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Abstract 

Background The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest 
modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut 
microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy 
and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. 
However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism 
by which this occurs is not well characterized.

Methods In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based 
flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated 
into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-
fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour 
supplementation.

Results In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. 
Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacte-
ria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight 
and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression 
in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased 
relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid 
(TDCA) in 10% WB and BF rats compared to HFD rats.

Conclusions Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic 
homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed 
to be due to increased concentrations of intestinal butyrate and circulating TDCA.
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Introduction
The prevalence of obesity continues to rise, with esti-
mates that 42% of the U.S. adult population will be obese 
by the year 2030 [1, 2]. This alarming increase in obesity 
is associated with an increased consumption of a West-
ern Diet, characteristically high in fat and sugar and 
low in fiber [3, 4]. As consumption of whole-food plant 
sources has declined, less than 8% of adults in the U.S. 
consume the daily recommended dietary fiber values [5]. 
Conversely, fiber supplementation improves body weight, 
adiposity, waist circumference, and serum glucose and 
insulin levels [6]. Thus, a possible solution to address the 
rising levels of obesity in the U.S is via dietary modifica-
tions to increase fiber consumption.

Obesity and diabetes are both associated with unique 
gut microbiome profiles, and alterations in the gut micro-
biome have been implicated in the success of many meta-
bolic therapeutics [7–9]. The diet is the predominant 
regulator of gut microbiota composition [10–12]. In the 
case of dietary fiber, increased fiber consumption is asso-
ciated with shifts in the gut microbiota [6, 13, 14]. Spe-
cifically, increased fiber consumption results in increased 
abundance of short-chain fatty acid (SCFA)-producing 
taxa such as Roseburia, Bifidobacteria, and Akkermansia 
[15–20], which are inversely correlated with obesity and 
associated with improvements in gut permeability and 
reductions in metabolic endotoxemia, both characteris-
tics of obesity [18, 19, 21, 22]. However, dietary fiber is 
extremely heterogenous, and little is known about how 
various dietary fibers differentially impact the gut micro-
biome and subsequently host health.

Plant-based flours vary in fiber solubility, viscosity, and 
palatability, all of which impact their function and effects 
on the gut microbiome. For example, Hi-maize amylose 
(HMA) is high in resistant starch with mixed solubility, 
whereas insoluble wheat bran (WB) contains wheat dex-
trin fiber and both barley flour (BF) and oat bran (OB) are 
composed of soluble viscous β-glucan. While many stud-
ies have independently investigated plant-based flours on 
metabolic parameters, many of which have found ben-
eficial effects on metabolic homeostasis [23–28], a com-
prehensive and comparative analysis of these flours has 
yet to be conducted. In the following study, four plant-
based flours (HMA, WB, BF, OB) differing in solubility 
and fiber composition were tested for their therapeutic 
potential to improve diet-induced obesity. Given that 
many of the previous work examining these plant-based 
flours demonstrated changes in the gut microbiota, we 
examined shifts in the gut microbiota as well as changes 
in SCFAs and bile acids, both gut-derived metabolites 
known to impact metabolic homeostasis. We hypoth-
esized that while the same plant-based flours at low (5%) 
or high (10%) supplementation would result in similar 

shifts in specific bacterial taxa in the gut microbiota, the 
high supplementation (10%) would more robustly shift 
the gut microbiota and increase SCFA production due to 
a greater amount of substrate for the bacteria to utilize, 
leading to a greater impact on metabolic homeostasis. 
Further, we hypothesized that rather than solubility or 
viscosity of the dietary flours (HMA, WB, BF, and OB), 
the specific fibers composition within the flour would 
contribute more robustly to gut microbiome shifts and 
metabolic improvements, with flours high in β-glucan 
(BF and OB) and resistant starch (HMA) being most 
effective based on previous studies [6].

Materials and methods
Rats
8-week-old male Sprague–Dawley rats were purchased 
from Charles River Laboratories (Wilmington, MA). 
Rats were single housed and maintained on a 12-h light/
dark cycle with ad  libitum access to a chow (Research 
Diets D12450H) diet and water prior to the start of the 
treatment diets. All rats were housed and maintained in 
accordance with the University of Arizona Institutional 
Animal Care and Use Committee (IACUC).

High fat and fiber diet treatment
In the following study, rats were maintained on either a 
macronutrient-matched chow (Research Diets), HFD 
(Research Diets D42151) or specially formulated HFD 
supplemented with either HMA, WB, BF, or OB at 
either 5% or 10% fiber content by weight (Research Diets 
D20011001-7, Additional file 2: Table S1). The fiber diets 
were macronutrient matched to the HFD (with similar 
but not identical kilocalories in some instances) with the 
fiber component of the flour replacing cellulose, and the 
other carbohydrates in the flour replacing the corn starch 
in the HFD (D42151). However, a 10% OB diet could not 
be created due to an inability to macronutrient-match the 
diet.

In Experiment 1, 2 cohorts (n = 5–6 rats per group 
per cohort) of 10wk old rats with an average weight of 
363 ± 30  g, were single-house, placed on a HFD, and 
allowed to eat ad  libitum for 5 weeks to induce obesity, 
defined as a significant increase in adiposity compared 
to healthy chow-fed rats. After the 5  weeks, the rats 
weighed on average 562 ± 55  g and had an average adi-
posity of 14 ± 4.8%, significantly increased compared to 
chow fed controls (Additional file 1: Figure S1A-C). Rats 
were then switched to HFD + flour diets and allowed to 
eat ad libitum for 12 weeks (n = 10–12/diet group from 2 
separate cohorts of 5–6 rats per group).

For Experiment 2, 10wk old rats with an average weight 
of 450 ± 23 g and average adiposity of 6 ± 2% were single-
housed and placed on either the HFD, 10% WB, or 10% 
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BF supplemented diet for 12  weeks without inducing 
obesity prior (n = 12/group). Three weeks after starting 
dietary treatment, rats were individually housed in meta-
bolic cages (Promethion Core, Sable Systems) for 3 days 
with 48 h for acclimation, and the final 24 h for record-
ings. Indirect calorimetry was utilized to measure energy 
expenditure and RER, and food intake. Data were con-
verted using the ExpeData and Macro Interpreter pro-
gram and analyzed with GraphPad Prism software.

In both experiments, body weight was recorded every 
week and body fat percentage was determined every 
3  weeks via imaging with EchoMRI™-500 Body Com-
position Analyzer (EchoMRI, Houston, TX). For experi-
ment 1, body weight and adiposity data are expressed as 
percent change from week 0 to accurately represent the 
effects of dietary treatment from two separate cohorts; 
percent change was calculated with the following for-
mula: ((week X—week 0)/week 0)*100. At the end of both 
experiments, rats were 4 h fasted and deeply anesthetized 
and blood (portal plasma) and tissue samples (liver and 
epididymal adipose) were harvested for analysis, immedi-
ately followed by animal euthanasia.

Cecal microbiota analysis
Individual cecal microbiota were assessed based on the 
V4 fragment of 16S rRNA gene, as published previously 
[29, 30]. As previously described, samples were mechani-
cally disrupted with the TissueLyser II (MO BIO Labo-
ratories) and total DNA from the cecal samples were 
purified using the QIAamp PowerFecal Pro DNA Kit 
(Qiagen) according to manufacturer protocol. No tem-
plate controls were used to control for potential contami-
nation during the extraction and sequencing procedure. 
All samples were pooled into a sequencing library, as 
previously published [29, 30]. A 7.25  pM library was 
sequenced at Microbiome Core at the University of 
Arizona Steele Children’s Research Center on MiSeq 
platform (Illumina) using custom primers [31]. Demul-
tiplexing was performed using idemp (https:// github.
com/yhwu/idemp). Quality filtering, error correction, 
dereplication, chimera identification, and merging of 
paired-end reads were performed using the DADA2 
pipeline [32]. The ASVs taxonomy was assigned using the 
Ribosomal Database Project (RDP) classifier [33] against 
SILVA database (release 138). Richness was calculated on 
rarefied data (10,920 reads), with significant differences 
tested with a nonparametric Kruskal–Wallis test followed 
by a Dunn’s post hoc test (p < 0.05 after FDR correc-
tion). Compositional differences between sample groups 
were tested using a PERMANOVA analysis based on 
Bray–Curtis dissimilarities, using the function “adonis” 
of the vegan R package. Non-metric multidimensional 
scaling (NMDS) ordination were used to visualize such 

differences. A nonparametric Kruskal–Wallis test fol-
lowed by a Dunn’s post hoc test (p < 0.05 after FDR 
correction) was performed to examine if the relative 
abundances of genera of interest were significantly dif-
ferent among sample groups. DeSeq2 package [34] was 
further used to calculate differential abundance between 
experimental groups at phylum level.

Short chain fatty acid analysis
Cecal contents were sent to Metabolon Inc. for SCFA 
extraction via bead beating and subsequent measurement 
of SCFA concentrations on a high-performance liquid 
chromatography (LC)-tandem mass-spectrometry (MS/
MS) platform as previously described [35]. SCFA concen-
trations were measured and presented per gram of cecal 
contents analyzed.

Cytokine and lipogenic enzyme PCR
Real-Time qPCR for adipose and liver was performed as pre-
viously described [30]. TaqMan™ Gene Expression Assays 
(ThermoFischer Scientific) for Tnf (tumor necrosis factor-α) 
(Rn99999017_m1) and Il6 (interlukin-6) (Rn01410330_m1) 
were used to measure cytokine expression and Fasn (fatty 
acid synathase) (Rn00569117_m1), Pparg (peroxisome 
proliferator-activated receptor -γ) (Rn00440945_m1), Scd1 
(stearoyl-Coenzyme A desaturase) (Rn06152614_s1), Acc 
(acetyl Coenzyme A carboxylase) (Rn00573474_m1), Lpl 
(lipoprotein lipase) (Rn00561482_m1) were used to meas-
ure lipogenic enzyme expression with Rps18 (18 s ribosomal 
RNA) (Rn01428913_gH) used for standardization.

Western blotting
Liver tissue was collected, crushed, and placed in NP40 
lysis buffer with protease and phosphatase inhibitor for 
homogenization. Homogenized samples were centrifuged 
at 12,000 rpm for 15 min at 4 °C, and the supernatant was 
collected. A BCA protein assay kit (ThermoScientific 
Cat#: 23,225) was used to determine total protein con-
tent of the samples, per manufacturer protocols. 20ug of 
denatured protein was loaded into a 10% Criterion TGX 
precast gel (Bio-Rad Cat#: 5,671,033) where they were 
separated by electrophoresis and transferred to a PVDF 
membrane using the wet transfer system. Membrane 
was blocked in 5% bovine serum albumin and incubated 
overnight at 4  °C with the primary antibodies fatty acid 
synthase (1:500, Cat# ab22759, Abcam), acetyl CoA car-
boxylase (1:500, Cat# 3662, Cell Signaling), lipoprotein 
lipase (1:500 Cat# sc-373759, Santa Cruz), stearoyl-
Coenzyme A desaturase (1:1000, Cat# ab236868), 
β-actin (1:5000, Cat# 4970, Cell Signaling), Glyceralde-
hyde 3-phosphate dehydrogenase (1:2000, Cat# 2118, 
Cell Signaling). Membrane was washed with TBST, then 
incubated with horseradish peroxidase conjugated IgG 
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secondary antibodies 1:20,000 (rabbit anti-mouse Cat# 
ab6728, Abcam; goat anti-rabbit Cat# ab6721, Abcam) 
for 1  h at room temperature. Protein signals were 
detected by West Pico Enzyme substrate complex (1:1 
ratio) and imaged using the Azure 600 Imager.

Liver triglyceride analysis
Pointe MedTest DX Triglyceride Liquid Reagent Set 
(Cat #: T7532-120) was used to isolate and quantify liver 
triglycerides in a colorimetric assay read at 570  nm as 
previously described [36, 37] and denoted as mg of tria-
cylglycerol/ g of liver tissue.

Glucose and insulin tolerance tests
At 12 weeks supplementation, rats underwent a glucose 
tolerance test, followed 3–5 days later by an insulin tol-
erance test. Rats were fasted for 6  h prior to the intra-
peritoneal glucose tolerance test (IPGTT) and insulin 
tolerance test (ITT). For the IPGTT, rats were injected 
intraperitoneally with 45% Glucose solution at 1.5  g/kg. 
Blood glucose measurements were taken via tail vein at 0, 
15, 30, 60, 90, and 120 min via handheld glucometer. For 
the ITT, rats were injected with insulin (0.75 U/kg; Sigma 
I0516-5ML). Blood glucose measurements were taken via 
tail vein at 0, 30, 60, 90, and 120 min time points.

Gut permeability assay
Five days following tolerance tests, rats were subject to 
a terminal gut permeability test. Following assay and 
previously published protocols [38], rats (n = 8–10/ 
group) were fasted for 4 h prior to gavage with 100 mg/
ml FITC-dextran (Sigma Aldrich) at 60 mg/100 g of body 
weight. Rats were sacrificed 4 h later as described above, 
and blood was collected via portal vein. Plasma fluores-
cence was read compared to FITC-dextran standards on 
Molecular Devices Spectramax M5 plate reader.

Endotoxin measurements
Portal plasma was collected by endotoxin-free pipette 
tips (Finntip™ Filtered Pipette Tips, ThermoFisher Scien-
tific) and stored in endotoxin-free tubes (ThermoFisher 
Scientific) at -80  °C prior to analysis. Plasma samples 
were thawed, diluted 1:50 in Endotoxin-free water (from 
kit), and heat shocked at 70 °C for 15 min prior to analysis 
with Pierce™ Chromogenic Endotoxin Quant Kit (Ther-
moFisher Scientific). Samples were plated in individu-
ally wrapped endotoxin free 96-well flat bottom plates 
(Endosafe, Charles River; product code M9005) accord-
ing to kit protocol and the plate was analyzed.

GLP‑1 and PYY elisa
Millipore GLP-1 Total ELISA kit (Cat # EZGLP1T-36 K—
sensitivity: 1.5  pM) and Aviva Systems Biology PYY 
ELISA kit (Cat # OKEH04432—sensitivity: 8.14  pg/mL) 
was used to analyze the portal plasma concentrations 
after fasting at the end of experiment 1. Samples where 
the absorbance did not fall within the ELISA standard 
curve range or where the coefficient of variability was 
above 10% were removed. ELISAs were run according 
to manufacturer guidelines and were read at 450 nm and 
590 nm (GLP-1) and 450 nm (PYY) to determine pM gut 
peptide concentrations.

Bile acid analysis
Portal plasma bile acids were analyzed at the University 
of Arizona Cancer Center Analytical Chemistry Shared 
Resource via liquid–liquid extraction utilizing ethyl 
acetate as previously described [39].

Statistical analysis
Statistical analyses were completed using GraphPad 
Prism 8 software (GraphPad Software). Normality was 
analyzed in GraphPad Prism 8 prior to statistical analy-
ses. The D’Agostino-Pearson omnibus K2 normality 
test was used when applicable, the Shapiro–Wilk nor-
mality test was used on data with small sample sizes 
(adiposity data). All data other than SCFA data passed 
normality tests. Body weight and change in adiposity 
were analyzed using a two-way ANOVA with repeated 
measures and a Dunnett’s post hoc analysis. To assess 
the effect of diet (HFD, BF, and WB) on energy expend-
iture and food intake (light cycle, dark cycle, and total 
24  h), we used the mixed model procedure in SAS 
Enterprise Guide 7.1 (SAS Institute Inc., Cary, NC), 
including lean mass as a covariate (ANCOVA). Differ-
ence between means was assessed by post-hoc analysis 
using the Tukey–Kramer correction for multiple com-
parisons. Glucose/insulin tolerance tests were analyzed 
using two-way ANOVA with multiple comparisons 
with Tukey’s post hoc analysis. Metabolic cage data, gut 
peptides, AUC, bile acids, liver triglycerides, inflam-
matory cytokines, and endotoxin measurements were 
analyzed using a one-way ANOVA with multiple com-
parisons with Tukey’s post hoc analysis. Simple linear 
regression analyses were run on lipogenic enzymes and 
liver triglycerides. SCFA data were analyzed using a 
Kruskal–Wallis Test for non-parametric data Spearman 
correlation for SCFAs and taxa at the genus level was 
calculated. p < 0.05 was considered significant. Data 
presented as mean ± SEM.
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Results
Experiment 1
Wheat bran and barley flour supplementation attenuate 
adiposity gain
Five weeks of HFD feeding induced obesity, as deter-
mined by a significant increase in body weight and adi-
posity of the HFD-fed rats compared to semi-purified 
macronutrient matched chow-fed control rats (Addi-
tional file  1: Figure S1A-C). After 5  weeks, rats were 
switched to the various diets outlined in Additional file 2: 
Table  S1. After 12  weeks of dietary fiber intervention, 
rats in all diet groups exhibited no reductions in body 
weight gain compared to HFD rats (Fig. 1A-D), with OB 
and HMA groups exhibiting increases in body weight 
gain compared with HFD control rats (Fig. 1C, D). None 
of the diet groups demonstrated changes in raw body 
weight or adiposity (Additional file  1: Figure S1D-K). 
However, both the 10% BF and WB diets decreased adi-
posity gain of rats compared with HFD at 3 and 6 weeks 
on the diet, (Fig.  1E, F). The 10% HMA  diet increased 
adiposity gain (Fig.  1G) while the 5% OB diet had no 
effect on adiposity gain (Fig.  1H). None of the 5% flour 
diets led to improvements in body weight (Fig. 1A-D) or 
adiposity (Fig. 1E–H).

Dietary flour supplementation alters the cecal gut 
microbiota
The 5% and 10% HMA and 10% BF groups had decreases 
in cecal gut microbiota alpha diversity compared with 
HFD-fed controls (Fig.  2A). Supplementation with each 
flour significantly shifted the beta diversity and composi-
tion of the cecal gut microbiota from HFD control rats 
(ADONIS, p = 0.001, R2 = 0.423), indicating that the cecal 
microbiota was influenced by dietary intervention. There 
were no significant differences in beta diversity and com-
position of the cecal microbiota between the 5% and 10% 
flour supplementation groups within the same diet group 
(Fig. 2B, C). All flour supplemented groups, besides HMA 
supplemented groups, exhibited increased Lactobacil-
lus relative abundance compared with HFD controls. All 
flour groups except both HMA and 10% BF had increased 
LachnospiraceaeUCG001 relative abundance compared 
with the HFD group. Additionally, all flour supplemented 
groups, other than OB, had decreased Ruminococcus_1 
relative abundance compared to HFD control. OB and BF 
supplemented groups had significantly increased Lach-
noclostridium relative abundance compared to HFD con-
trol. 10% BF and 10% HMA groups had increased Blautia 
relative abundance, and 10% BF and both HMA groups 
had decreased Oscillibacter relative abundance compared 
to HFD control. Roseburia relative abundance was only 
increased in rats supplemented with OB compared to all 

other groups. 10% HMA-fed rats exhibited a reduction 
in Akkermansia relative abundance compared with HFD 
(Fig. 2D; results of all present genera in Additional file 2: 
Table S2).

Dietary plant‑based flour supplementation increases SCFA 
production
After 12  weeks of flour supplementation, cecal butyrate 
levels were increased in BF, WB, and OB compared to 
HFD controls, with a non-significant dose response in the 
WB (p = 0.13) (Fig.  3A). Cecal acetate levels were unal-
tered by diet (Fig. 3B), and cecal propionate levels were 
increased in both HMA supplemented groups (Fig.  3C) 
compared to the HFD group. Further, we found that some 
gut microbiota genera were correlated with SCFA levels. 
Specifically, we found that Ruminococcus_1 was nega-
tively correlated with cecal levels of butyrate  (R2 = -0.222, 
p < 0.05) and propionate  (R2 = -0.404, p < 0.0001) and that 
Blautia was positively correlated with cecal butyrate lev-
els  (R2 = 0.353, p < 0.001) (Additional file 2: Tables S3, S4).

Experiment 2
10% wheat bran and barley flour supplementation prevent 
obesity through a reduction in energy intake
In experiment 1, 10% WB and BF supplementation con-
ferred the most metabolic improvements. Therefore, the 
next experiment tested the effectiveness of these fibers 
to prevent the development of diet-induced obesity. HFD 
supplemented with 10% WB or BF led to decreased body 
weight by the end of the study and decreased adiposity 
starting at 6  weeks of dietary intervention (Fig.  4A, B) 
compared to HFD-fed rats. Additionally, at the end of 
the study, both WB and BF supplementation decreased 
total fat mass without affecting lean mass (Fig. 4C, D). To 
determine if WB and BF altered energy expenditure or 
energy intake to improve energy homeostasis, all groups 
were placed in metabolic cages at week 3 of dietary inter-
vention, before significant effects on body weight or adi-
posity were observed. Rats supplemented with both WB 
and BF had reductions in total caloric intake compared 
with HFD-fed controls, with both flour supplemented 
groups demonstrating reductions in caloric intake dur-
ing the light cycle, while only the 10% WB-fed rats had 
reductions in the dark cycle (Fig.  4E). The reduction in 
caloric intake in the rats supplemented with WB was cou-
pled with nearly a 50% reduction in meal size in both the 
light and dark cycle (Fig. 4F). This was slightly offset by an 
almost doubling of meal number in dark cycle (Fig. 4G). 
Interestingly, although the BF supplemented rats demon-
strated a similar reduction in total caloric intake as WB 
supplemented rats, there were no differences in meal 
size or number in the BF supplemented group (Fig.  4F, 
G). Neither flour supplemented group demonstrated 
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differences in total energy expenditure compared with 
the HFD-fed controls, although the BF supplemented 
group did exhibit increased energy expenditure in the 
dark cycle (Fig. 4H). WB supplemented rats had a slight 

decrease in respiratory energy ratio (RER) in the dark 
cycle and a slight increase in RER in the light cycle com-
pared with HFD-fed control rats (Fig. 4I).

Fig. 1 Effect of flour supplementation on body weight and adiposity in obese rats. Body weight percent change in rats fed a HFD or a HFD 
supplemented with 5% or 10% WB (A), BF (B), HMA (C), or 5% OB (D). Percent change in adiposity in the same rats, 5% or 10% WB (E), BF (F), HMA(G), 
or 5% OB (H). Data presented as mean ± SEM (n = 10–12 per group); *represents significance between 10% flour and HFD, *p < 0.05, **p < 0.01, 
***p < 0.001, # represents significance between 5% flour and HFD, # p < 0.05
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Improvements in glucose tolerance and insulin sensitivity
After 12 weeks of flour supplementation, the WB- and 
BF-fed groups exhibited improved glucose tolerance 
compared to HFD-fed rats (Fig. 5A). However, only the 

10% BF group had decreased blood glucose at the 90, 
and 120  min time points and reduced area under the 
curve compared to HFD following an ITT (Fig. 5B).
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Fig. 2 Cecal gut microbiota analysis of flour supplemented rats. Alpha diversity index ASV/Species Richness. Statistically significant differences 
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Wheat bran supplementation increases portal PYY 
concentrations
Neither WB nor BF groups had differences in portal 
levels of active GLP-1 compared with HFD (Fig.  5C), 
however portal PYY concentration was increased in the 
WB-fed group (Fig. 5D).

10% wheat bran and barley flour effect expression 
of lipogenic enzymes and proteins and liver triglyceride 
content
HFD-induced obesity is associated with increased liver 
triglycerides and lipogenic enzyme expression. Both flour 
supplemented diets significantly decreased liver triglyc-
erides (Fig. 6A) and reduced expression of key lipogenic 
enzymes in the liver and adipose tissue compared to HFD 
control rats. Specifically, WB supplementation decreased 
hepatic gene expression of Acc and decreased adipose 
gene expression of Fasn, Pparg, and Acc, whereas BF 
supplementation decreased hepatic gene expression of 
Fasn and Pparg and decreased gene expression of Fasn, 
Scd1, and Acc in the adipose tissue compared to HFD 
controls (Fig. 6B). Additionally, liver triglyceride content 
was positively correlated with hepatic Fasn  (R2 = 0.239, 
p < 0.01) and Acc  (R2 = 0.306, p < 0.01) gene expression 
but not Pparg  (R2 = 0.116, p < 0.082) (Additional file  1: 
Figure S4A-C), and adipose tissue mass was positively 
correlated with adipose Acc  (R2 = 0.191, p < 0.05) gene 
expression but not Pparg  (R2 = 0.021, p = 0.464) or Fasn 
 (R2 = 0.1198, p = 0.071) across all groups (Additional 
file  1: Figure S4D-F). Furthermore, similar to our gene 
expression data in Fig.  6B, there was a non-significant 
reduction in protein expression of ACC in the liver of 
WB fed-rats (p = 0.1876) (Fig. 6C, Additional file 1: Fig-
ure S5A), while hepatic protein expression of SCD1, FAS 
and LPL did not differ between groups (Fig. 6D-F), Addi-
tional file 1: Figure S5B-D).

Wheat bran and barley flour decrease inflammatory 
cytokines in the liver and adipose tissue
Although WB and BF diets did not alter gut permeability 
in rats compared to HFD, as measured by FITC-dextran 
assay (Additional file 1: Figure S2A), an increase in portal 
endotoxin levels was observed in WB-fed rats compared 
to HFD-fed rats (Additional file  1: Figure S2B). Despite 
the increase in portal endotoxins, WB-fed rats had reduc-
tions in TNF- α expression in the liver compared with 
HFD controls, and both WB and BF diet groups demon-
strated a non-significant decrease in IL-6 expression in 
adipose tissue compared with HFD-fed rats (Additional 
file 1: Figure S2C).

Plant flour supplementation alters the cecal gut microbiota 
and portal bile acids
Rats fed a diet supplemented with BF had significantly 
decreased cecal microbiota alpha diversity compared 
with HFD-fed control rats whereas rats fed a diet sup-
plemented with WB had a non-significant increased 
cecal microbiota alpha diversity (p = 0.055) (Fig.  7A). 
Cecal microbiota beta diversity was significantly differ-
ent between rats in all diet groups (Fig.  7B, C). At the 
genus level, DESeq2 analysis demonstrated that WB sup-
plemented rats had increased Lachnospiraceae_UCG001 
and decreased Ruminococcus_1 abundance compared 
with the HFD-fed rats, while the BF supplemented rats 
had increased Blautia and Lachnoclostridium abundance 
compared with HFD rats. Both flour supplemented diet 
groups had increased abundance of Lactobacillus com-
pared with HFD rats (Additional file  1: Figure S3A, B), 
similar to Experiment 1. The changes in the cecal micro-
biota composition were accompanied with a significant 
increase in cecum mass in the BF rats (9.9 g + 0.86 versus 
4.1 g + 0.33 for HFD and 4.33 g + 0.27 for WB).

Fig. 3 Cecal SCFA levels following dietary flour supplementation. Cecal levels of butyrate (A), acetate (B), and propionate (C) in rats fed a HFD 
or flour supplemented HFD for 12 weeks. Data presented as ug of SCFA/g of cecal content weight. Mean ± SEM (n = 10–12 per group); *represents 
significance from HFD control group, *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 4 Changes in body weight and adiposity of rats on either a HFD or HFD supplemented with 10% barley flour or wheat bran. Body weight 
(A) and adiposity (B) of WB, BF, and HFD-fed rats. Week 12 total fat mass (C) and lean mass (D). 24-h metabolic cage data at week 3 of dietary 
intervention; energy intake (E), meal size (F), meal number (G), energy expenditure (H), and respiratory exchange ratio (RER) (I). Data presented 
as mean ± SEM (n = 9–10 per group); *p < 0.05 wheat group from HFD, #p < 0.05 barley group from HFD; different letters indicate a significant 
difference between groups p < 0.05
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Fig. 5 Assessment of glucose homeostasis and gut peptides in flour supplemented rats. Blood glucose concentration and area under the curve 
(AUC) of an intraperitoneal glucose tolerance test (IPGTT) in HFD-fed and WB and BF supplemented HFD-fed rats (n = 6–10 per group) (A). Blood 
glucose concentration and area under the curve of an ITT (n = 8–9 per group) (B). Portal vein active GLP-1 (n = 8–11 per group) (C) and PYY (n = 5–6 
per group) (D) after a 5 h fast. Data presented as mean ± SEM; *indicate significance between WB and HFD, # indicate significance between BF 
and HFD, and $ indicate significance between WB and BF. *p < 0.05, **p < 0.01, ***p < 0.001 wheat group from HFD, #p < 0.05, ##p < 0.01 barley group 
from HFD, and $p < 0.05 wheat group from barley group
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While no differences in total bile acids were found 
between groups (Fig. 8A), both WB and BF supplemen-
tation significantly decreased the percentage of glycine 
conjugated bile acids compared with the HFD group 

(Fig. 8B). No differences were found between groups for 
percentage of taurine conjugated  (Fig.  8C) or unconju-
gated bile acids (Fig. 8D). WB significantly increased the 
amount of taurolithocholic acid (TLCA), BF significantly 

Fig. 6 Liver triglycerides and mRNA expression of enzymes involved in lipogenesis in liver and white adipose tissue and western blots of liver 
enzymes. Liver triglyceride amount by tissue weight (n = 7–11 per group) (A). Relative mRNA expression of enzymes involved in lipogenesis 
in the liver and adipose tissue (n = 6–11 per group) (B). Western blots of hepatic ACC (C), LPL (D), SCD (E), and FAS (F) quantified as fold control 
protein expression. Data presented as mean ± SEM; *p < 0.05, **p < 0.01, wheat group from HFD, # p < 0.05, ## p < 0.01, ### p < 0.001 barley group 
from HFD
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decreased the amount of ursodeoxycholic acid (UDCA), 
and both diets significantly increased taurochenodeoxy-
cholate (TCDA) (Fig. 8E).

Discussion
Increasing general fiber consumption can prevent or slow 
the development of obesity and obesity-related metabolic 
perturbations [40, 41]; however, no study to date has 
comprehensively compared the effectiveness of differ-
ent plant-based flours that vary in fiber composition. In 
the current study, we found that 10% WB and BF diets 
were effective at attenuating adiposity gain in a diet-
induced obese rodent model as well as preventing against 

the development of  obesity and metabolic impairments 
commonly seen with HFD feeding. BF is high in soluble 
β-glucan, and the beneficial effects of β-glucan supple-
mentation have been extensively reported [26, 42–44]. 
WB, on the other hand, is mostly composed of insoluble 
fiber. Given that both flours were effective despite being 
different solubilities, fiber solubility may not be impera-
tive for fiber-mediated improvements in metabolic 
parameters, but improvements may be due to alterations 
in the gut microbiota and metabolites instead.

In the current study, HMA (5% or 10%) and OB (5%) 
displayed worsened body weight and adiposity com-
pared to the HFD-fed rats. In support of these findings, 
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Fig. 7 Cecal microbiota analysis. Alpha diversity index ASV/Species Richness. Statistically significant differences between all diet groups were 
determined using a Kruskal–Wallis test followed by a pairwise Wilcox test with Bonferroni correction (A); *represents significance between diet 
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Fig. 8 Effect of flour supplementation on portal vein bile acids. Portal vein total bile acids (A), % glycine conjugated bile acids (n = 8–10 per group; 
outliers 3 or more standard errors from the mean were removed) (B), % taurine conjugated bile acids (C), and % unconjugated bile acids (D). Fold 
change of primary and secondary bile acids over HFD control group (E). Data presented as mean ± SEM (n = 8–11 per group); **p < 0.01, ***p < 0.001 
wheat group from HFD, #p < 0.05, ###p < 0.001 barley group from HFD



Page 14 of 20Martinez et al. Nutrition & Metabolism           (2023) 20:44 

previous studies have shown HMA does not improve 
body composition [45–47]. This could be due to the lack 
of increases in butyrate production with HMA supple-
mentation, as the current study demonstrates that the 
effective flours, WB and BF, drastically increased butyrate 
production. The 5% OB diet also failed to improve meta-
bolic parameters, despite increasing butyrate concen-
tration similarly to rats supplemented with 5% WB and 
5% BF diets. As supplementation with the 5% OB, WB, 
and BF diet formulations failed to improve body weight 
and adiposity measurements but supplementation with 
the 10% WB and BF diet formulations improved body 
weight and adiposity measurements and had the highest 
concentrations of butyrate, it is plausible that there is a 
minimum threshold for the beneficial effects of butyrate 
that was not reached by supplementation with the 5% 
flour formulations. Likewise, it is possible 10% OB sup-
plementation may have been effective considering OB is 
similarly high in β-glucan to BF, a hypothesis supported 
by previous studies [48]. However, formulation of a 10% 
OB diet was not feasible in this study, therefore, the 
effectiveness of a higher amount of OB to improve obe-
sity was not investigated. It should be noted that supple-
mentation with highly viscous fibers and flours, such as 
β-glucan and BF, can increase small intestinal viscosity, 
resulting in improvements in glucose homeostasis and 
reductions in hepatic lipid accumulation in HFD-fed 
rats [49, 50]. However, these studies report no reduc-
tion in hepatic FAS gene expression, which was found in 
our study [49, 50], indicating that the beneficial effects of 
BF in this study cannot be attributed solely to increases 
in small intestinal viscosity. Rather, the gene expression 
reductions in hepatic FAS may be secondary to reduc-
tions in body weight and adiposity [51, 52] or due to 
other observed changes, such as SCFAs that are absorbed 
into circulation and readily taken up by the hepatocytes 
[53, 54]. Importantly, butyrate, which was significantly 
increased upon BF supplementation, is a known histone 
deacetylase inhibitor and has been reported to alter both 
gene and protein expression in the liver to improve lipid 
metabolism [55, 56]. These data taken together suggest 
that the type of fiber as well as the source of the fiber can 
influence its effectiveness.

We found that at 3 weeks of dietary intervention, WB 
and BF supplemented rats had a reduction in total caloric 
intake and BF supplemented rats had increased energy 
expenditure during the dark cycle. As this reduction in 
energy intake and increase in energy expenditure pre-
ceded reductions in body weight and adiposity, it is plau-
sible they contributed to the observed improvements 
in adiposity and body weight. This reported decrease in 
energy intake is in line with previous studies [43, 57, 58]. 
Interestingly, we also found that the rats supplemented 

with WB had reductions in meal size but increased meal 
number compared with HFD-fed control rats, indicating 
that the rats supplemented with WB had improvements 
in satiation but not satiety. These findings are in line with 
previous research reporting increased satiation with 
WB preload [59] and that supplementation with a fiber 
derived from WB decreases body weight gain over time 
[22] but does not affect satiety [60]. While decreased 
caloric intake could be attributed to increased gut pep-
tide signaling which is known to reduce food intake, 
we only observed an increase in portal levels of PYY in 
WF-fed rats. However, given that both GLP-1 and PYY 
are released in response to a meal, future studies should 
assess postprandial  levels of these gut peptides follow-
ing WB and BF supplementation. Interestingly, previ-
ous studies have demonstrated that reductions in body 
weight following fiber supplementation are associated 
with increased energy expenditure [42, 61, 62]. However, 
in the current study neither WB nor BF supplementation 
affected energy expenditure.

Despite the differences in the effectiveness of die-
tary-flour supplementation on energy homeostasis, all 
flour-supplemented diets significantly shifted the gut 
microbiota composition compared with HFD-fed con-
trols. However, the shifts in the gut microbiota compo-
sition were unique for each flour. Groups supplemented 
with OB, BF, and WB, but not HMA, had increased rela-
tive abundance of LachnospiraceaeUCG001 and Lacto-
bacillus compared with HFD-fed controls. Both genera 
have been previously reported to improve gut barrier 
integrity and produce SCFAs, thereby reducing inflam-
mation [63–66]. Interestingly, the same increase in Lach-
nospiraceaeUCG001, in WB supplemented groups, and 
Lactobacillus in both WB and BF supplemented groups 
occurred in experiment 2, indicating that flour supple-
mentation results in similar gut microbiota alterations 
regardless of when supplementation is initiated. Impor-
tantly, 5% OB supplemented groups had increased Lacto-
bacillus and LachnospiraceaeUCG001 relative abundance 
similar to 5% WB and 5% BF supplemented groups but 
did not improve metabolic parameters, a further indica-
tor that supplementation with a 10% OB diet, if it could 
have been generated, could improve adiposity and glu-
cose homeostasis similar to what was observed with 
10% WB and 10% BF supplemented diets. OB and BF are 
both high in the fiber β-glucan, which could explain the 
similarities between 5% OB and 5% BF supplementation. 
Additionally, Ruminococcus_1 was decreased in all flour 
supplemented groups except for the OB supplemented 
group compared with HFD-fed controls, and we found 
that Ruminococcus_1 was negatively associated with cecal 
levels of butyrate and propionate. Ruminococcus_1 is 
associated with mucosal layer defects in genetically obese 
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mice [67], implicating their importance in regulating the 
gut barrier, and thus, inflammation. Additionally, Blau-
tia, which has been shown to be decreased in individuals 
with obesity and insulin resistance [68, 69], was increased 
in the 10% BF supplemented groups in both experiment 
1 and experiment 2. Blautia is a SCFA-producing bacte-
ria [70], indicating that increases in Blautia abundance 
could be contributing to the increased butyrate seen with 
BF supplementation and the resultant beneficial effects 
of BF supplementation on energy and glucose homeosta-
sis. Indeed, Blautia was positively associated with cecal 
butyrate levels. However, since 10% BF supplementation 
decreased body weight in both experiment 1 and experi-
ment 2, the increases in Blautia abundance could be due 
to reductions in body weight or food intake rather than 
directly by BF. In contrast to previous studies [71–73], we 
saw no increases in Akkermansia abundance in our flour 
supplementation groups. Akkermansia abundance is neg-
atively associated with obesity and type 2 diabetes [74–
76], and based on these data, reductions in Akkermansia 
in the HMA supplemented groups may be at least partly 
contributing to the obesogenic effects of this diet. Fur-
thermore, Roseburia is a known butyrate-producer that 
is associated with metabolic benefits [77, 78]. Interest-
ingly, we observed an increase in relative abundance only 
in the 5% OB group, further highlighting that if we were 
able to formulate a 10% OB supplementation, we might 
have observed metabolic improvements with 10% OB 
supplementation due to increased butyrate production. 
Interestingly, Lachnoclostridium relative abundance was 
also increased in the BF group, despite previous studies 
showing Lachnoclostridium is positively associated with 
obesity and adiposity [79] and is decreased during calorie 
restriction [80]. Since BF supplementation led to robust 
benefits to energy and glucose homeostasis, the increase 
in Lachnoclostridium abundance observed with BF sup-
plementation could be offset by other beneficial altera-
tions to the gut microbiota or this genus may play a less 
significant role in metabolic homeostasis, however this 
remains to be tested. Furthermore, the alterations to the 
gut microbiota are conserved between experiment 1 and 
experiment 2, highlighting that the flour composition, 
rather than supplementation timing, plays a larger role 
in shifting the gut microbiota. However, since this study 
used terminal timepoints for the gut microbiota analyses, 
future studies should investigate whether the gut micro-
biota changes occur prior to changes in body weight or 
adiposity, or are a consequence of the improvements in 
bodyweight and adiposity.

Some of the flour-induced changes in the gut micro-
biota composition were associated with increased cecal 
butyrate, such as Blautia and Ruminococcus_1. The 
increases in cecal butyrate found with almost all flour 

supplementations aligns with previous studies which 
consistently report the largest increase in butyrate rather 
than acetate or propionate [81–85] after fiber supple-
mentation. Interestingly, HMA supplementation, which 
worsened body weight and adiposity gain, increased cecal 
propionate levels but did not increase cecal butyrate lev-
els, indicating that the composition of the SCFA pool 
may be more important for metabolic improvements 
than increases in total SCFA production [86]. 10% WB 
and 10% BF supplementation conferred the greatest met-
abolic improvements and caused the largest increase in 
cecal butyrate concentrations, indicating that increased 
butyrate could be mediating the improvements in meta-
bolic homeostasis observed with flour supplementation. 
Of note, although not significant, there appeared to be 
a dose–response of fiber supplementation and butyrate 
concentrations in the rats supplemented with WB or BF. 
Additionally, this dose response might be underrepre-
sented due to the fact that we sampled the cecum after 
a 5 h fast, while it has been previously shown there is a 
very significant postprandial rise in cecal butyrate levels 
up to eight hours [30]. Further, rats supplemented with 
5% OB had increased cecal butyrate levels similar to rats 
supplemented with 5% WB and 5% BF. Therefore, again, 
it is likely that 10% OB supplementation, as it has pre-
viously been shown to confer metabolic improvements 
and increase cecal butyrate levels [48], would have led to 
beneficial effects similar to what was observed in the 10% 
WB and 10% BF supplementation groups.

SCFAs act as ligands on the G-protein coupled recep-
tors, FFAR2 and FFAR3, localized on EECs in the distal 
gut to induce release of GLP-1 and PYY that regulate glu-
cose homeostasis and overall energy homeostasis [87]. 
While we only observed minimal differences in gut pep-
tides, both GLP-1 and PYY are nutrient-induced satiation 
signals increased in response to a meal, and it is possible 
postprandial increases in SCFAs [30] could lead to greater 
circulating GLP-1 and PYY levels in the flour-treated 
groups compared with the HFD group. Additionally, 
butyrate is the main energy source for colonocytes [88] 
and increases in colonic butyrate can improve gut barrier 
integrity [89–91] to decrease circulating endotoxin levels 
[91, 92]. Interestingly, despite observing little effect on 
gut permeability or circulating endotoxin levels, BF and 
WB supplemented rats had decreased cytokine expres-
sion in the liver and adipose tissue compared to HFD. 
While this lack of improvement on gut barrier and endo-
toxemia contrasts previous studies, decreased inflam-
matory cytokine expression in the flour-supplemented 
groups may be due to an increase in anti-inflammatory 
molecules, such as SCFAs. For example, a previous study 
demonstrated that treating HFD-fed mice with butyrate 
reduces liver and adipose inflammation without altering 
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gut permeability [93]. Further, other studies have dem-
onstrated that treating cells with butyrate blunts the 
increase in TNF- α and IL-6 expression after endotoxin 
stimulation [94].

Increased SCFA concentrations are also associated 
with decreased liver triglycerides and reductions in lipo-
genesis [55, 95, 96]. Indeed, in this study, we report a 
reduction in liver triglycerides in the flour-supplemented 
rats which was associated with reductions in the gene 
expression of the lipogenic enzymes FASN and ACC but 
not PPAR- γ (Additional file 1: Figure S4A-C). Addition-
ally, we found that adipose tissue mass was significantly 
associated with adipose tissue expression of the lipogenic 
enzyme ACC and there was a non-significant correlation 
with adipose FASN expression but was not correlated 
with PPAR- γ expression (Additional file 1: Figure S4D-F). 
FAS catalyzes the conversion of acetyl-CoA to fatty acids 
in de novo lipogenesis, PPAR- γ plays a key role in lipo-
genesis and adipogenesis, and ACC catalyzes the conver-
sion of acetyl CoA to malonyl CoA. Taken together, these 
data suggest that flour supplementation led to reductions 
in liver triglyceride formation by reducing lipogenesis in 
the liver and adipose tissue. Indeed, although not signifi-
cant, we found that lipogenic protein expression in the 
liver was similar with our gene expression data, suggest-
ing that the flour-induced differences in gene transcrip-
tion resulted in functional protein differences to alter 
hepatic lipogenesis. This provides evidence that flour-
supplemented diets could also treat non-alcoholic fatty 
liver disease, the most common type of chronic liver 
disease, often found as a comorbidity in individuals with 
obesity [97]. Furthermore, WB supplementation reduced 
RER during the dark cycle, indicating that there was a 
shift towards more lipid oxidation in this group. Taken 
together, reductions in lipogenesis and increases in lipid 
oxidation could mediate the reductions in body weight 
and adiposity during plant flour-supplementation.

In the current study, BF and WB supplemented groups 
demonstrated improvements in glucose tolerance which 
was accompanied by an improvement in insulin tolerance 
in the BF supplemented group. Taken together, this indi-
cates that the improvements in glucose homeostasis seen 
with BF supplementation are likely due to improvements 
in insulin sensitivity. As such, future studies should 
determine how flour supplementation can improve 
insulin sensitivity. One mechanism may be through the 
observed reductions in overall adiposity and hepatic tri-
glycerides or inflammatory signaling at metabolic tissues 
following BF and WB supplementation, as increased lipid 
accumulation and increased inflammation are known to 
cause insulin resistance [98, 99]. Secondly, exogenous 
butyrate administration improves glucose tolerance in 
rodents [100], therefore, high butyrate levels in rats fed 

BF and WB supplemented diets could be driving the 
improvements in glucose tolerance. Third, improvements 
in glucose homeostasis may be due to gut microbiota-
induced alterations in bile acid signaling [101]. Although 
there were no differences in total bile acids in the cur-
rent study, flour supplementation resulted in alterations 
to the bile acid pool. WB-supplemented groups had 
increased plasma levels of TLCA and TDCA while the BF 
group had increased plasma levels of TDCA. TLCA and 
TDCA are TGR5 agonists [102, 103], and TRG5 agonism 
improves energy and glucose homeostasis [104, 105], 
indicating that flour-induced alterations to the bile acid 
pool could partially mediate the beneficial energy and 
glucose homeostatic effects of WB and BF supplementa-
tion. Importantly, a recent study found that TDCA levels 
are decreased in diet-induced obesity and restored with 
gastric bypass surgery-induced weight loss [106]. Fur-
thermore, treatment with TDCA significantly reduced 
body weight in diet-induced obese mice but not chow fed 
controls [106], indicating that reductions in TDCA may 
contribute to the metabolic perturbations of HFD and 
that the beneficial effects of flour supplementation seen 
in this study may be partially due to restoration of TDCA 
levels. Future studies should investigate this hypothesis 
and the role of bile acid signaling in the effects of flour 
supplementation on metabolic parameters.

Conclusions
Overall, this study comprehensively investigates the 
effectiveness of supplementing various flours at differ-
ent concentrations on metabolic homeostasis. Impor-
tantly, we found that 5% flour supplementation had no 
therapeutic effect to decrease adiposity in diet-induced 
obese rats. Our data indicate that 10% WB and BF-sup-
plemented diets are most effective at improving energy 
homeostasis via reductions in energy intake, and that 
these improvements are possibly due to gut microbiota 
driven increases in cecal butyrate and portal levels of 
TDCA. These data demonstrate the preventative and 
therapeutic efficacy of 10% WB and BF supplementation 
to abate body weight and adiposity gain and improve glu-
cose tolerance in HFD-fed rats. These findings expand 
on the current knowledge of flour supplementation and 
identify gut microbiota-mediated mechanisms by which 
these flours could be exerting their beneficial effects.
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