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Abstract
Dementia is a highly prevalent and costly disease characterised by deterioration of cognitive and physical capacity 
due to changes in brain function and structure. Given the absence of effective treatment options for dementia, 
dietary and other lifestyle approaches have been advocated as potential strategies to reduce the burden of this 
condition. Maintaining an optimal nutritional status is vital for the preservation of brain function and structure. 
Several studies have recognised the significant role of nutritional factors to protect and enhance metabolic, 
cerebrovascular, and neurocognitive functions. Caloric restriction (CR) positively impacts on brain function via a 
modulation of mitochondrial efficiency, endothelial function, neuro-inflammatory, antioxidant and autophagy 
responses. Dietary nitrate, which serves as a substrate for the ubiquitous gasotransmitter nitric oxide (NO), has 
been identified as a promising nutritional intervention that could have an important role in improving vascular 
and metabolic brain regulation by affecting oxidative metabolism, ROS production, and endothelial and neuronal 
integrity. Only one study has recently tested the combined effects of both interventions and showed preliminary, 
positive outcomes cognitive function. This paper explores the potential synergistic effects of a nutritional strategy 
based on the co-administration of CR and a high-nitrate diet as a potential and more effective (than either 
intervention alone) strategy to protect brain health and reduce dementia risk.
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Introduction
Dementia is a progressive, incurable neurodegenerative 
disease leading to significant alterations of brain struc-
ture and function, resulting in cognitive decline, physical 
impairment, and changes in behaviour [1, 2]. Worldwide, 
more than 50  million people had dementia in 2020 and 
this figure is predicted to increase three-fold by 2050 
[2, 3]. Cases are not distributed equally across the globe 
with most (> 60%) cases living in low- and middle-income 
countries where resources, research and policy focused 
on dementia is scarce [2, 4, 5]. The increasing number of 
older adults aged 65 years and over represents one of the 
major drivers of the growing number of dementia cases 
globally and the large proportion of dementia cases are 
expected to occur in very old individuals (≥ 80 years) [3, 
5, 6].

Dementia has a multifactorial pathogenesis, and is 
linked to a plethora of modifiable and non-modifiable 
risk factors including for example increased age, female 
gender, genetics (e.g., Apolipoprotein e4 allele status), 
nutrition (poor diet), lifestyle (e.g., smoking, physi-
cal activity), socioeconomic status (e.g., deprivation), 
low education, and poor cardio-metabolic health status 
(e.g., hypertension, diabetes and obesity) [7]. With no 
cure, the maintenance of a healthy physical and cogni-
tive trajectory across the life course is an international 
public health priority to reduce the projected number 
of dementia cases impacting not only the individual, but 
also society.

Numerous observational and experimental studies 
have investigated the links between nutrition and the 
brain health ranging from testing associations and effects 
of dietary patterns (i.e., Mediterranean Diet, Dietary 
Approach to Stop Hypertension (DASH) Diet, to single 
foods (i.e., green leafy vegetables, oily fish) and nutrients 
(i.e., minerals, vitamins, phytochemicals) provided alone 
or in combination [8–10]. Caloric restriction (CR) and, 
more recently, an increased dietary nitrate consumption 
have been linked independently with several health ben-
efits including anti-ageing effects and improvements of 
brain health and cognitive performance [8–10]. Some of 
the key biological mechanisms underpinning the benefits 
of CR and dietary nitrate on brain physiology involve the 
modulation of oxidative stress [11–13], inflammation 
[14], mitochondrial function [11, 12], insulin [15, 16], and 
nitric oxide signalling and autophagy [17–19]. This opin-
ion paper provides a brief overview of key nutritional 
factors that may influence brain health, and it proposes 
a physiological rationale for the synergistic effects of 
combined CR and dietary nitrate interventions on brain 
health as an effective strategy for dementia risk reduction 
and prevention.

Ageing, obesity and vascular dysfunction: the dementia 
risk triad
Ageing is linked to a progressive decline of vascular, 
metabolic, and neurocognitive functions [20]. Some of 
the mechanisms underpinning these functional declines 
include reduced metabolic efficiency, decreased anti-
inflammatory responses, elevated production of reactive 
oxygen species (ROS), and declined nitric oxide (NO) 
production [1, 21–24]. A progressive loss of synaptic 
connectivity, neuronal plasticity and accumulation of 
aberrant native proteins (Beta-Amyloid, Tau-Protein, 
Lewy-Bodies) are key features of the ageing process [22]. 
In most individuals, these changes do not result in clini-
cal manifestation of cognitive impairment or demen-
tia [22]. However, if functional and structural damages 
become more extensive and overcome compensatory 
mechanisms, cognitive dysfunction may accelerate and 
lead to the onset of clinical dementia [22]. For a detailed 
review of pathogenetic hallmarks of ageing and dementia 
risk, see Hou et al. [20].

Obesity is causally linked to various chronic conditions 
including diabetes, hypertension, coronary heart dis-
ease, and cancer [25, 26]. Obesity has also been associ-
ated with an accelerated cognitive decline across the life 
course including impairments in global cognition, logical 
memory, delayed recall, and verbal fluency [25]. Mid-
life obesity is a key risk factor for the onset of late-life 
dementia [25–27]. Obesity also showed an increased risk 
of atrophy in grey and white matter regions (frontal, tem-
poral and occipital cortices, thalamus, hippocampus, and 
midbrain) and is linked to a reduction of regional blood 
flow in the pre-frontal cortex [26]. Excess adiposity has 
been linked to a decreased whole-body NO production 
and endothelial dysfunction (could be a result of a reduc-
tion in NOS activity [28]), which may affect neuro-vas-
cular coupling, blood-brain barrier (BBB) permeability 
and reduced cerebral blood flow (CBF) [25, 27]. Obe-
sity-related vascular dysfunction significantly impacts 
brain function and increases the risk across the various 
dementia sub-types as cerebrovascular dysfunction rep-
resents a common pathogenetic feature [1, 24]. A reduc-
tion of nitric oxide (NO) bioavailability has been linked 
to hypertension and cerebral hypoperfusion, which are 
closely linked to the occurrence of major events in the 
brain such as cerebral ischemia and stroke [24, 29, 30].

Nutrition and brain health
Maintaining brain functions requires an optimal supply 
of energy and nutrients. The brain is an energy-demand-
ing organ (20% of the total body energy production), 
heavily relying on the oxidative metabolism of carbohy-
drates and fat [31, 32]. Glucose and ketone bodies are 
the primary sources of energy for the brain to drive ATP 
production, preserve neuronal and glial cellular integrity 
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and ensure the efficiency of neurotransmission [33]. 
Polyunsaturated fatty acids (omega-3), vitamins B (1, 6, 
9, and 12), D, E, and C, minerals (iron, copper, calcium, 
and zinc), and other nutrients with antioxidant proper-
ties (i.e., polyphenols, dietary nitrates) may have a crucial 
role in the preservation of cerebrovascular and cognitive 
functions by regulating synaptic transmission, membrane 
fluidity, endothelial function, and neurotransmitter and 
signal-transduction pathways [8–10].

Unhealthy dietary patterns, sedentary lifestyle, social 
isolation, low educational attainment, smoking, and alco-
hol addiction are common risk factors for cardiovascu-
lar disease and cognitive impairment [2, 21]. In the last 
decade, greater emphasis has been given to multi-dimen-
sional approaches to dementia prevention, including 
testing the effects of healthy dietary patterns and pro-
viding multiple sources of protective nutrients [34–38]. 
The Mediterranean diet (MED) and Dietary Approaches 
to Stop Hypertension (DASH) are examples of dietary 
patterns, which have been linked to a reduction in car-
diovascular and dementia risk in observational and inter-
vention studies [34, 35]. Morris et al. have amalgamated 
the key features of the two dietary patterns to propose the 
MIND diet (MED + DASH), which essentially promotes 
a high consumption of plant-based products (similar 
to the MED, but with a particular emphasis on increas-
ing the intake of berries and green leafy vegetables) to 
reduce dementia risk [37]. These dietary patterns empha-
size the consumption of fruits, vegetables, whole grains, 
nuts, seeds, and healthy fats. [37, 39, 40] and encourage a 
controlled energy intake to match or reduce levels below 
an individual’s energy requirements (CR). They are rich 
in protective nutrients including fibre, mono- and poly-
unsaturated fatty acids, vitamins, antioxidants, and other 
nutrients such as polyphenols or dietary nitrate that can 
positively influence vascular, metabolic, and cognitive 
functions [30, 41–49]. Dietary nitrate may represent a 
crucial health-enhancing element within plant-based 
dietary regimens [50, 51]. Hord et al. [52] conducted 
an estimation indicating that the DASH diet has the 
potential to deliver as much as 1200  mg/day of dietary 
nitrate. This is in comparison to the typical daily intake 
of approximately 110 mg/day found in the general popu-
lation [53]. In randomized clinical trials, a common dos-
age of dietary nitrate involves supplementation of around 
600 mg/day, achievable through the consumption of two 
bottles of concentrated high-nitrate beetroot juice [51]. 
CR strategies and dietary nitrate may therefore represent 
potential effective nutritional strategies to prevent both 
endothelial and cognitive dysfunction, thus, reducing the 
risk of dementia.

Caloric restriction
Current evidence CR aims to reduce the daily caloric 
intake without causing malnutrition to enhance physical 
and mental health [54]. CR has been linked to an increase 
in lifespan across various species and a decrease in age-
related morbidity and mortality including rodents, pri-
mates, and humans [21, 54–62]. In addition, CR enhances 
the neuro-inflammatory responses [14] and lowers the 
occurrence of oxidative damage by improving mitochon-
drial efficiency [11, 63, 64], with a reduction of white 
matter loss [62], improved cerebral blood flow [21, 56] 
in several brain regions [11, 64], and enhanced cognitive 
function [14]. Although much of the evidence for a salu-
tary effect of CR is derived from animal model studies, 
some human investigations have also identified promising 
effects of CR on markers of cardiometabolic/brain health.
Forty-nine healthy overweight and obese older adults 
were randomised to a three-month CR intervention 
which significantly improved memory, insulin, glucose, 
and C Reactive Protein compared to high PUFA and a 
control diet [15]. Nevertheless, not all CR studies have 
reported beneficial effects [65–67]. This could be related 
to the heterogeneous methods employed, including dif-
ferences in the CR protocol (e.g., different caloric intake 
and intervention duration) and study cohort (e.g., ani-
mal, and human populations with different ages, sex, and 
health status). For example, a 6-month randomised trial 
tested the interactive effects of CR and exercise in forty-
eight participants but no significant improvement in cog-
nition was found [67]. In young rats, a two-month CR 
intervention had an adverse effect on the brain, decreas-
ing neurogenesis and spatial learning assessed using 
the Morris water maze [68]. On the other hand, a more 
extended CR intervention (ten months) with older mice 
showed an improvement in spatial learning [69]. The 
characteristics of some of the key studies, identified by a 
non-systematic search of human randomised clinical tri-
als (RCTs) on PubMed, that have investigated the effects 
of CR on brain health (cognitive function and CBF) are 
reported in Table 1.

Key molecular mechanisms The main molecular 
pathways linking CR to the improvement of endothe-
lial and cognitive functions involve sirtuins (SIRT; pro-
teins family), protein kinase B (Akt), AMP-activated 
protein kinase (AMPK), mechanistic target of rapamy-
cin (mTOR), autophagy and NO [17]. Sirtuins could be 
upregulated by various stressors such as energy reduction 
(CR); when activated and overexpressed, sirtuin catalyses 
NAD-dependent deacetylase, which has been found to 
be associated with longevity [58, 59]. In addition, SIRT1 
could act as an antioxidant that influences several protein 
regulations (such as p53, Ku/Bax and FOXO) to resist 
the stress-induced damage, reduce apoptosis and pro-
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tect neurons [58, 70]. Additionally, SIRT1 is involved in 
various metabolic pathways linked to adiposity (PPARγ 
downregulation), insulin, glucose, and lipid metabolism 
(PGC-1α and LXRα deacetylation, and UCP2 expression) 
[58, 70]. Sirtuins have a significant role in enhancing NO 
bioavailability by activating endothelial nitric oxide syn-
thase (eNOS), directly or indirectly, through the activa-
tion of the AMPK pathway [29, 71, 72]. CR-induced Akt 
phosphorylation through the insulin-PI3K-Akt signalling 
pathway is important for cell growth and resilience, and 

synaptogenesis [73], which could enhance vascular [71] 
and cognitive [74] functions. The activation of AMPK, 
SIRT1, and Akt during CR plays a crucial role in regulating 
endothelial function via the Ca2+/calmodulin-dependent 
kinase II (CaMKII) stimulation, which upregulates eNOS 
and leads to an increased NO synthesis [75]. CR stimu-
lates autophagy [69, 76] and downregulates hippocampal 
mTOR, which acts as a neuroprotector by reducing neu-
ronal apoptosis [77]. Results from experimental models 
also call for a more cautious interpretation of the current 

Table 1 Key studies investigating the effects of caloric restriction on brain health in humans
Reference Population Study 

design
Measurements Intervention Main finding

Witte et al. 
2009 [15]

Healthy overweight 
elderly.
n = 49 (M/F = 21/29).
Age = 60.5 ± 7.6 SD.
BMI = 28 ± 3.7 SD.

Parallel 
RCT.

Memory perfor-
mance, BP, CRP, 
TNF- α, BDNF, 
glucose, insulin 
and lipid profile.

Duration: three months.
Three groups:
1. CR (30% reduction in EI) n = 19.
2. Increase UFAs (20%) n = 20.
3. Control n = 10.

CR increases memory score signifi-
cantly (20%; p < 0.001), and it has a 
significant inverse association with 
insulin, glucose and CRP among 
the high compliance subjects. No 
significant difference in UFAs and 
control.

Zotova et 
al. 2015 
[114]

Arterial hypertension 
(AH) and cerebral isch-
emia (CI) patients.
n = 42 into two arms:
1. CR (M/F = 6/16),
age = 54.4 ± 2.4 SD.
2. Antihypertensive 
drugs (M/F = 8/12),
age = 55.6 ± 1 SD.

Parallel 
controlled 
clinical trial.

Cognitive func-
tion, cerebral 
haemodynamic 
(Doppler 
ultrasound), QoL, 
glucose, and lipid 
profile.

Duration: six months.
Two groups:
1. CR n = 22. Level of CR not reported.
2. Antihypertensive therapy (ACE 
inhibitors, thiazide diuretics), neuro-
metabolic drugs, drugs that improve 
cerebral hemodynamics) n = 20.

CR significantly improves the cogni-
tive function, cerebral haemody-
namic and QoL in both AH and CI 
compared to the second group and 
baseline.

Prehn et al. 
2017 [115]

Healthy postmeno-
pausal obese women.
n = 37.
Age = 61 ± 5 SD.
BMI = 34.9 ± 4 SD.

Parallel 
RCT.

Memory perfor-
mance, cognitive 
function, fMRI 
(BOLD; oxygen-
ation metabolism), 
physical activity, 
BP and glucose.

Duration: three months (CR) + one 
month of sustained weight loss 
(Isocaloric diet).
Two groups:
1. CR (formula-diet 800 kcal/d) n = 19.
2. Control n = 18.

Improved recognition memory 
significantly and grey matter in the 
CR group compared to the control 
at the second time point (after the 
three months CR); p < 0.05, and it 
returned to non-significant at the 
endpoint, but it remained higher 
in CR.

Kim et al. 
2020 [116]

Healthy adults with 
central obesity.
n = 43.
Age = 52.8 ± 2 SD.
BMI = 31.4 ± 5.1 SD.

Parallel 
RCT.

Memory perfor-
mance, cognitive 
function, cardio-
metabolic, BP, 
glucose and lipid 
profile

Duration: one month.
Two groups:
1. Continuous CR (500 kcal reduc-
tion), n = 22.
2. Intermittent CR (5:2 pattern; con-
suming 600 kcal for two consecutives 
days), n = 21.

Both groups enhanced the pattern 
separation significantly (p < 0.0005), 
but the intermittent CR group were 
significantly lower in recognition 
memory (p < 0.007).

Leclerc et 
al. 2020 
[117]

Healthy non-obese 
adults.
n = 220.
Age = 21–50 (males), 
21–47 (female).
BMI = 22–28.

Parallel 
RCT (part 
of CALERIE 
study).

Working memory, 
cognitive function, 
mood state, sleep 
quality and energy 
expenditure.

Duration: two years.
Two groups:
1. CR (25% reduction).
2. Control.

CR improve working memory sig-
nificantly compared to the control 
at second (12 months) and third (24 
months) time points (p < 0.001).

Teong et al. 
2021 [118]

Healthy overweight 
and obese women.
n = 46.
Age = 50 ± 9 SD.
BMI = 32.9 ± 4.4 SD.

Parallel RCT 
(secondary 
analysis).

Cognitive func-
tion, mood state, 
sleep quality and 
QoL.

Duration: two months.
Two groups:
1. CR (30% reduction in EI) n = 24.
2. Intermittent fasting (IF; 30% reduc-
tion in EI) n = 22.

Both groups increase cognitive 
function significantly (CR; p < 0.006, 
IF; p < 0.03). There was no significant 
difference in the other measure-
ment, except that weight loss was 
significant in the IF group (p < 0.001).

Note: The list is not comprehensive (e.g., generated using systematic review methodology), but provides a selection of key studies that have contributed to the field. 
Key: BDNF, brain-derived neurotrophic factor; BOLD, blood oxygenation level-dependent, BP, blood pressure; CRP, c-reactive protein; fMRI, functional magnetic 
resonance imaging; M/F, males/females; QoL, quality of life; RCT, randomised controlled trial; SD, standard deviation; TNF- α, tumour necrosis factor-alpha; UFAs, 
unsaturated fatty acids, EI, energy intake
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evidence as an excessive NO production, associated with 
the activation of iNOS, may be related to the pathogen-
esis of neurodegenerative diseases such as Parkinson’s 
and Alzheimer’s disease [78, 79]. The existence of an opti-
mal range of NO production is established as both high 
and low production rates have been linked to abnormal 
pathogenetic processes [80]. However, an increased NO 
production, achieved via the stimulation of the nitrate-
nitrite-NO pathway and still maintained within an opti-
mal range, has been consistently associated with positive 
effects on several physiological functions [81].

Dietary nitrate
Current evidence Inorganic or dietary nitrate is a water-
soluble polyatomic ion which can be found in various 
food sources; particularly green leafy and root vegetables 
(e.g., beetroot) [52, 82]. Dietary nitrate may be an effective 
nutritional intervention for improving vascular and meta-
bolic health via an increased NO production produced in 
the nitrate-nitrite-NO pathway [83–85]. Dietary nitrate 
supplementation may reduce the risk of cognitive decline 
by improving neuronal metabolism and CBF, with effects 
on several domains including decision-making and mem-
ory [86–88]. A systematic review and meta-analysis of 16 
RCTs, including 254 participants, assessing the impact 
of dietary nitrate on blood pressure, showed a significant 
reduction in systolic (-4.4 mm Hg; p < 0.001) and diastolic 
(-1.1 mm Hg; p < 0.06) BP, and a significant inverse asso-
ciation between the daily nitrate intake and systolic BP 
(p < 0.05) [44].
A double-blind, crossover RCT showed that a 3-day 
dietary nitrate supplementation in healthy young males 
improved brain oxygen metabolism and CBF [89]. Two 
RCTs recruited healthy young adults (age = 24.4 ± 5.7 SD) 
and ischemic overweight old patients (age = 67.4 ± 10.2 
SD) and both found a significant enhancement of CBF 
after one-week dietary nitrate supplementation [90, 91]. 
A single administration of nitrate-rich beetroot juice to 
healthy young (age range 18 to 27) participants signifi-
cantly improved cognitive function and CBF measured 
by Near-Infrared Spectroscopy (NIRS) at rest and dur-
ing cognitive stimulation [45]. These effects could be 
explained by several mechanisms such as improvement 
of endothelial function, neurovascular coupling and cere-
bral autoregulation due to an increased NO bioavailabil-
ity. Despite these promising findings, not all studies have 
reported a beneficial effect of dietary nitrate supplemen-
tation on cognitive function/cerebral blood flow. A sys-
tematic review and meta-analysis of twenty-two RCTs 
investigating the impact of dietary nitrate on cognitive 
function (n = 13 studies, total participants = 297) and CBF 
(n = 9 studies, total participants = 163), found no signifi-
cant effects of dietary nitrate supplementation on cogni-
tive function or CBF. However, most studies were of short 

duration (time range 90  min to 3 days) and included 
mostly young (mean age 22.6) non-obese healthy par-
ticipants with the exception of one study testing effects 
of sodium nitrite in older adults (aged 50 to 79) for lon-
ger duration (10-weeks) [88]. Also, a more recent RCT 
not included in the meta-analysis (which addressed many 
of the limitations of earlier studies in this area) reported 
no significant effects of a 13-week dietary nitrate supple-
mentation on cognitive function and CBF measured by 
NIRS in overweight and obese older adults (n = 62, age 
range 60 to 75 years) [92]. However, they found that 
the moderate and low dosages could have a significant 
improvement on systolic BP (low; p = 0.03, and moderate; 
p = 0.04) and microvascular perfusion (p = 0.02 for both 
arms in both outcomes) when compared to high and 
placebo groups, without significant difference between 
the moderate and low doses [93]. Hence, the duration 
and dosage need to be considered when evaluating the 
current literature. The lack of convincing evidence, the 
short duration of the studies to justify changes in cogni-
tion, and limited sensitivity of some methods to measure 
CBF and microvascular perfusion certainly call for more 
robust study designs and adoption of deep-phenotyping 
approaches to evaluate the effects of dietary nitrate on 
brain functions.

Dietary nitrate is closely linked with dietary antioxi-
dants and oxidative metabolism. The ingestion of com-
pounds with anti-oxidant properties such as ascorbic 
acid, vitamin E or phenolic compounds (i.e., quercetin, 
resveratrol) can enhance the generation of NO by pro-
moting a greater conversion of nitrate into nitrite in the 
gastric acidic lumen and/or by reducing the presence of 
ROS capable of quenching and inactivating both nitrite 
and NO [94–96]. Supplementation of dietary nitrate 
after acute hyperglycaemia in old obese adults decreased 
levels of two independent markers of oxidative stress 
significantly when compared to the placebo (3-nitrotyro-
sine; mitochondrial superoxide production in peripheral 
blood mononuclear cells (PBMCs)) [12]. Larsen et al. [97] 
demonstrated in humans that the dietary nitrate admin-
istration for 3 days improved oxidative phosphorylation 
efficiency (P/O ratio) and induced a decrease in state 4 
respiration in skeletal muscle, which mechanistically was 
linked to a reduced expression of a protein involved in 
proton conductance (ATP/ADP translocase). The same 
group subsequently demonstrated in an animal model 
of renal and cardiovascular diseases that dietary nitrate 
was able to decrease oxidative stress markers in plasma 
(malondialdehyde) and urine (Class VI F2-isoprostanes 
and 8-hydroxy-2-deoxyguanosine) [98]. An increased 
dietary nitrate intake induced upregulation of catalase, 
superoxide dismutase, glutathione peroxidase, mitofusin 
2 and PGC1α in PBMCs in patients with metabolic syn-
drome [99]. Nevertheless, no significant effects of dietary 
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nitrate supplementation were found on markers of oxida-
tive stress (i.e., malondialdehyde, mitochondrial super-
oxide, 8-isoprostane) in other studies [100–102], which 
clearly emphasizes the need for further basic and transla-
tional research in this area.

Some of the key human RCTs, identified by a non-sys-
tematic search of PubMed, that investigated the effects of 
dietary nitrate on brain health (cognition and CBF) are 
described in Table 2.

Molecular Mechanisms: Dietary nitrate could improve 
brain health via increased NO production. Dietary 
nitrate requires reduction by oral microbiota (e.g., Fir-
micutes, Proteobacteria, Actinobacteria, and Bacteroide-
tes) [103] into nitrite [83, 104–106] or can be converted 
into nitrite more slowly via mammalian nitrate reduc-
tases [107]. Nitrite is then reduced to bioactive NO 
either in the stomach (acidosis) or in the circulation after 
absorption by the intestine (especially in hypoxia), and 
this requires reduction by enzymes (e.g., XOR: xanthine-
oxidoreductase), haemoglobin, myoglobin polyphenols, 
ascorbate or protons [83, 104–106]. NO plays an essen-
tial role in regulating mitochondrial efficiency, immune 
and vascular smooth muscle cells (VSMC), and neuronal 
metabolism. NO can have direct or indirect effects; the 
former is possibly the most significant which involves 
the NO-cGMP pathway via sGC activation, an increase 
of cGMP production, which impacts the vascular smooth 
muscle cells (VSMC) and platelet function through 
cGMP-dependent protein kinase (PKG) production [83, 
104–106]. PKG activates the myosin light-chain phospha-
tase (MLCP) and vasodilator-stimulated Phosphoprotein 
(VASP) that are linked to vasodilation, anticoagulation 
and reduced VSMC proliferation [83, 104–106]. NO can 
also influence mitochondrial metabolism by binding with 
the cytochrome c oxidase (62, 74, 76), enhancing the 
efficiency of respiratory chain and reducing ROS pro-
duction via a competing interaction of reactive nitrogen 
species (RNSs) with complex 1 of the respiratory chain 
[18]. NO may improve pre-synaptic neurotransmission 
by facilitating the opening of the voltage-gated Ca+ 2 
channels (VGCCs). This mechanism facilitates the trans-
fer of Ca+ 2 to the post-synaptic (anterograde signalling) 
space via the NMDA receptor (activated by glutamate) to 
bind with Calmodulin (CaM), leading to the activation of 
nNOS and generation of NO [108, 109]. The locally pro-
duced NO exerts retrograde signalling to the pre-synap-
tic space, and this mechanism appears to be important 
for the consolidation of memory and learning (long-
term potentiation; LTP) [108, 109]. Dietary nitrate could 
induce autophagy by PPAR expression, SIRT3 and AMPK 
activation [18, 19]. Studies testing the effects of dietary 
nitrate on glucose and insulin metabolism in animals and 
humans have produced mixed findings [12, 16, 110, 111]. 
The putative effects of dietary nitrate on glucose uptake 

may be linked to an increased generation of NO via the 
XOR pathway, consequent activation of PKG signalling 
and increased expression of glucose transporters (GLUT-
1, GLUT-4 and HK-2) [110]. However, the exact mecha-
nisms underpinning the effects of nitrate-nitrite-NO on 
brain metabolism are still largely unknown.

Does dietary nitrate boost the effects of caloric restriction 
on brain health?
It is possible that CR and dietary nitrate could have syn-
ergistic/additive effects on brain health via their effects 
on common mechanistic pathways involving regulating 
mitochondrial, metabolic, immune, endothelial and neu-
ronal functions. Figure 1 provides a schematic represen-
tation of the putative mechanistic pathways. As described 
in the CR and dietary nitrate sections on molecular 
mechanisms, both interventions could influence mito-
chondria efficiency by enhancing the efficiency of respi-
ratory chain, reducing ROS generation and increasing 
ATP yield. CR positively impacts on macronutrient oxi-
dative metabolism via activation of SIRT1, Akt, AMPK 
and NO pathways; similarly, dietary nitrate enhances the 
NO bioavailability with a potential impact on glucose and 
lipid metabolism via increased GLUT-1, GLUT-2, GLUT-
4, PPAR-alpha and AMPK expression. These combined 
mechanisms could potentiate the effects of the single 
interventions on maintaining a healthy ageing trajectory 
and reducing the risk of chronic metabolic and neuro-
degenerative diseases. Autophagy is a critical process for 
maintaining cell function via the coordinated removal 
and recycling of damaged and dysfunctional molecules 
[112, 113]. An increase in autophagy activity has been 
linked to both interventions via mTOR inhibition (by 
CR) [69, 76], and increased PPAR expression and AMPK 
activation (by dietary nitrate) [18, 19]. CR and dietary 
nitrate could have a synergistic effect on NO production 
via the activation of different pathways influencing both 
the enzymatic and non-enzymatic synthesis NO path-
ways including for example the activation of the SIRT, 
Akt and AMPK pathways. Alharbi, et al. (2023) showed 
for the first time that the combination of dietary nitrate 
with CR for two weeks among middle-aged and older 
adults with overweight and obesity improved microvas-
cular perfusion (p = 0.03), cognitive function (TMT-B; 
p = 0.01), and reduced urinary 8-isoprostanes (p = 0.02) 
compared to CR alone [13]. The derived synergism of the 
two interventions on the proposed mechanisms may pro-
vide an effective strategy to minimise age-related cogni-
tive decline and reduce dementia risk.

Conclusions
Against the background of an ageing society and an 
impending increase in dementia cases, there is an urgent 
need to identify strategies to maintain healthy active 
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ageing, including a specific focus on brain ageing. Dietary 
interventions have the potential to reduce the risk of 
age-related diseases including cardiometabolic and 
neurodegenerative conditions. Some, but not all, previ-
ous investigations have suggested that CR and dietary 
nitrate can have beneficial effects on metabolic, vascular, 
and cognitive functions. However, this evidence is typi-
cally characterised by small sample sizes, short-duration 
interventions, and a preponderance of young, healthy 
participants. Moreover, studies have applied a variety of 
different cognitive tools and imaging methods, contribut-
ing to heterogeneous results. In this paper, we advocate 
for a synergism between CR and dietary nitrate which 
could provide a feasible and more effective nutritional 
strategy (than either intervention alone) to improve car-
dio-metabolic and brain health. Currently, only one study 
has tested this hypothesis, which showed preliminary 

benefits of a combined CR and dietary nitrate interven-
tion on endothelial and cognitive function. We identify 
plausible mechanistic pathways through which combined 
CR and dietary nitrate could improve cardio-metabolic 
and brain health. As a first step towards investigating the 
potential additive/synergistic effect of these two dietary 
strategies, we advocate prospective epidemiological stud-
ies to investigate the association between CR and dietary 
nitrate, alone and combined, with cognitive impairment 
and dementia in healthy and in ‘at risk’ populations. Such 
investigations could provide potential proof-of-concept, 
which could be further explored in randomised con-
trolled trials focusing on feasibility, acceptability, and 
efficacy. Given the absence of effective treatments for 
dementia, the identification of novel dietary (and other 
lifestyle) approaches to reduce societal burden of this 
condition are greatly needed.

Fig. 1 Synergistic effects of dietary nitrate and caloric restriction on brain health. Both interventions could induce NO bioavailability through the nitrate/
nitrite/NO pathway or Akt, AMPK and SIRT1 pathways. NO would increase mitochondrial efficiency by reducing ROS and inducing ATP from oxygen and 
ADP. In addition, NO would improve the endothelial function by interacting with sGC to convert GTP into cGMP, which activates PKG leading to MLCP 
(smooth muscle relaxation) and VASP (platelet aggregation inhibitor) activation. Moreover, NO could modulate inflammation that acts as pro-inflamma-
tory when it reacts with O2- (from uncoupled mitochondria) to form ONOO-. Furthermore, NO could enhance neurotransmission through activation of 
the antero-and retrograding signalling, which facilitates Ca + transferal. CR and dietary nitrate have several pathways that could increase the autophagy 
process by mTOR inhibition, Akt, AMPK, and SIRT activation. Key: AMPK, adenosine monophosphate-activated protein kinase; Akt, protein kinase B; cGMP, 
cyclic guanosine monophosphate; GTP, guanosine triphosphate; MLCP, myosin light-chain phosphatase; mTOR, mechanistic target of rapamycin; PKG, 
protein kinase G; sGC, soluble guanylate cyclase; SIRT1 and SIRT3, sirtuin; VASP, vasodilator-stimulated phosphoprotein; XOR, xanthine-oxidoreductase
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