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Abstract
Background Dietary intake during early life may be a modifying factor for cardiometabolic risk (CMR). Metabolomic 
profiling may enable more precise identification of CMR in adolescence than traditional CMR scores. We aim to assess 
and compare the prospective associations between an obesogenic dietary pattern (DP) score at age 13 years with a 
novel vs. traditional CMR score in adolescence and young adulthood in the Avon Longitudinal Study of Parents and 
Children (ALSPAC).

Methods Study participants were ALSPAC children with diet diary data at age 13. The obesogenic DP z-score, 
characterized by high energy-density, high % of energy from total fat and free sugars, and low fibre density, was 
previously derived using reduced rank regression. CMR scores were calculated by combining novel metabolites 
or traditional risk factors (fat mass index, insulin resistance, mean arterial blood pressure, triacylglycerol, HDL and 
LDL cholesterol) at age 15 (n = 1808), 17 (n = 1629), and 24 years (n = 1760). Multivariable linear regression models 
estimated associations of DP z-score with log-transformed CMR z-scores.

Results Compared to the lowest tertile, the highest DP z-score tertile at age 13 was associated with an increase in 
the metabolomics CMR z-score at age 15 (β = 0.20, 95% CI 0.09, 0.32, p trend < 0.001) and at age 17 (β = 0.22, 95% CI 
0.10, 0.34, p trend < 0.001), and with the traditional CMR z-score at age 15 (β = 0.15, 95% CI 0.05, 0.24, p trend 0.020). 
There was no evidence of an association at age 17 for the traditional CMR z-score (β = 0.07, 95% CI -0.03, 0.16, p trend 
0.137) or for both scores at age 24.
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Introduction
Cardiovascular diseases (CVD) remain the leading 
cause of mortality and morbidity in the world, and with 
increasing deaths and disability-adjusted life years [1]. 
CVD develops gradually throughout the lifespan and 
precursors of CVD, such as early signs of atherosclero-
sis and elevated inflammatory conditions, have already 
been found among adolescents [2] and children [2–4]. 
Key modifiable CVD risk factors include an accumulated 
exposure to tobacco and poor diets, and a high body 
mass index (BMI) and sedentary lifestyle [5]. These can 
lead to a combination of metabolic dysfunctions such as 
insulin resistance, impaired glucose tolerance, dyslipid-
emia and hypertension [6].

Poor diet quality during childhood/adolescence is 
associated with metabolic risk factors of CVD in adoles-
cence/young adults [7–10]. Assessing dietary patterns 
(DP), as opposed to isolated nutrients or foods, can bet-
ter estimate diet-disease associations as it captures the 
way foods and nutrients are eaten in combination and 
possible interactions between them [11]. Cardioprotec-
tive DPs like those based on the Mediterranean Diet [12], 
Diet Approaches to Stop Hypertension, [13], and Alter-
native Healthy Eating Index [14] are recommended for 
CVD prevention [15–17]. However, these DPs are typi-
cally defined based on dietary guidelines and represent 
an optimal way of eating that may not be commonly 
adhered to in general populations. Furthermore, cultur-
ally specific scores like the Mediterranean diet have low 
adherence in the UK [18]. Data driven DP analysis allows 
local food intake patterns to be defined [19]. Reduced 
rank regression (RRR) specifies the nutrient mechanisms 
linking food intake to diseases typically identifying DPs 
with stronger associations with disease risk because the 
score captures disease-specific variation in diet rather 
than all variation [20]. An obesogenic DP that is low in 
fibre, energy dense, high in fat and free sugars identified 
early in life was associated with adiposity [21] and with 
conventional CMR factors (glucose, waist circumference, 
BMI, insulin, HDL-c, LDL-c, triglycerides) in adoles-
cents [10]. Similar obesogenic DPs have been observed 
in adults in the UK National Diet and Nutrition Survey 
[22] and have been associated with the incidence of type 
2 diabetes [23] and cardiovascular disease [24] in the UK 
Biobank. However, it is unknown how associations of 
an obesogenic DP with CMR evolve from childhood to 
adulthood [10, 25].

Accurately evaluating conventional CMR factors in 
children/young adults can be challenging due to age-
related differences in hormones, metabolism, comor-
bidities and pathogenic pathways [26, 27]. Thus, new 
potential biomarkers of early CMR are needed [27, 28]. 
Metabolomics provides measurement of all metabolites, 
which potentially allows more precise identification of 
dietary associations with metabolic traits and later dis-
eases [29, 30]. Deelen et al., [31], using a metabolomics 
approach, identified a 14-metabolite score mainly from 
lipid metabolism, lipoprotein and fatty acids, that had 
stronger associations with mortality than a conventional 
risk factors score in 44.,168 adults from 9 cohorts. All 
these 14 metabolites were individually associated with 
cardiovascular-related mortality or CMR in the same 
study or in previous research [31–41]. Therefore, evi-
dence from adults suggests that metabolomics is a prom-
ising method to assess associations with CMR. Studies 
using metabolite-based CMR scores in adolescents are 
scarce although they could elucidate mechanisms linking 
dietary habits early in life with developing CVD in adult-
hood [42].

We assessed and compared the associations between an 
obesogenic DP at age 13, with a novel composite metabo-
lomics score [31] vs. a conventional cardiometabolic risk 
(CMR) score assessed in 15-, 17-, and 24-years-old par-
ticipants from the Avon Longitudinal Study of Parents 
and Children (ALSPAC)[46].

Methodology
Study population
The data included in this study was obtained from par-
ticipants recruited as part of the ALSPAC. The study 
enrolled pregnant women resident in Bristol in the South 
West of England with an expected delivery between 1st 
April 1991 and 31st December 1992, and included 14,541 
eligible pregnant women from the South-West of Eng-
land, resulting in 13,988 children alive at 1 year [44, 45, 
46]. Two subsequent recruitment phases in 1999 and in 
2012 provided a final sample of 15,454 pregnancies and 
14,901 eligible children alive at 1 year [45] (Fig. 1). Dur-
ing periodic follow-ups, extensive data has been collected 
from the parents and their children, primarily using ques-
tionnaires, medical records and face to face visits. The 
study comprises a wide range of phenotypic, environ-
mental, biological and epigenetic measures to investigate 
its effect on health. Study data were collected and man-
aged using REDCap electronic data capture tools hosted 

Conclusions An obesogenic DP was associated with greater CMR in adolescents. Stronger associations were 
observed with a novel metabolite CMR score compared to traditional risk factors. There may be benefits from 
modifying diet during adolescence for CMR health, which should be prioritized for further research in trials.
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at the University of Bristol [47]. REDCap (Research Elec-
tronic Data Capture) is a secure, web-based software 
platform designed to support data capture for research 
studies. The study website contains details of all the data 
that is available through a fully searchable data dictionary 
and variable search tool [48].

Ethics approval for the study was obtained from the 
ALSPAC Ethics and Law Committee and the Local 
Research Ethics Committee [49] and consent for bio-
logical samples has been collected in accordance with the 
Human Tissue Act (2004).

Dietary quality assessment
Participants completed a three day food diary over two 
non-consecutive weekdays and one weekend day at the 
age of 13 years. Parental input on the diary was allowed 
and diaries were checked by a nutritionist in a clinic visit. 
The food diaries were coded and linked to food composi-
tion tables using DIDO, a programme developed at MRC 
Human Nutrition Research [50]. Nutrient intakes were 
calculated using McCance and Widdowson’s British food 
composition Table [51]. Intakes of individual foods were 

Fig. 1 Flow chart of the study participants and reasons for exclusion from analyses

 



Page 4 of 14Solsona et al. Nutrition & Metabolism           (2023) 20:41 

combined into predefined Cambridge Food Groups used 
in previous analyses of ALSPAC dietary data [52].

Ambrosini et al., [21] using RRR, identified a DP that 
explains the maximum variation in a set of response vari-
ables hypothesized to be on the pathway between food 
intake and obesity in children and adolescents. The RRR 
model included intakes of 46 food groups (g/d) as pre-
dictor variables and the following 4 response variables: 
energy density, % energy from fat and sugar, and dietary 
fibre density. Dietary energy density (kJ/g) was calculated 
as total food energy (kJ) divided by total food weight (g), 
excluding beverages [53]. Dietary fibre density (g/MJ) 
was calculated as total g fibre (nonstarch polysaccharide) 
divided by total energy intake (MJ). The % energy from 
fat was calculated as grams of total fat multiplied by 37 kJ 
then divided by total EI (kJ), and multiplied by 100. The % 
energy from sugar was calculated as grams of free sugar 
multiplied by 17 kJ then divided by total EI (kJ), and mul-
tiplied by 100.

The factor loading of the 46 food groups quantified 
the extent to which specific foods increased (if positive) 
or decreased (if negative) the energy density, fat, fibre or 
sugar content of the overall diet [21]. RRR produces a DP 
z-score as a linear, weighted combination of standard-
ized food group intakes by their factor loadings. There-
fore, each respondent received a z-score quantifying the 
degree to which their reported DP at 13 years was obe-
sogenic with a higher DP z-score indicating a more obe-
sogenic DP (lower in fibre and higher in fat, sugar and 
energy density) [21].

Blood samples
Fasting blood samples were collected during clinic vis-
its at ages 15, 17 and 24 years. Plasma and serum sam-
ples from each clinic were processed by the Bristol 
Bioresource Laboratories where they were centrifuged at 
3500  rpm, 4–5  °C for 10  min. Plasma was subsequently 
aliquoted and stored temporarily at -20°C before long 
term storage at -70/80°C. Samples remained frozen for 
three to nine months, until they were plated out into 96 
well plates for biomarker analysis using standard proce-
dures, with no previous freeze-thaw cycles [54, 55].

Metabolomics score
The metabolomic biomarkers used in this analysis were 
quantified in plasma using nuclear magnetic resonance 
from the Nightingale Health platform, which is a Finnish 
metabolomics programme specialized in health technol-
ogy that has been used in numerous published epidemio-
logical studies [56].

Using the Nightingale metabolomics platform, Deelen 
et al., [31] selected 14 metabolites from the 226 that were 
measured based on previous studies using metabolomics 
[57, 58]. The 14 metabolites were:

  • total lipids in extremely large very low-density 
lipoprotein particles (VLDL) (diameter > 75.0 nm).

  • total lipids in small HDL (diameter < 8.7 nm).
  • VLDL diameter.
  • ratio of polyunsaturated fatty acids to total fatty 

acids.
  • glucose.
  • lactate.
  • histidine.
  • isoleucine.
  • leucine.
  • valine.
  • phenylalanine.
  • acetoacetate.
  • albumin.
  • glycoprotein acetyls.

Each metabolite was standardized by creating z-scores 
and multiplied by the logarithm of the hazard ratio, 
which is based on the weight that each metabolite had 
on the risk of all-cause mortality in the study by Deelen 
et al.,(2019) (Additional file 1, Table S1). Subsequently, 
the score for each of the 14 metabolites was summed to 
obtain an overall continuous metabolomics score where 
a higher score indicates an unhealthier CMR profile [31].

Traditional cardiometabolic risk score
The CMR score was based on a recent study from the 
ALSPAC cohort [43]. This score included six cardiometa-
bolic markers: fat mass index (FMI), HDL cholesterol 
(HDL-c), LDL cholesterol (LDL-c), triacylglycerol, mean 
arterial pressure (MAP) and homeostatic model assess-
ment of insulin resistance (HOMA-IR) which were col-
lected during clinic visits when participants were 15, 17 
and 24 years of age.

FMI was calculated by dividing fat mass (kg) mea-
sured with DXA by height (m2). Blood pressure (BP) was 
recorded in the right arm in seated position using an 
Omron M6 upper arm monitor and the following for-
mula was used to calculate the MAP: (systolic BP + (2* 
diastolic BP))/3 [59]. HOMA-IR was calculated from 
fasting plasma glucose and insulin ((fasting plasma glu-
cose (mg.dL-1) x fasting plasma insulin (mU.L-1))/405) 
[60]. Insulin was measured by an ultrasensitive ELISA 
(Mercodia, Uppsala, Sweden) whereas glucose values 
were converted from mmol/L to mg/dL and obtained by 
automated enzymatic (hexokinase) method [61]. Plasma 
lipids (LDL-c, triglycerides, and HDL-c) were performed 
by modification of the standard Lipid Research Clinics 
Protocol using enzymatic reagents for lipid determina-
tion [62].

To calculate the CMR score, sex-specific z-scores were 
calculated for each CMR marker in order to standardize 
the units for different risk factors. HDL-c was then mul-
tiplied by -1, to align the direction of values for increased 
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risk with the other components. The z-scores from the 
six CMR components were summed to give the final 
CMR score for each participant at 15, 17 and 24 years. 
A higher CMR score represented a worse overall CMR 
profile.

Covariates
Several covariates were included as potential confound-
ers in our analyses, based on previous studies assessing 
cardiometabolic traits in children from ALSPAC [63, 
64]. The covariates included were age, sex, dietary misre-
porting, highest household social class, maternal highest 
educational attainment, BMI and moderate-to-vigorous 
physical activity level (MVPA) at age 13.

Parental data were collected by self-completion postal 
questionnaires during pregnancy. Household social class 
was obtained from the highest of mother and partner 
social class, and was based on the occupational category 
and categorized into a dichotomous variable (higher and 
lower), as reported elsewhere [65]: I, II and III non-man-
ual categories for the higher social class (professionals, 
managerial and technical occupations and non-manual 
skilled categories) and III-manual, IV and V categories 
for the lower social class (manual skilled, partly skilled 
and unskilled occupations). Maternal Educational level 
was categorized into (1) Certificate of Secondary Educa-
tion, (2) vocational training, (3) O-level/General Certifi-
cate of Secondary Education (compulsory exams taken at 
age 16), (4) A-levels (optional exams taken at age 18) or 
degree or higher.

Dietary misreporting was based on the ratio of self-
reported energy intake to estimated energy requirement 
(EI:EER) at age 13. Individuals were classified as plausible 
reporters (EI:EER within the 95% CI for EI:EER), over-
reporters (EI:EER > 95% CI for EI:EER) or under-report-
ers (EI:EER < 95% CI EI:EER) [66]. Additionally, children 
who attended the clinic visits at age 13 were asked to 
wear an Actigraph AM7164 2.2 accelerometer (Actigraph 
LLC, Fort Walton Beach, FL, USA) on their right hip for 
7 days. Participants were subsequently divided as physi-
cally active (> 60  min of moderate-to-vigorous PA/day) 
or inactive (< 60  min of moderate-to-vigorous PA/day). 
Finally, child height (m) and weight (kg) were measured 
in clinics and BMI was computed by dividing weight (kg) 
by height (m2). Obesity was defined using BMI cut-off 
points at age 13 based on the International Obesity Task 
Force values for children [67].

Statistical analysis
Prior to the analysis, participants diagnosed with dia-
betes, undergoing insulin treatment, or with a fasting 
blood glucose concentration of ≥ 7Mmol/L (n = 42) were 
excluded due to issues of using HOMA-IR to assess 
insulin sensitivity in diabetic subjects [68]. In addition, 

participants (n = 24) with implausible/extreme outlier 
data (defined as more than 4 SDs from the mean) for the 
CMR score markers were excluded. Participants who 
were pregnant during the follow-up period (n = 40), and 
without dietary data at age 13 years (n = 8801) were also 
excluded from the analysis.

The characteristics of the participants (measured at age 
13 or earlier) included in the analysis at age 15, 17 and 
24 years are described using n (%). Continuous variables 
are described using means and 95% CI after confirm-
ing normality. Simple associations were estimated using 
univariable regression analysis of the continuous expo-
sure (DP z-score) and outcome variables (CMR z-score, 
metabolomics z-score) with groups defined by covari-
ates in samples included in analyses at age 15, 17 and 24. 
To assess missing data bias we compared participants 
included in the analysis at age 15 with those excluded. 
We tested the differences in groups defined by covariates 
using chi-square test and mean exposure and outcome 
z-scores using independent t-test. Missing data results 
were very similar at age 15, 17 and 24, so only data on age 
15 is reported.

The adjusted association between DP score at age 13 
years and the metabolomics score at age 15, 17, and 24 
was assessed using multivariable linear regression mod-
els. The DP z-score was included in separate models both 
as a categorical independent variable, divided by tertiles 
(first tertile as reference), and as a continuous variable 
(per unit increase in the z-score). The same procedure 
was carried out to assess the association between DP 
score and the traditional CMR score.

Three different models were reported for the multi-
variable linear regression analyses: a crude model with 
just the exposure and outcome variables, a minimally 
adjusted model adjusting for age, sex and dietary misre-
porting, and a fully adjusted model additionally adjust-
ing for highest household social class, highest maternal 
educational attainment, BMI and MVPA level at age 
13. However, BMI was excluded from the traditional 
CMR score models because FMI was already one of the 
risk factors included in the score. Finally, we compared 
the association between DP z-score with metabolomics 
z-score and with the traditional CMR z-score using a 
Z-test. All the analyses were conducted using SPSS Sta-
tistics v27.

Results
Our analysis included 1808 participants at 15 years old 
(mean age 15.5, SD 0.3), 1629 participants at 17 years old 
(mean age 17.8, SD 0.4), and 1760 at 24 years old (mean 
age 24.5, SD 0.8) (Fig. 1 details all prior exclusions).

The characteristics of the study population and asso-
ciations of the metabolomics and traditional CMR 
score with covariates are presented in Tables  1 and 2, 
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respectively. There were 53.7% female participants, 60.2% 
with I, II or III non-manual social class, 50.5% A-level/
degree or higher educated mothers, 65.9% physically 
inactive, 22% with obesity or overweight, and 37.4% plau-
sible reporters at baseline. Compared to the excluded 
sample, participants included were more likely to be 
females, have a higher household social class, higher 
maternal educational level, less likely to be overweight or 
obese, and had lower mean DP, metabolomics, and CMR 
z-scores (Additional file 1, Table S2).

We found an association between a higher metabolo-
mics z-score and being overweight or obese across all 
ages, a lower maternal education at ages 17 and 24, and 
being female at age 24 years (Table 1). In contrast, hav-
ing a higher traditional CMR score was associated with 
a lower household social class,   lower maternal educa-
tion, greater under-reporting of energy intake across 
all ages, being female at 13 and 15 years old, being male 
at 24 years, and inactivity at age 15 and 17, but not 24 
years (Table 2). A more obesogenic DP score was associ-
ated with a lower household social class, lower maternal 
educational attainment, being male, and over-reporting 
energy intake (Additional file 1, Table S3). There was no 
cross-sectional evidence of an association between physi-
cal activity or weight status at age 13 years.

Association of the obesogenic DP z-score with 
metabolomics score and traditional CMR z-score
After adjusting for confounders, being in the medium 
or the highest tertile of the DP z-score, compared to the 
lowest tertile, was associated at age 15 with an increase in 
the metabolomics z-score (β = 0.20; 95% CI 0.09–0.32 and 
β = 0.15; 95% CI 0.04–0.26, respectively) (Table  3) and 
with the traditional CMR z-score (β = 0.15; 95% CI 0.05–
0.24 for highest versus lowest DP z-score and β = 0.11; 
95% CI 0.01–0.20 for medium versus lowest DP z-score) 
(Table  4). Additionally, there was evidence of a positive 
association between the continuous DP z-score at age 13 
and the metabolomics z-score at age 15 (β = 0.06; 95% CI 
0.03–0.10), but no evidence was found for the traditional 
CMR score.

Being in the highest tertile of DP z-score, compared to 
the lowest, was also associated with an increase in metab-
olomics z-score at age 17 (β = 0.22; 95% CI 0.10–0.34) in 
the fully adjusted model (Table 3). However, no associa-
tion was found between DP z-score and traditional CMR 
z-score at this age  (Table 4). There was no association 
between DP z-score and either cardiometabolic z-score 
at age 24. Finally, there was evidence that the association 
between the DP z-score and metabolomics z-score was 
stronger than between the DP z-score and the traditional 

Table 2 Traditional CMR z-score and baseline characteristics of participants included in analysis
Partici-
pants at 
age 15a

(n = 1808)

CMR z-score at age 15 Partici-
pants at 
age 17a

(n = 1629)

CMR z-score at age 17 Partici-
pants at 
age 24a

(n = 1760)

CMR z-score at age 24

n (%) Mean (95% CI) P 
trend

n (%) Mean (95% CI) P 
trend

n (%) Mean (95% CI) P 
trend

Sex
 Male
 Female

970 (53.7)
838 (46.3)

Ref
0.34 (0.25, 0.43)

< 0.001 781 (47.9)
848 (52.1)

Ref
0.23 (0.14, 0.32)

< 0.001 732 (41.6)
1028 (58.4)

Ref
-0.19 (-0.29,-0.10)

< 0.001

Social classa

 I, II, III non-manual
 III manual, IV, V

1089 (60.2) 
719 (39.8)

Ref
0.03 (-0.06, 0.13)

0.460 1018 (62.5) 
611 (37.5)

Ref
0.13 (0.04, 0.23)

< 0.001 1120 (63.6) 
640 (36.4)

Ref
0.15 (0.05, 0.24)

< 0.001

Maternal educational levelb

 A-level or degree
 O-level
 Vocational
 CSE or none

914 (50.5) 
603 (33.4) 
128 (7.1) 
163 (9.0)

Ref
0.12 (0.02, 0.22)
0.01 (-0.18, 0.19)
0.08 (-0.08, 0.25)

0.135 860 (52.8) 
518 (31.8) 
113 (6.9) 
138 (8.5)

Ref
0.17 (0.06, 0.27)
0.11 (-0.07, 0.30)
0.27 (0.09, 0.44)

< 0.001 935 (53.1) 
583 (33.1) 
101 (5.7) 
141 (8.0)

Ref
0.25 (0.15, 0.35)
0.30 (0.10, 0.50)
0.21 (0.04, 0.39)

< 0.001

Physical activity level age 
13c

 Inactive (< 60 MVPA/day)
 Active (≥ 60 MVPA/day)

1191 (65.9)
617 (34.1)

Ref
-0.31 (-0.41,-0.22)

< 0.001 1077 (66.1)
552 (33.9)

Ref
-0.19 (-0.28,-0.09)

< 0.001 1218 (69.2)
542 (30.8)

Ref
-0.07 (-0.17, 0.03)

0.198

Dietary misreportingd

 Over-reporting
 Plausible reporting
 Under-reporting

19 (1.1)
677 (37.4)
1112 (61.5)

-0.50 (-0.94,-0.05)
Ref
0.28 (0.18, 0.37)

< 0.001 16 (1.0)
640 (39.4)
973 (59.6)

-0.39 (-0.86, 0.08)
Ref
0.30 (0.21, 0.40)

< 0.001 13 (0.7)
697 (39.6)

1050 (59.7)

-0.10 (0.65, 0.45)
Ref
0.24 (0.15, 0.34)

< 0.001

aI, II, III non-manual social class categories correspond to the highest one, and III manual, IV and V to the lowest.b A-level or degree correspond to the highest 
maternal educational level, and CSE or none to the lowest .c Sufficient physical activity data was only available at age 13. d Dietary misreporting was based on the 
ratio of energy intake to estimated energy requirement (EER) at age 13. BMI was excluded from this analysis because FMI is included in the conventional CMR score. 
Abbreviations = BMI: Body mass index; CMR: Cardiometabolic risk; MVPA: Moderate-to-vigorous physical activity
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CMR z-score at ages 15 years (p = 0.031) and 17 years 
(p = 0.016), but not 24 years (Fig. 2).

Discussion
An obesogenic DP score at age 13 years, characterized by 
high energy-density, high total fat and free sugars, and 
low fibre density, was associated with a worse cardio-
metabolic profile at 15 and 17 years old when assessed 
using a novel metabolomics score consisting of 14 plasma 
metabolites. The obesogenic DP score at 13 years was 
associated with a worse composite CMR score based on 
six conventional risk markers (FMI, HDL-c, LDL-c, TAG, 
MAP, and HOMA-IR) at 15 years, but not at 17 or 24 
years. Our results suggest a stronger association between 
the DP score and the metabolomics score, compared to 
the conventional CMR score. To our knowledge, this is 
the first prospective study to find that an obesogenic DP 
in adolescence is associated with worse cardiometabolic 
profile, using a multi-marker CMR metabolomic score in 
a large population of adolescents with three different out-
come time points.

A longitudinal study from the Western Australian 
Pregnancy Cohort identified a very similar ‘low fibre, 
high-energy density, high fat and sugar intake’ DP that 
was associated with conventional CMR factors (glucose, 
waist circumference, BMI, insulin, HDL-c, LDL-c, tri-
glycerides) in 14 and 17-years-old adolescents [10]. As 
opposed to our study, this study did not include a metab-
olomics CMR score and did not track CMR risk from 
adolescence to young adulthood. In addition, they used 
some different risk factors for computing the traditional 
CMR score, and it was conducted in a different popula-
tion group, thus their findings may not be completely 
comparable with our study. In contrast to their findings, 
we only found evidence of an association between the DP 
and the traditional CMR score for the highest versus low-
est tertile at age 15, and not at age 17 (or age 24), and not 
when the DP was modelled as a continuous score, sug-
gesting that there was weak evidence of an association for 
the conventional CMR score.

Our findings showing a stronger association between 
the DP score and the metabolomics score is consistent 
with previous longitudinal studies on incident type-2 
diabetes [69] and CVD [70, 71] which identified metab-
olite patterns using metabolomics with higher predic-
tive power than conventional risk factors. Metabolomics 
might improve the identification of subtle metabolic 
variation from early-stage pathophysiological processes 
[72, 73], which could explain why stronger evidence was 
found for the metabolite score when compared to tradi-
tional risk factors which are typically still within a healthy 
range during adolescence. However, as opposed to our 
analysis, these studies were conducted on adults and did 
not evaluate the relationship between DPs and CMR.

We did not find evidence of a relationship between the 
obesogenic DP at age 13 years and the metabolomics or 
the conventional CMR score at age 24 years. These find-
ings are in line with The Northern Ireland Young Hearts 
Study which included participants at age 12–15 years 
and followed-up at 20–25 years and did not observe any 
longitudinal associations between a Mediterranean DP 
score and individual CMR factors [74]. However, a recent 
prospective analysis from ALSPAC found that a higher 
Mediterranean-style diet score at age 13 years was asso-
ciated with a better CMR profile at age 24 [43]. In addi-
tion, a cross-sectional analysis in young adults within 
the Raine cohort study (mean age 24.3 years) found that 
a similar ‘energy-dense, high fat and sugar, low fibre’ DP 
was associated with a higher BMI [75], which is known to 
be a CMR factor [76]. Differences between the DP scores, 
study designs, and food intakes within each cohort may 
explain these discrepancies. The lack of association at age 
24 years found in our study could be explained because 
dietary data was measured at age 13 years, and the period 
from adolescence to young adulthood is a period of tran-
sition in eating behaviour [77, 78]. Therefore, diet mea-
surement at age 13 years might no longer reflect how the 
young adults are eating and could explain why no evi-
dence was found for an association between the DP at 
age 13 and the metabolomics or traditional CMR scores 
at age 24.

The DP score used in this study has its own limitations. 
It was calculated from diet diary data, relying on the par-
ticipant’s response which has known measurement error, 
including self-reporting bias [79, 80]. However, diet dia-
ries are less prone to misreporting than food frequency 
questionnaires [81], and we estimated the plausibility of 
dietary reporting and adjusted for this in all multivariable 
regression analyses [66].

A further limitation common to large prospective 
cohort studies was follow-up bias, because participants 
included in the current analysis were more likely to be 
female, have a higher household social class and maternal 
educational level, and were less likely to be overweight 
and had lower obesogenic DP scores and better CMR 
profiles, compared to those with incomplete dietary and 
covariate data. In addition, a previous study in ALSPAC 
found that dietary patterns during childhood are associ-
ated with several socioeconomic factors, meaning that 
children with less healthy diets were probably underrep-
resented in our final study sample [82]. This may affect 
the transferability of the study findings to the over-
all population, although we adjusted for confounders 
which were previously found to influence the association 
between DP and CMR factors among participants from 
ALSPAC [21, 64, 83]. Nonetheless, we cannot rule out 
residual confounding due to inherent bias of observa-
tional design studies.



Page 10 of 14Solsona et al. Nutrition & Metabolism           (2023) 20:41 

Ta
bl

e 
4 

As
so

ci
at

io
n 

be
tw

ee
n 

di
et

ar
y 

pa
tt

er
n 

sc
or

e 
w

ith
 th

e 
tr

ad
iti

on
al

 C
M

R 
z-

sc
or

e
CM

R 
z-

sc
or

e

Cr
ud

e
A

dj
us

te
d 

(m
od

el
 1

)a
A

dj
us

te
d 

(m
od

el
 2

)b

N
Be

ta
(9

5%
 C

I)
P 

tr
en

d
Be

ta
(9

5%
 C

I)
P 

tr
en

d
Be

ta
(9

5%
 C

I)
P tr

en
d

Ag
e 

15
 

Lo
w

 D
P 

z-
sc

or
ec

60
8

Re
fe

re
nc

e
Re

fe
re

nc
e

Re
fe

re
nc

e
 

M
ed

iu
m

 D
P 

z-
sc

or
e

59
6

0.
11

 (0
.0

1,
 0

.2
0)

0.
13

 (0
.0

2,
 0

.2
4)

0.
11

 (0
.0

1,
 0

.2
0)

 
H

ig
h 

D
P 

z-
sc

or
e

60
4

-0
.0

2 
(-0

.1
2,

 0
.0

7)
0.

42
5

0.
14

 (0
.0

3,
 0

.2
5)

0.
01

2
0.

15
 (0

.0
5,

 0
.2

4)
0.

02
0

 
Co

nt
in

uo
us

 D
P 

z-
sc

or
e

18
08

0.
00

 (-
0.

03
, 0

.0
3)

0.
84

7
0.

03
 (0

.0
0,

 0
.0

6)
0.

08
8

0.
02

 (-
0.

01
, 0

.0
5)

0.
13

2
Ag

e 
17

 
Lo

w
 D

P 
z-

sc
or

e
54

8
Re

fe
re

nc
e

Re
fe

re
nc

e
Re

fe
re

nc
e

 
M

ed
iu

m
 D

P 
z-

sc
or

e
53

7
-0

.0
1 

(-0
.1

2,
 0

.1
1)

0.
01

 (-
0.

10
, 0

.1
2)

0.
02

 (-
0.

06
, 0

.1
1)

 
H

ig
h 

D
P 

z-
sc

or
e

54
4

0.
07

 (-
0.

05
, 0

.1
8)

0.
23

9
0.

17
 (0

.0
5,

 0
.2

8)
0.

00
4

0.
07

 (-
0.

03
, 0

.1
6)

0.
13

7
 

Co
nt

in
uo

us
 D

P 
z-

sc
or

e
16

29
0.

00
 (-

0.
03

, 0
.0

3)
0.

73
7

0.
04

 (0
.0

0,
 0

.0
7)

0.
02

5
0.

01
 (-

0.
01

, 0
.0

4)
0.

28
9

Ag
e 

24
 

Lo
w

 D
P 

z-
sc

or
e

59
0

Re
fe

re
nc

e
Re

fe
re

nc
e

Re
fe

re
nc

e
 

M
ed

iu
m

 D
P 

z-
sc

or
e

57
9

0.
03

 (-
0.

08
, 0

.1
4)

0.
02

 (-
0.

09
, 0

.1
3)

0.
01

 (-
0.

07
, 0

.0
9)

 
H

ig
h 

D
P 

z-
sc

or
e

59
1

0.
08

 (-
0.

03
, 0

.1
9)

0.
16

1
0.

11
 (0

.0
0,

 0
.2

3)
0.

05
3

0.
03

 (-
0.

06
, 0

.1
1)

0.
43

5
 

Co
nt

in
uo

us
 D

P 
z-

sc
or

e
17

60
0.

02
 (-

0.
01

, 0
.0

5)
0.

15
4

0.
03

 (0
.0

0,
 0

.0
6)

0.
03

4
0.

01
 (-

0.
01

, 0
.0

3)
0.

49
6

a A
dj

us
te

d 
fo

r s
ex

, a
ge

 (a
t o

ut
co

m
e,

 w
he

n 
th

e 
sc

or
e 

w
as

 m
ea

su
re

d)
 a

nd
 d

ie
ta

ry
 m

is
re

po
rt

in
g.

 b A
dj

us
te

d 
fo

r s
ex

, a
ge

, d
ie

ta
ry

 m
is

re
po

rt
in

g,
 m

at
er

na
l a

nd
 p

at
er

na
l s

oc
ia

l c
la

ss
, m

at
er

na
l e

du
ca

tio
na

l l
ev

el
, p

hy
si

ca
l a

ct
iv

it
y 

(P
A

) l
ev

el
 (a

ve
ra

ge
 m

in
ut

es
 o

f m
od

er
at

e-
to

-v
ig

or
ou

s 
PA

 p
er

 d
ay

) a
t a

ge
 1

3.
 c  A

ll 
ca

te
go

rie
s 

w
er

e 
ob

ta
in

ed
 fr

om
 th

e 
di

et
ar

y 
pa

tt
er

n 
z-

sc
or

e 
te

rt
ile

s 
at

 e
ac

h 
ag

e:
 L

ow
 =

 F
irs

t t
er

til
e.

 M
ed

iu
m

 =
 S

ec
on

d 
te

rt
ile

. H
ig

h 
= 

th
ird

 te
rt

ile
. 

A
bb

re
vi

at
io

ns
 =

 C
M

R:
 C

ar
di

om
et

ab
ol

ic
 ri

sk
. D

P:
 D

ie
ta

ry
 p

at
te

rn



Page 11 of 14Solsona et al. Nutrition & Metabolism           (2023) 20:41 

This study has several strengths. Due to its prospective 
design, we were able to investigate the effect of an obe-
sogenic DP on CMR with 3 repeated measures of out-
comes. CMR was assessed at 15, 17 and 24 years which 
allowed us to evaluate the extent to which this DP at age 
13 is associated with CMR throughout adolescence to 
young adulthood in a relatively large sample. Measures 
of cardiovascular and metabolic risk, including obe-
sity, dyslipidaemia, elevated glucose and blood pressure, 
cluster together in children and adolescents [84–87]. 
Therefore, the use of CMR scores provides a more use-
ful summary of overall cardiometabolic health than 
single risk factors for predicting and preventing CMR. 
CMR scores are also helpful when analyzing cardiometa-
bolic health in children as they accumulate subtle varia-
tion in a range of risk factors that could be too little to 
show risk on their own in pediatric populations [84, 88]. 
The potential application of metabolomics in identifying 
CMR is well established, as it provides a comprehensive 
insight into pathophysiological mechanisms of diseases 
[30, 89]. However, to our knowledge, this study is the 
first to assess the effect of a DP on both metabolomics 
and conventional CMR scores. Using DPs, rather than 
isolated nutrients or foods, may better inform about diet-
disease associations as they consider the possible interac-
tions between nutrients and foods [11], and it has been 
suggested that the use of nutrient densities (e.g. energy 
density, fibre density and % energy from fat) can reduce 
the error linked to this dietary assessment method [90]. 
Finally, using a RRR-derived DP may be better at iden-
tifying a DP that explains disease-specific variation in 
dietary habits, compared to using completely  a priori 
dietary assessment methods [91].

Conclusions
Our findings suggest that having an obesogenic DP at 
age 13, characterized by high energy-density, high % of 
energy from total fat and free sugars, and low fibre den-
sity, is associated with higher CMR at both 15 and 17 
years of age. However, no evidence of an association for 
any of the CMR scores was observed at age 24. We found 
stronger evidence of an association between the DP and 
CMR using a multimarker metabolomic score, compared 
to a traditional CMR score. These findings suggest the 
importance of avoiding an obesogenic DP during early 
puberty for future cardiometabolic health during later 
adolescence, and the utility of metabolomics for assessing 
diet and CMR relationships in epidemiological research 
in adolescents. Nonetheless, further research in trials is 
needed to establish a causal relationship.
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cohort included in analysis at age 15 (n=1808) and comparison with the 
participants not included from the ALSPAC cohort. Table S3: Description of 
age 13 year DP score by covariate groups among samples with outcome 
variable data at age 15, 17 and 24 years
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