatic stellate cells are actively responsible for inflammation and hepatocyte death. This results in fibrosis through 
the generation of fibrogenic myofibroblasts [221], and 22% of patients develop cirrhosis [4]. Finally, patients with severe cirrhosis patients progress to 
hepatocellular carcinoma (HCC). b Available evidence indicates that multiple metabolic dysfunctions, such as obesity, type 2 diabetes mellitus (T2DM) 
and dysfunction of the gut microbiota, are the main risk factors for the progression of NAFLD [3]
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NAFLD is divided into two pathological forms: NAFL, 
which shows macrovascular steatosis and mild lobular 
inflammation, and progressive NASH, which shows bal-
looning with or without perisinusoidal fibrosis [18]. It is 
difficult to identify NAFLD in the early stage because the 
majority of individuals are asymptomatic until they prog-
ress to cirrhosis. The most common symptom is right 
upper quadrant pain, which is then confirmed by ultra-
sonic evidence or MRI [8]. Consistent with these find-
ings, the serum levels of liver enzymes and albumin are 
changed with the progression of NAFLD, and these levels 
reflect whole body dysfunction [19]. Due to the systemic 
nature of NAFLD, its incidence has been correlated with 
that of cardiovascular disease, cancer and other condi-
tions, such as chronic kidney disease and obstructive 
sleep apnea [20]. Patients with severe liver fibrosis are 
more likely to develop subclinical carotid atherosclerosis, 
and cardiovascular diseases account for the majority of 
NAFLD-related mortality [21].

The metabolic risk of NAFLD
Principally, NAFLD is a systemic disease that can be con-
trolled by whole-body homeostasis, so other diseases, 
such as polycythemia, hyperuricemia, hypothyroidism, 
hypopituitarism and polycystic ovary syndrome, could be 
independent risk factors for its occurrence and develop-
ment [22–25]. Importantly, the consumption of diets rich 
in fat and sugar with insufficient exercise may contribute 
to NAFLD; this may explain the increased prevalence 
of NAFLD with metabolic impairments [26]. NAFLD is 
frequently associated with obesity and type 2 diabetes 
mellitus (T2DM) in China. The proportions of individu-
als with NAFLD in the obesity and T2DM groups were 
60-90% and 28-70%, respectively. Moreover, 51.3% of 
NAFLD patients had obesity and 22.5% had T2DM [27], 
which reflects systemic metabolic disorders. Of note, it is 
increasingly appreciated that the microbiota plays a func-
tional role in regulating metabolic homeostasis, such as 
that in NAFLD [28], as evidenced by different gut bacte-
ria between obese and lean humans [29] (Fig. 1b).

Dysregulated metabolism in NAFLD
Lipid metabolism in NAFLD
In the development of NAFLD, the imbalance between 
lipid input and output leads to the accumulation of lip-
ids in the liver. Triglycerides (TGs) are the main form of 
lipids that are stored in the liver and are synthesized by 
the esterification of free fatty acids (FFAs) [30]. Exces-
sive FFAs impair the liver through lipotoxicity [31–33], 
mitochondrial dysfunction [34], stimulation of signal-
ing pathways related to metabolism and inflammation 
[35] and even direct activation of receptors that pro-
mote inflammation [36]. Apart from FFAs, intermediates 
of DNL, such as diacylglycerol, also disrupt metabolic 

homeostasis [37, 38] through increased reactive oxygen 
species (ROS) derived from weakening mitochondrial 
activity [39, 40]. To avoid damage caused by excessive 
FFAs, the liver will initiate a series of self-protection 
mechanisms. FFAs can be esterified and transported into 
serum via very low-density lipoprotein (VLDL). Addi-
tionally, FFAs can be oxidized and converted to other 
substrates. However, in the NASH stage, overwhelmed 
mitochondria produce ROS, which further aggravates 
NAFLD [39, 41, 42].

Considering the role of FFAs in NAFLD, it is vital to 
understand the three main sources of FFAs. The first is 
an increase in the spontaneous lipolysis of adipose tis-
sue (59%). The canonical pathway for lipolysis promotes 
cyclic adenosine monophosphate (cAMP) generation, 
and then protein kinase A (PKA) is activated to phos-
phorylate lipases phospho-hormone sensitive lipase 
(p-HSL) and phospho-perilipin 1 (p-PLIN1). This path-
way can be suppressed by insulin [43]. Following their 
release into circulation, FFAs are taken up by the liver 
[44]. A number of studies have demonstrated that the 
lipolysis of adipose tissue in NAFLD, regardless of the 
existence of diabetes, is increased [45–47]. In obese indi-
viduals, due to factors such as adipocyte hypertrophy 
and insulin resistance, increased lipolysis produces more 
FFAs, and these FFAs are then transported to the liver 
(Fig. 2b) [48].

The second source of FFAs is de novo lipogenesis 
(DNL) (26%). DNL starts with acetyl-CoA subunits, 
which are mainly derived from glucose [49], and fur-
ther condensation occurs with the glycerol backbone of 
these products [50]. There are two major proteins, sterol 
response element binding protein (SREBP1c) and car-
bohydrate response element binding protein (ChREBP), 
that are involved in the transcriptional regulation of DNL 
[51, 52]. Then, several genes, including fatty acid synthase 
(FAS), acetyl-CoA carboxylase (ACC) and stearoyl-CoA 
desaturase 1 (SCD1), are upregulated. Malonyl-CoA is 
produced from an acetyl-CoA precursor under the con-
trolled catalytic activity of ACC at the beginning of this 
process [53]. Acyl carrier protein (ACP), which belongs 
to the FAS domain, transports malonyl-CoA to the 
prosthetic phosphopantetheine group of the acyl car-
rier protein [54–56]. Through the prosthetic phosphop-
antetheine arm of ACP, the elongating FA chain can be 
shuttled to the different catalytic centers in the active site 
cleft of FAS by its rotation [57–59]. The malonyl moiety 
bound to ACP is the additive monomer for elongating 
the substrate acyl chain, resulting in an elongated 16- or 
18-carbon FFA chain [60, 61]. In the initial step of tria-
cylglycerol (TG) synthesis, FFAs are incorporated into 
glycerol-3-phosphate via primary acylation, resulting 
in lysophosphatidic acid (LPA) via glycerol-phosphate 
acyl transferase (GPAT) [50]. In the following step, after 
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desaturated, acylglycerol-phosphate acyl transferase 
catalyzes LPA to produce phosphatidic acid (PA), which 
is then dephosphorylated by phosphatidic acid phos-
phorylase (PAP) to produce diacylglycerol (DG) [62]. 
Through the catalytic activity of diacylglycerol acyl-
transferase (DGAT), DG is acylated to TG [63]. DNL 
not only increases the synthesis of FFAs but also inhibits 
β-oxidation by its intermediate product malonyl coen-
zyme (Fig. 2c) [64].

The third source is excessive dietary fatty acids (15%). 
Hepatocytes take up chylomicron (CM) particle rem-
nants, which contain FFAs [65], and increased absorption 
of CM remnants leads to the excessive accumulation of 
lipids in the liver [66, 67]. Mechanically, triacylglycerol 
is broken down into FFAs and monoacylglycerol by pan-
creatic lipase. Enterocytes resynthesize triacylglycerol 
through two sequential acylation steps: first by monoac-
ylglycerol acyltransferase 2 (MGAT2) and then by DGAT. 
Then, chylomicrons are secreted into lymphatic vessels 
and incorporated with triacylglycerol. After catalysis by 
lipases, the FFAs are stored in adipose tissue or utilized 

by muscle tissue as an energy source. The remnants of 
CM are transported into the liver. There, they form tri-
glycerides and are packaged into VLDL particles, which 
are released into the bloodstream (Fig. 2a) [68, 69].

Glucose and fructose metabolism in NAFLD
Compared with normoglycemic NAFLD patients, hyper-
glycemic NAFLD patients more rapidly progress from 
NAFL to NASH [70, 71], indicating that glucose metab-
olism is tightly associated with NAFLD. Recently, it was 
found that the levels of key enzymes in glycolysis were 
significantly higher in NAFLD in parallel with enhanced 
glycolytic capacity in NAFLD patients. Moreover, over-
expression of hexokinase 2 (HK2) and pyruvate kinase 
isozyme type M2 (PKM2), which are involved in glycoly-
sis, could promote the accumulation of triglycerides in 
hepatocytes [72, 73]. The Warburg effect produces lactic 
acids in the presence of oxygen. Tumors often adapt this 
process, and it also occurs in NAFLD (Fig. 3a) [72]. High 
levels of lactic acid stimulate the uptake of FFAs by hepa-
tocytes and promote the expression of lipogenic genes 

Fig. 2 Lipid metabolism in non-alcoholic fatty liver disease (NAFLD). a. Under physiological conditions, lipase breaks down triacylglycerol into monoacyl-
glycerol and FFAs, which are then absorbed by intestinal epithelial enterocytes. Then, FFAs and monoacylglycerol are used to resynthesize triacylglycerol 
by two key enzymatic steps: the first by mannoside acetylglucosaminyltransferase (MGAT) and the second by diglyceride acyltransferase (DGAT). Triac-
ylglycerols are incorporated into chylomicrons (CMs) and secreted into the lymphatic vessels. After catalyzed by lipase, the remnants of CMs absorbed 
by liver [68, 69]. b. Insulin promotes lipid storage by inhibiting lipolysis via adipose triglyceride lipase (ATGL), phosphodiesterase 3B (PDE3B) and protein 
kinase A (PKA)-controlled hormone-sensitive lipase (HSL) and perilipins (PLINs). However, in regard to insulin resistance conditions (such as obesity or type 
2 diabetes mellitus [T2DM]), lower insulin sensitivity stimulates lipolysis, which then leads to more NEFA flux to the liver. c. Several key enzymes (such as 
acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], stearoyl-CoA desaturase [SCD1] and DGAT2) are involved in de novo lipogenesis in the liver [222]
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[74]. In contrast to the Warburg effect, the effect of the 
TCA cycle on NAFLD remains controversial. However, 
there is no doubt that oxidative stress and DNA damage 
in the NASH stage impair mitochondrial function and 
worsen the TCA cycle [75].

Insulin resistance is a prominent feature of NAFLD 
that can regulate NAFLD directly, as evidenced by the 
observation that the short-term consumption of high-fat 
diets leads to hepatic insulin resistance without periph-
eral insulin resistance [76]. Insulin resistance impairs 
the inhibition of gluconeogenesis [48]. This leads to 
increased production of glucose [77], which is the main 
source of DNL. Insulin also promotes DNL by stimulat-
ing liver X receptor (LXR), which further upregulates 
Chrebp1 and Srebp1 [78]. Additionally, insulin inhibits 
microsomal triglyceride transport protein (MTTP) and 
promotes apolipoprotein B (ApoB) degradation to regu-
late VLDL production. In regard to insulin resistance, the 
increased production of MTTP results from decreased 
phosphorylation of forkhead box transcription factor 1 
(FoxO1) [79] and the degradation of ApoB resulting from 
the decreased insulin sensitivity and increased uptake of 
FFAs by the liver (Fig. 3a) [80].

The effect of fructose on NAFLD has also attracted 
considerable attention recently. Fructose is regarded 
as the “sweet killer” to metabolic homeostasis [81], and 

abundant evidence demonstrates that long-term fructose 
intake aggravates hepatic steatosis [82]. In contrast to 
glucose, fructose bypasses some regulatory steps in gly-
colysis. It is catalyzed by phosphofructokinase in the liver 
and provides more substrates for the DNL pathway [83]. 
Moreover, the silencing of the feedback cycle in fruc-
tose metabolism leads to a continuous decrease in ATP 
and phosphate [84–87]. This ultimately results in redun-
dant uric acid and deficiency of ATP [88]. Furthermore, 
ATP deficiency leads to a series of adverse reactions that 
include inhibitory effects on protein synthesis and oxida-
tive stress [84, 89]. It has also been shown that fructose 
stimulates the DNL pathway but inhibits β-oxidation 
by stimulating ChREBP and SREBP1c. This results in a 
decrease in FFAs consumption [89, 90], thereby worsen-
ing NAFLD (Fig.  3b) [84]. In parallel, fructose not only 
disturbs gut microbiota homeostasis to stimulate hepatic 
steatosis by regulating the production of short-chain fatty 
acids (SCFAs) but also destroys tight junctions, which 
promotes endotoxin exposure to the liver [91–93].

Gut microbiota in NAFLD
The gut microbiota plays a vital role in barrier protec-
tion, immunity and metabolic homeostasis in the host. 
The main factor that affects the gut microbiota is over-
nutrition [94]. Gut microbiota dysfunction increases 

Fig. 3 Glucose and fructose metabolism in non-alcoholic fatty liver disease (NAFLD). a Increases in glucose transport results in enhanced glycolysis in 
the liver. There, pyruvate is converted to oxaloacetate, which provides more substrates for de novo lipogenesis (DNL), or lactate, which stimulates the 
DNL pathway via decreased activity of histone deacetylase (HDAC) [223]. b In addition, fructose is phosphorylated to fructose-1-phosphate (F-1-P) by 
ketohexokinase (KHK) upon entering hepatocytes, which have high-rate activity and bypass more limited steps [224]. Moreover, substrates, such as ad-
enosine diphosphate (ADP) derived from adenosine triphosphate (ATP) during hydrolysis activity, are converted into uric acid, which impairs the liver by 
stimulating DNL [225, 226]. c Insulin regulates the liver directly by upregulating sterol regulatory element-binding protein 1c (SREBP1c) and carbohydrate-
responsive element-binding protein (ChREBP); it also decreases the production of very-low-density lipoprotein (VLDL) via the downregulation of micro-
somal triglyceride transfer protein (MTTP) and apolipoprotein B (ApoB) [78, 79]

 



Page 6 of 18Shao et al. Nutrition & Metabolism           (2023) 20:30 

susceptibility to various diseases, including metabolic 
diseases such as NAFLD [95]. NAFLD is reported to 
be characterized by chronic low-grade inflammation. 
Inflammatory mediators, such as endotoxin, are derived 
from gut microbiota [96], and a high-fat diet increases 
the proportion of endotoxin [97, 98]. Recent studies on 
the gut microbiota in NAFLD have found that a high-
fat diet increased specific bacteria, such as Enterobacter 
cloacae B29, Escherichia coli py102 and Klebsiella pneu-
moniae A7, which impair the progression of NAFLD [99]. 
Moreover, in regard to the advanced stage, the abun-
dances of Proteus and Escherichia coli were increased, 
while the abundances of Firmicutes and fecal bacteria 
were significantly decreased [100]. Additionally, Rumino-
coccaceae and Veronibacteriaceae were found to be risk 
factors for liver fibrosis [101]. It has also been found that 
dysfunction of the gut microbiota dominated by Entero-
bacteriaceae, Escherichia coli and Shigella is associated 
with NAFLD progression [102].

A number of studies have demonstrated that metabolic 
dysfunction is associated with decreased concentrations 
of bacteria that produce SCFAs, propionate and butyr-
ate [103]. On the one hand, butyrate could act as a sub-
strate to stimulate β-oxidation to maintain the anaerobic 
environment for the microbiota [104] and suppress the 
expression of nitric oxide synthase via nuclear recep-
tor peroxisome proliferator-activated receptor gamma 
(PPARγ). This results in a decrease in NO, which inhibits 
Enterobacteriaceae [105, 106]. On the other hand, butyr-
ate can moderate inflammatory conditions by activating 
immune cells, such as regulatory T cells (Tregs) [107]. In 
addition, SCFAs are beneficial for maintaining intesti-
nal permeability and insulin secretion and sensitivity via 
increased secretion of glucagon-like peptide-1 (GLP-1) 
and peptide YY (PYY) (Fig. 4c) [108–110]. Unfortunately, 
dysfunction of the gut microbiota aggravates NAFLD due 
to a decrease in SCFAs [111]. Specifically, F. prausnitzii 
(Faecalibacterium), A. muciniphila (Akkermansia) and 
Dysosmobacter welbionis are involved in this decrease in 
SCFAs [112]. Moreover, disorder of the gut microbiota 
inhibits intestinal epithelial cells from secreting a lipo-
protein lipase inhibitor, fasting-induced adipose factor 
(FIAF), which increases FFAs levels in the liver [28].

Bile acids metabolism in NAFLD
Systemic homeostasis is influenced by the gut micro-
biota, partially by regulating bile acids (BAs) metabolism 
and signal transduction via BAs receptors [113]. Studies 
have shown that BAs metabolic disorder could aggra-
vate chronic liver diseases [114], and BAs metabolic 
disorder progresses to NAFLD independent of obesity 
and diabetes [115]. These findings show the importance 
of the regulation of BAs in NAFLD. Approximately 95% 
of BAs are involved in enterohepatic circulation, while 

the remaining 5% are excreted in the feces [116]. To 
maintain the BAs pool, the number of newly synthe-
sized BAs should be equal to that of BAs excreted in the 
feces. Therefore, inhibiting the reabsorption of BAs will 
increase the excretion of BAs in the feces. Thus, more 
cholesterol will be converted to BAs, which lowers the 
risk of obesity [117].

There are two synthesis pathways of BAs. The first is 
the canonical pathway, also named the neutral pathway 
(75%), which is regulated by CYP8B1 after cholesterol is 
hydroxylated by CYP7A. Another pathway is the alterna-
tive pathway, also named the acidic pathway (25%). This 
pathway is controlled by CYP7B1, which is triggered by 
CYP27A1; as a result, mainly CDCA is produced [118]. It 
has been reported that activation of the alternative path-
way produces more BAs, which benefits the consumption 
of cholesterol [119]. Additionally, significant increases 
in CYP8B1 in db/db mice and the overexpression of 
CYP8B1 have been shown to upregulate lipogenesis-
related genes, and this process is dependent on SREBP1. 
However, the loss of CYP8B1 could ameliorate NAFLD 
[120, 121].

Moreover, BAs could directly regulate hepatic metab-
olism as a signal molecule through the activation of 
farnesoid X receptor (FXR). Hepatic FXR inactivates 
the lipogenesis pathway by inhibiting SREBP1c. It also 
induces β-oxidation by activating peroxisome prolif-
erator-activated receptor-α (PPARα) and clears VLDL 
in plasma, ultimately ameliorating NAFLD [122–124]. 
Moreover, hepatic FXR stimulates FFAs oxidation and 
ketogenesis, which is dependent on fibroblast growth 
factor 21 (FGF21) [125, 126]. However, the activation 
of intestinal FXR stimulates intestinal epithelial cells to 
secrete FGF15/19 into the liver, which potently reduces 
hepatic steatosis and improves insulin resistance [127–
130]. However, the contribution of FXR to NAFLD is 
still under debate due to its wide distribution in various 
tissues. Recently, it was found that when FXR was glob-
ally knocked out, the insulin sensitivity of ob/ob and 
HFD mice was improved. This may be because the long-
term activation of FXR reduces energy consumption and 
aggravates HFD-induced glucose intolerance (Fig.  4a) 
[131–133]. However, in liver-specific FXR knockout 
mice, the above effect was not observed, indicating that 
intestinal FXR contributes significantly [134]. In par-
allel, increases in level of T-β MCA, an intestinal FXR 
antagonist, ameliorates NAFLD through increased BAs 
synthesis [135–137], and GLP-1 secretion decreases via 
the activation of intestinal FXR [138]. As a result, the 
coordination of intestinal FXR in maintaining metabolic 
homeostasis still needs to be further confirmed (Fig. 4b).

Another bile acid receptor, Takeda G protein-coupled 
receptor 5 (TGR5), is mainly expressed in the gallblad-
der, adipose tissue, intestine, and liver and is activated 
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Fig. 4 Gut dysbiosis and bile acid metabolism in non-alcoholic fatty liver disease (NAFLD). a. Hepatocytes produce primary bile acids via the classic 
and alternative pathways. The classic pathway starts with cholesterol 7α-hydroxylase (CYP7A1) and the action of sterol 12α-hydroxylase (CYP8B1), which 
produces cholic acid (CA) or chenodeoxycholic acid (CDCA) through sterol 27 hydroxylase (CYP27A1) [227, 228]. The alternative pathway is initiated by 
CYP27A1 and produces CDCA through the action of oxysterol 7α-hydroxylase (CYP7B1) [229]. After a meal, the release of cholecystokinin from the pan-
creas causes bile stored in the gallbladder to be released into the duodenum. Then, ~ 95% of the bile acids involved in the hepatic intestinal circulation 
are reabsorbed by enterocytes via the apical sodium-dependent bile salt transporter (ASBT) [230] and excreted into the portal vein via organic solute 
transporter-α and -β (OSTα and OSTβ) [231, 232]. Finally, ~ 5% of bile acids are transported into the systemic circulation from hepatocytes via multidrug 
resistance-associated protein 3 (MRP3), MRP4, OSTα and OSTβ. b. Two kinds of farnesoid X receptor (FXR)-dependent pathways have been proposed for 
the feedback regulation of bile acid synthesis. Activation of hepatic FXR in the liver increases the expression of the small heterodimer partner (SHP), which 
inhibits CYP7A1 and CYP8B1 expression [233, 234]. In addition, FXR plays a key role in regulating metabolism in the liver by suppressing de novo lipogen-
esis (DNL), promoting β-oxidation and producing very-low-density lipoprotein (VLDL) [235–237]. In addition, activation of FXR in the intestine stimulates 
the production of FGF15/19, which inhibits CYP7A1 and activates the DNL pathway [238]. Another vital receptor for bile acids is Takeda G protein-coupled 
receptor 5 (TGR5), which promotes the production of glucagon-like peptide-1 (GLP-1) through increased cyclic adenosine monophosphate (cAMP) [239, 
240]. c. In healthy conditions, the production of butyrate aids in the consumption of oxygen to maintain anaerobic conditions through β-oxidation and 
decreases the production of nitrate, which is available for specific pathogens via conjunction with peroxisome proliferator activated receptor gamma 
(PPARγ). Short-chain fatty acids (SCFAs), another beneficial product derived from nondigestible carbohydrates [241], help to maintain metabolic homeo-
stasis through the secretion of GLP-1 and Yin-Yang 1 (YY1) [110, 242]. However, under pathogenic conditions, decreased butyrate and SCFA levels disturb 
metabolic homeostasis
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primarily by secondary BAs [139]. Once TGR5 is acti-
vated in muscles or brown adipose tissue, it stimulates 
energy consumption, and in the intestine, it increases 
the secretion of GLP-1 (Fig.  4b) [114, 140, 141]. More-
over, recent studies found that TGR5 prefers to influence 
NAFLD-related hypothyroidism regardless of the level of 
thyroid hormone [142], and researchers found that thy-
roid hormone β receptor (TRβ) regulates the synthesis 
of BAs by interfering with SHP [143, 144] or CYP7A1 
directly in the liver [145]. Additionally, it has been 
reported that activation of TRβ reduces systemic lipid 
content and increases lipid oxidation to improve hepatic 
lipid homeostasis [146].

Treatments for NAFLD
Diet and lifestyle intervention
Several recent studies have demonstrated that steato-
hepatitis improves in 58% of cases in which the patient 
lost > 5% of their body weight and in 90% of cases in 
which the patient lost > 10% of their body weight [10]. 
Patients are encouraged to adapt a diet pattern of low-
fat, low-carbohydrate or Mediterranean type, with a 
daily energy intake of 500–1000  kcal. It has also been 
demonstrated that isocaloric diets with high protein con-
tent could reduce hepatic steatosis and inflammation in 
T2DM patients [147].

Exercise
Exercise has been demonstrated to reduce hepatic steato-
sis independently of diet changes [148]; additionally, exer-
cise has also been found to improve liver stiffness [149]. 
Over the course of five years of follow-up, moderate-vig-
orous exercise was shown to prevent fatty liver in 233,676 
subjects who participated in this study [150]. Specifically, 
a dose‒response relationship was demonstrated between 
exercise volume and reduction in hepatic steatosis, with 
individuals exercising over 250 min a week experiencing 
higher responses [151]. In terms of the type of exercise, 
sufficient exercise could ameliorate NAFLD regardless of 
whether aerobic exercise is performed [152].

Bariatric and metabolic surgery
To date, there is debate regarding the adaptation of fore-
gut bariatric surgery to NAFLD treatment [8], and sur-
gery is only provided for NAFLD patients with other 
severe obesity-related comorbidities [153]. After surgery, 
75% of patients with steatohepatitis showed improve-
ments in ballooning and lobular inflammation [154]. 
However, the risk of potential complications of secondary 
steatohepatitis and liver fibrosis is increased [155].

Updated metabolism-targeted drugs for NAFLD
As the most prevalent chronic liver disease, there is an 
urgent need for available drugs approved by the FDA for 
the treatment of NAFLD. In the following, we summarize 
the emerging pharmacotherapeutic targets and related 
clinical experimental information regarding metabolic 
interventions globally (Table 1).

Regulating lipid metabolism
ACC inhibitors
Firsocostat, an ACC inhibitor, effectively reduces lipid 
accumulation and improves fibrosis by inhibiting the 
DNL pathway after 12 weeks of intervention, but it 
increased the risk of hypertriglyceridemia [156]. In addi-
tion, PF-05221304, developed by Pfizer, is another potent 
and reversible dual ACC1/2 inhibitor. In a 16-week phase 
II clinical trial, at least 10 mg of this drug per day dose-
dependently reduced lipid accumulation in the liver. The 
highest percentage of reduction was 65%, but the adverse 
effect was a dose-dependent increase in triglycerides in 
serum in 8% of subjects [157].

FASN inhibitors
TVB 2640 is an inhibitor of FASN. Patients were ran-
domly divided into groups that received placebo or 25 mg 
or 50 mg of the drug orally every day for 12 weeks in a 
phase II clinical trial. Lipid accumulation increased by 
an average of 4.5% compared to baseline in the control 
group. However, lipid accumulation was decreased by 
9.6% in the TVB 2640-25  mg group and decreased by 
28.1% in the 50  mg group. Additionally, the ALT lev-
els decreased in a dose-dependent and time-dependent 
manner. Moreover, serum LDL levels were decreased in 
the groups receiving the drug, and no drug-related toxic-
ity was observed in organs. However, this study is limited 
by the small sample size, and further evaluation of liver 
histology is needed [158]. Currently, another IIb clinical 
trial is recruiting volunteers for further evaluation.

SCD1 inhibitors
Aramchol, an inhibitor of hepatic stearoyl-CoA desatu-
rase (SCD1), can reduce steatosis, steatohepatitis and 
liver fibrosis in rodents. Moreover, in a phase II clinical 
trial, aramchol improved NAFLD, with a 12.5% reduction 
in hepatic lipid accumulation after 3 months of treatment 
[159]. Additionally, in a phase IIb clinical trial with more 
participants, a double-blind trial of 600 mg/per day for 52 
weeks, individuals with NAFLD receiving drug interven-
tion showed a 16.7% reduction in hepatic lipid accumu-
lation compared to only a 5% reduction in the placebo 
group. Moreover, a 29.1% decrease in serum ALT less 
and a marked improvement in fibrosis less than 1 grade 
were observed. However, these differences did not reach 
statistical significance. This drug is considered safe to use 
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because the probability of adverse events is less than 5%. 
However, the decrease in hepatic lipids was not robust 
enough, and the differences were not statistically signifi-
cant [160]. The drug is currently undergoing phase III 
clinical trials, but outcomes have yet to be reported.

DGAT inhibitors
At the end of triglyceride synthesis, DGAT catalyzes the 
conversion of DAG to triglycerides. This enzyme is clas-
sified into two isoforms: DGAT1 and DGAT2. The iso-
forms have different expression patterns and substrate 
specificities [161]. Liver-specific DGAT2-deficient mice 
exhibited reduced hepatic lipid accumulation compared 
to normal mice [162], and PF-06865571 (a DGAT2 inhib-
itor) was also shown to reduce the accumulation of lip-
ids in the liver in a phase I clinical trial. Unfortunately, 
PF-06865571 increases the risk of diarrhea [163]. Cur-
rently, another phase II clinical trial has recruited volun-
teers [164].

MGAT2 inhibitors
It has been reported that MGAT2 is overexpressed in 
the small intestine and liver [165, 166]. Considering the 
redundancy of the MGAT2 enzyme system, selective 
inhibition of MGAT2 will only partially impede triacylg-
lycerol synthesis in the intestine. Therefore, this will delay 
the absorption of fat rather than prevent it completely. 
As a result, the inhibitor diminishes the risk of diarrhea 
and other side effects associated with lipid synthesis tar-
gets. Moreover, the use of this inhibitor benefits NASH 
indirectly through weight loss. It has been proposed that 
MGAT2 contributes to the accumulation of endogenous 
cannabinoid 2-arachidonoylglycerol, which exhibits anti-
inflammatory and antifibrotic effects [167]. Recently, a 
new selective MGAT2 inhibitor, BMS-963,272, showed 
benefits in improving liver inflammation and fibro-
sis without diarrhea in NASH mice. Moreover, BMS-
963,272 decreased body weight and increased GLP-1 and 
PYY levels without adverse effects in a phase I trial [168].

Table 1 Emerging metabolic pharmacotherapies for NAFLD globally
Drug target Drugs in trial Study in population Outcomes

reported
Refer-
ence

ACC inhibitor Firsocostat NASH ↓ Hepatic lipid content, ↓ fibrosis [156]

PF-05221304 NASH ↓ Steatosis, ↓ ALT/AST, ↑ Hypertriglyceridema [157]

FASN inhibitor TVB 2640 NASH ↓Hepatic lipid content, ↓ ALT, ↓ LDL-C, ↓ Fibrosis [158]

SCD1 inhibitor Aramchol NASH ↓ Hepatic lipid content, ↓ ALT, ↓ Fibrosis [159, 160]

DGAT inhibitor PF-06865571 NASH ↓ Hepatic lipid content [163]

MGAT2 inhibitor BMS-963,272 NASH
(Cynomolgus monkeys)

↓ Inflammation, ↓ Fibrosis [168]

Hypolipidemic 
Drugs

Atorvastatin Hypercholesterolemia with hepatic 
damage

↓ Hepatic lipid content, ↓ Hepatic enzymes [171]

Rosuvastatin NASH ↓ ALT/AST, ↓ Fibrosis [218]

FGF21 analogue Pegbelfermin NASH ↓ Hepatic lipid content, ↑ Insulin sensitivity [177]

B1344 NAFLD (Cynomolgus monkeys) ↓ Hepatic lipid content, ↓ Steatosis, ↓Inflammation, ↓ 
Fibrosis

[179]

PPAR agonist Pioglitazone NASH ↓Hepatic lipid content, ↓ ALT/AST [184]

Elafibranor Abdominally obese insulin-resistant males ↓ ALT/AST, ↑ Insulin sensitivity [188]

Saroglitazar NASH ↓ Hepatic lipid content [219]

Lanifibranor NASH ↓ Hepatic lipid content, ↓Inflammation, ↓ Fibrosis [189]

SGLT-2 inhibitor Dapagliflozin Type 2 diabetes ↓ Hepatic lipid content [192]

Empagliflozin NAFLD ↓ Hepatic lipid content, ↓ ALT/AST [191]

GLP-1 modulator Liraglutide NASH ↑ Insulin sensitivity, ↓ NAS score, ↓ ALT/AST [199]

Exenatide NASH ↓Hepatic lipid content, ↓ ALT/AST,
↓ Inflammation

[196]

DPP4 inhibitor Sitagliptin NASH No effect on NAS score [206]

KHK inhibitor PF-06835919 NASH ↓ Hepatic lipid content [209]

Probiotics NAFLD No effect on hepatic lipid content and inflammation [220]

Fecal 
transplantation

NAFLD No effect on hepatic lipid content and inflammation [210]

FXR agonist Obeticholic acid NASH ↓ Steatosis, ↓ Inflammation, ↓ Fibrosis [212]

Cilofexor NASH ↓ Hepatic lipid content, ↓ Steatosis, ↓ Primary BAs [213]

EDP-305 NASH ↓ Hepatic lipid content, ↓ ALT [214]

TRβ agonist Resmetirom NASH ↓ Hepatic lipid content, ↓ ALT/AST [215]

FGF19 analogue Aldafermin NASH ↓ Hepatic lipid content, ↓ ALT/AST [217]
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Statins
Hyperlipidemia is characterized by increases in triglycer-
ide-rich and cholesterol-rich lipoproteins in the serum. 
Hyperlipidemia plays a critical role in promoting NAFLD 
by increasing the transport of lipids to the liver. It has 
been reported that in prospective clinical trials, statins 
reduced the risk of hepatic steatosis and fibrosis [169]. 
Moreover, in a randomized clinical trial, a significant 
improvement in NAS evaluation after drug treatment 
was observed in patients with NAFLD [170]. Another 
small pilot prospective clinical trial demonstrated that 
the hypolipidemic drug atorvastatin decreases the level of 
ALT and improves hepatic steatosis [171]. Rosuvastatin 
also reduces ALT and AST levels and ameliorates liver 
fibrosis [172]. However, large clinical trials for statins are 
currently underway to confirm these benefits.

Hypoglycemic drugs and targeting intermediary 
metabolism of glucose
PPAR agonists
There are three types of PPARs, PPAR-α, PPAR-δ and 
PPAR-γ, that regulate lipid and glucose metabolism; ago-
nists of PPARs have been shown to ameliorate NAFLD 
[173]. PPAR-γ greatly regulates adipocyte differentiation 
and lipid and glucose metabolism and inhibits inflam-
mation [174]. Thiazolidinediones are potent activators of 
PPAR-γ that are used for the treatment of diabetes, and 
a further benefit is their ability to reduce plasma FFAs 
and hepatic lipid accumulation by improving insulin sen-
sitivity [175]. Additionally, thiazolidinediones have been 
shown to improve fibrosis by directly inhibiting the acti-
vation of hepatic stellate cells [176]. Pioglitazone is a mild 
PPAR-γ activator that ameliorates steatosis and reduces 
liver enzymes without affecting fibrosis [177]. However, 
its use is controversial due to the risk of weight gain and 
edema [178, 179]. This treatment is currently undergo-
ing a phase III clinical trial for treating NAFLD. Elafibra-
nor is a dual agonist of PPARα/δ. It was shown to reduce 
hepatic lipid accumulation and improve inflammation 
and fibrosis [180]. When obese patients were treated with 
elafibranor, liver enzymes decreased and insulin sensitiv-
ity improved [181]. However, the latest phase III trial was 
terminated in advance because the predefined primary 
surrogate efficacy endpoint was unmet. The dual agonist 
of PPARα/γ, saroglitazar, significantly reduced hepatic 
lipid accumulation in mice and is currently used for the 
treatment of diabetic dyslipidemia in India [182]. How-
ever, clinical trials for its use for NAFLD are currently 
recruiting participants. The pan-PPAR agonist lanifibra-
nor decreased hepatic lipid accumulation, liver enzyme 
levels, and biomarkers of inflammation in plasma and 
improved fibrosis in an IIb clinical trial. However, the 
adverse effects of gastrointestinal reactions and weight 

gain were greater than those in the control group [182]. A 
phase III trial is currently recruiting volunteers.

Sodium-dependent glucose transporters-2 (SGLT-2) inhibitors
SGLT-2 is a glucose transporter that is dependent on 
sodium and is responsible for most glucose reabsorp-
tion after filtration in the kidney [183]. Because it is not 
expressed in the liver [183], SGLT-2 indirectly decreases 
hepatic lipid accumulation through weight loss or meta-
bolic improvement. Additionally, the SGLT-2 inhibitor 
dapagliflozin reduces hepatic lipid accumulation with-
out significant effects on insulin sensitivity [184, 185]. In 
patients with type 2 diabetes, empagliflozin reduces liver 
enzyme levels in plasma and reduces the hepatic accu-
mulation of lipids. It is considered an early treatment for 
type 2 diabetes patients with NAFLD [186], and it simul-
taneously reduces the risk of lower extremity amputation 
and diabetic ketoacidosis [187].

GLP-1 modulators
GLP-1 is an endogenous gut hormone that stimulates 
insulin production and release directly. It also inhib-
its glucagon secretion indirectly and reduces appe-
tite. GLP-1 receptors are widely distributed but not 
significantly expressed in the liver [188]. In addition, 
the improvement in NAFLD by GLP-1 correlates with 
weight loss and other metabolic improvements, and the 
benefit of GLP-1 agonists for NAFLD may be an indirect 
effect that acts by improving systemic metabolism, such 
as improved insulin sensitivity and appetite suppres-
sion. However, exenatide increases hepatocyte uptake of 
glucose under oral glucose stimulation, suggesting that 
it directly affects the liver [189]. Until now, it has been 
debated whether GLP-1 improves NAFLD by regulating 
the liver directly. T2DM is currently treated with GLP-
1R agonists, such as exenatide and liraglutide [190]. 
Liraglutide not only improves insulin sensitivity [191] 
but also ameliorates NAFLD with 39% efficacy [192]. 
Another GLP-1 receptor agonist, exenatide, stimulates 
β-oxidation and conversely downregulates genes related 
to lipogenesis, ultimately improving NAFLD [193, 194]. 
The phases II clinical trial for this drug has ended [195].

Dimethyl peptidase 4 (DPP4) inhibitors
DPP4 is widely expressed on a variety of cell surfaces 
and selectively cleaves a variety of substrates, includ-
ing GLP-1, to inactivate and thereby regulate diabetes 
[196]. A decrease in DPP4 activity increases GLP-1 activ-
ity. In patients with NAFLD, DPP4 is elevated and posi-
tively correlated with hepatocyte apoptosis and fibrosis 
[197]. Mice with NASH have been shown to benefit from 
DPP4 inhibitors, as inflammation and fibrosis of the liver 
was improved [198]. However, in a phase II trial, the 
DPP inhibitor sitagliptin failed to reduce hepatic lipid 
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accumulation and NAS assessment [199], which means 
that it is not a reliable strategy for treating NAFLD.

Ketohexokinase (KHK) inhibitors
As the rate-limiting enzyme in fructose metabolism, 
KHK catalyzes the conversion of fructose to fructose 
1-phosphate. Excessive fructose is always accompanied 
by increased hexokinase levels, impaired fatty acid oxi-
dation, enhanced DNL, aggravated hepatic steatosis and 
impaired insulin signal transduction [200]. When hexo-
kinase is specifically knocked out in the liver, it will mod-
erate the hepatic damage caused by excessive fructose 
[201]. In an early clinical trial, the hexokinase inhibitor 
PF-06835919 decreased hepatic lipid accumulation, but 
no improvement in insulin resistance was observed [202]. 
To date, a longer-term phase II RCT of PF-06835919 has 
been carried out in the NAFLD population.

Drugs targeting the gut-liver crosstalk
Microbiota transplantation
Fecal transplantation has emerged as a treatment 
option for NAFLD, as the gut microbiota differ between 
NAFLD patients and healthy people. In a phase II RCT, 
21 patients with NAFLD received allogeneic or autolo-
gous fecal transplantation through endoscopy, but there 
was no change in hepatic lipid accumulation after six 
months [203]. Therefore, the feasibility of fecal trans-
plantation needs further investigation. Of note, more 
studies acknowledge that the appropriate supplementa-
tion of butyrate could improve NAFLD. In a randomized 
controlled trial, a single dose injection of A. soehngenii 
to the duodenum in Mets patients showed robust GLP-1 
production and peripheral glycemic homeostasis [204].

FXR agonists
It was shown that OCA, a classic FXR agonist, reduced 
inflammation, hepatic lipid accumulation, and liver 
enzyme activity in NAFLD patients. In an ongoing global 
phase III RCT, liver fibrosis was significantly improved 
after 18 months of treatment with 25 mg OCA per day, 
but there was a mild to moderate incidence of adverse 
effects, such as pruritus [205]. Cilofexor is another FXR 
agonist. In a completed phase II RCT, 24 weeks of oral 
administration of 30  mg of cilofexor per day in NASH 
patients significantly improved steatosis and reduced the 
content of primary BAs without significant changes in 
liver fibrosis. In patients taking 100  mg, however, mod-
erate to severe pruritus was experienced [206]. EDP-305 
is another FXR agonist. A phase II RCT showed that 
the ALT level and hepatic lipid accumulation of NAFLD 
patients were both decreased after 12 weeks of treatment 
with EDP-305, but the incidence of side effects, including 
pruritus and nausea, was also higher [207].

TRβ agonists
Resmetirom is an oral TRβ agonist that specifically tar-
gets the liver to ameliorate NAFLD by improving lipid 
metabolism and lipotoxicity. In a 36-week phase II RCT, 
patients receiving 80 mg resmetirom per day had signifi-
cantly reduced hepatic lipid accumulation, but transient 
mild diarrhea and nausea were also more common [208]. 
At present, a phase III RCT for its use as a treatment for 
NAFLD is recruiting worldwide.

FGF19 analogs
Aldafermin is an analog of FGF19 that inhibits BAs syn-
thesis and regulates metabolic homeostasis. In a 24-week 
phase II RCT conducted in patients with NASH, the 
results showed that hepatic lipid accumulation decreased 
by 7.7%, and liver fibrosis trended toward improvement 
after treatment with aldafermin in NAFLD patients [209]. 
Another phase IIb RCT revealed that aldafermin was well 
tolerated, but there was no significant dose-dependent 
response in fibrosis [210]. Presently, another clinical trial 
is underway to further support this hypothesis.

FGF21 analogs
Fibroblast growth factor 21 (FGF21) is the most promi-
nent hepatokine. It regulates overall metabolic homeo-
stasis by targeting multiple tissues, and its production 
is highly dependent on nutritional stress, including star-
vation, a high-fat diet and a nutritional restriction diet 
[211, 212]. It has been reported that FGF21 exerts ben-
eficial effects in treating obesity due to the potential for 
increased energy consumption and insulin sensitivity 
[213], which therefore indirectly benefits hepatic metab-
olism. Surprisingly, FGF21 has also been reported to 
directly improve NAFLD, even though the specific mech-
anism is still unclear [214]. Thus, it is regarded as a prom-
ising target for NAFLD. There is a PEGylated analog of 
FGF21 known as pegbelfermin (PGBF). In a phase II trial, 
hepatic lipid accumulation in NAFLD patients decreased 
significantly after subcutaneous injection with PGBF for 
16 weeks. While the histology of the liver was still under 
evaluation, 16% of patients presented adverse effects, 
such as nausea [215]. Another phase IIb RCT to evaluate 
the effect of PGBF on fibrosis in NAFLD has ended, but 
the results have not been reported [216]. Additionally, 
for 11 weeks, subcutaneous injection of B1344 (another 
analog of FGF21) significantly reduced hepatic steatosis, 
inflammation and fibrosis in cynomolgus monkeys suf-
fering from nonalcoholic fatty liver disease (NAFLD), and 
an evaluation of FGF21 analog administration in nonhu-
man primate species undergoing liver biopsies for the 
treatment of NAFLD is first reported in this study [217].
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Conclusion
The threat of NAFLD to human health is gradually 
increasing. However, to date, there is a lack of specific 
drugs for treating NAFLD; thus, researchers need to con-
tinue to explore potential targets of NAFLD. The results 
of many studies show that NAFLD patients suffer from 
diverse metabolic disorders, including lipid, glucose 
and BAs disorders, which further aggravate NAFLD. 
The inseparable relationship between metabolism and 
NAFLD shows the necessity for metabolic therapy. 
Here, we described the characteristics of lipid metabo-
lism, glucose metabolism, the gut microbiota and BAs 
metabolism in NAFLD. Various metabolites, including 
intermediates during the process, can affect the cor-
responding signaling pathways as signaling molecules. 
Moreover, different metabolic pathways can act indepen-
dently or interact with each other to affect NAFLD. The 
systemic metabolic complexity of NAFLD implies the 
risk of systemic adverse effects and reveals the challenge 
of its treatment. Over the past few years, drugs have been 
tested in clinical trials worldwide. We summarized the 
therapeutic targets of NAFLD and the corresponding 
drugs. Due to the complexity of NAFLD, targeted drugs 
have the defect of a single function. Additionally, a sin-
gle target has the adverse effect of activating a variety of 
signaling pathways. As a result, no specific drug is cur-
rently available for the treatment of NAFLD. However, 
from a positive point of view, the metabolic complexity 
of NAFLD also provides researchers with a combination 
of drugs and tissue-targeted specific strategies. Currently, 
clinical trials of multitarget combination therapy and 
more in-depth investigations in specific tissues of known 
targets have been ongoing globally. Such studies include 
GLP-1 receptor agonists combined with DPP4 inhibitors.

It should be noted that NAFLD not only has metabolic 
dysregulation but also relates to the immunity closely, 
which could provide aims at the immunotherapy such 
as the anti-inflammatory and anti-fibrosis agents. More-
over, the beneficial immune factors also could ameliorate 
NAFLD. Furthermore, the genetic and epigenetic factors 
have been proved to promote the progression of NAFLD, 
providing the new therapeutic strategies including RNAi 
or mRNA vaccines to ameliorate NAFLD. Additionally, 
we can’t ignore that NAFLD is a whole metabolic homeo-
static disease which is link with other diseases, so it is in 
need for us to detail the underlying mechanisms and find 
more specific crosstalk factors, which could greatly pro-
vide the new targets or therapeutic strategies. Addition-
ally, we should consider using targeted drugs for other 
closely related diseases in combination with targeted 
drugs for NAFLD Meanwhile, despite numerous drugs 
have showed potential in NAFLD in preclinical research, 
they still fail to achieve the great outcomes in clinical tri-
als, suggesting us revise the experimental models and test 

strategies to recapitulate the NAFLD pathology in human 
as realistic as possible, which could tremendously accel-
erate the drug development of NAFLD. These studies 
could bring new hope for overcoming NAFLD.
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