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Abstract 

Context Resveratrol (RV), a natural compound found in grapes, berries, and peanuts, has been extensively studied 
for its potential in treating Alzheimer’s disease (AD). RV has shown promise in inhibiting the formation of beta-amyloid 
plaques (Aβ) and neurofibrillary tangles (NFTs), protecting against neuronal damage and oxidative stress, reducing 
inflammation, promoting neuroprotection, and improving the function of the blood–brain barrier (BBB). However, 
conflicting results have been reported, necessitating a comprehensive umbrella review of systematic reviews to pro-
vide an unbiased conclusion on the therapeutic effectiveness of RV in AD.

Objective The objective of this study was to systematically synthesize and evaluate systematic and meta-analysis 
reviews investigating the role of RV in AD using data from both human and animal studies.

Data sources and extraction Of the 34 systematic and meta-analysis reviews examining the association 
between RV and AD that were collected, six were included in this study based on specific selection criteria. To identify 
pertinent studies, a comprehensive search was conducted in English-language peer-reviewed journals without any 
restrictions on the publication date until October 15, 2023. The search was carried out across multiple databases, 
including Embase, MEDLINE (PubMed), Cochrane Library, Web of Science, and Google Scholar, utilizing appropriate 
terms relevant to the specific research field. The AMSTAR-2 and ROBIS tools were also used to evaluate the quality 
and risk of bias of the included systematic reviews, respectively. Two researchers independently extracted and ana-
lyzed the data, resolving any discrepancies through consensus. Of note, the study adhered to the PRIOR checklist.

Data analysis This umbrella review presented robust evidence supporting the positive impacts of RV in AD, irrespec-
tive of the specific mechanisms involved. It indeed indicated that all six systematic and meta-analysis reviews unani-
mously concluded that the consumption of RV can be effective in the treatment of AD.

Conclusion RV exhibits promising potential for benefiting individuals with AD through various mechanisms. It 
has been observed to enhance cognitive function, reduce Aβ accumulation, provide neuroprotection, protect 
the BBB, support mitochondrial function, facilitate synaptic plasticity, stabilize tau proteins, mitigate oxidative stress, 
and reduce neuroinflammation commonly associated with AD.
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Graphical abstract

Introduction
Alzheimer’s disease (AD), the primary cause of dementia 
accounting for 60% to 80% of cases [1–3], is a progres-
sive neurological disorder characterized by the presence 
of abnormal protein deposits in the brain such as beta-
amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) 
composed of tau protein [4–7]. These deposits disrupt 
cellular processes, impair communication between neu-
rons, and contribute to the degeneration and death of 
brain cells [6, 8], resulting in memory loss, cognitive 
decline, and behavioral changes [9, 10].

All currently approved medications for the treatment 
of AD were authorized more than a decade ago. The 
primary drugs used as initial treatment options are ace-
tylcholinesterase (AChE) inhibitors, namely donepezil, 
rivastigmine, and galantamine. These medications work 
by blocking the breakdown of acetylcholine, a neuro-
transmitter that plays a role in memory and cognitive 
function [12–14]. They are utilized to alleviate cognitive 
impairment and slow down the progression of demen-
tia in AD patients [15]. Memantine, an NMDA receptor 
antagonist, has been approved for moderate-to-severe 
AD [16, 17].

Most importantly, the US FDA has approved aduhelm 
(aducanumab) and Leqembi (lecanemab-irmb) for treat-
ing AD patients (see https:// www. fda. gov/ drugs/ news- 
events- human- drugs/ fdas- decis ion- appro ve- new- treat 
ment- alzhe imers- disea se and https:// www. fda. gov/ news- 
events/ press- annou nceme nts/ fda- conve rts- novel- alzhe 
imers- disea se- treat ment- tradi tional- appro val), mark-
ing them medications to target Aβ in the brain. Despite 

doubts about their clinical efficacy, these monoclonal 
antibodies have shown to decline Aβ; as a result, reduc-
ing Aβ can reduce the clinical decline of AD [6, 18].

Various substances, including nutrients, are now recog-
nized as effective in early stages of AD, supporting brain 
function and slowing down AD progression [6, 12, 13, 
19, 20]. Resveratrol (RV), also known as 3,4′,5-trihydrox-
ystilbene (chemical formula: C14H12O3), is an epitome 
of such substances. RV, a polyphenolic phytoalexin found 
in grapes, berries, and certain plants, has been linked to 
potential health benefits like neuroprotective and anti-
inflammatory properties [26, 27]. RV exists in two forms, 
-trans and -cis isomers, and notably, previous studies 
have shown that trans-RV, found in higher concentra-
tions than cis-RV in foods like grapes and wine [29–31], 
exhibits greater antioxidant and anti-inflammatory prop-
erties [32].

The notion that RV could serve as a therapeutic agent 
to manage the progression of AD has been influential 
in recent decades, prompting numerous researchers to 
investigate the potential role of RV in AD [33–36]. For 
instance, recent research indicates that RV may play a 
role in anti-amyloidogenic mechanisms, suggesting that 
natural or synthetic analogues may have therapeutic 
potential in AD [36]. RV may also potentially impact AD 
through its antioxidant, silent information regulator-1 
(SIRT1)-activating [37], and anti-inflammatory prop-
erties [33], as well as its ability to regulate Aβ and tau 
protein, both of which are involved in the development 
of AD. RV has been suggested to offer neuroprotection, 
promote neurogenesis, [38], and mitigate oxidative stress 

https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease
https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease
https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease
https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval
https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval
https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval
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in the brain to control AD [37]. Nevertheless, it is impor-
tant to note that not all studies have reported promising 
results regarding the role of RV in AD. In fact, the find-
ings from various studies are controversial, and some 
studies have not specifically reported a positive impact 
of RV on cognitive and memory performance, which are 
characteristics associated with AD [39, 40].

Given the foregoing debate regarding the role of RV in 
AD, numerous systematic reviews have been conducted. 
However, no comprehensive review has yet synthe-
sized the relevant evidence, leaving the overall benefits 
of RV use for AD unclear. This means that no study has 
undertaken as a comprehensive review that incorpo-
rates a broad spectrum of relevant studies, diverse study 
designs, meticulous evidence analysis, inclusion of stud-
ies conducted on diverse populations, and a thorough 
assessment of the impact of RV on AD. Indeed, existing 
systematic reviews investigating the role of RV in AD 
exhibit limitations stemming from diverse study designs, 
participant characteristics, dosage regimens, treatment 
durations, and outcome measures. The variability in RV 
dosages and formulations, influenced by factors such as 
food intake and metabolism, introduces the possibility of 
inconsistent findings across studies. Additionally, some 
studies fail to adequately account for potential confound-
ing factors, including genetic predisposition, coexist-
ing medical conditions, and medication use, which can 
potentially modify the effects of RV. Therefore, our objec-
tive is to evaluate the strength and credibility of the evi-
dence derived from systematic and meta-analysis reviews 
on RV intake in AD by conducting an umbrella review to 
reach a convergent conclusion.

Umbrella reviews offer a comprehensive synthesis of 
evidence by integrating findings from multiple systematic 
and meta-analysis reviews. They assess quality, identify 
discrepancies, and evaluate evidence strength, providing 
time and resource efficiency, supporting decision-mak-
ing, identifying research gaps, and optimizing resource 
utilization. Indeed, umbrella reviews consolidate data 
from multiple systematic reviews on a specific topic, pro-
viding a comprehensive overview of the research domain. 
They have the ability to identify patterns, contradictions, 
or areas that may require further investigation, which 
individual reviews might overlook [41, 42].

This umbrella review will synthesize and analyze the 
available evidence, considering the diverse study designs, 
participant characteristics, dosage variations, treatment 
durations, and outcome measures reported in exist-
ing systematic reviews. By doing so, it aims to provide 
a more comprehensive understanding of the relation-
ship between RV and AD, while also accounting for 
potential confounding factors. This umbrella review will 
analyze six systematic and meta-analysis reviews that 

investigated the relationship between RV and AD based 
on predefined selection criteria.

Methods and materials
This present umbrella review was conducted in accord-
ance with the PRIOR (Preferred Reporting Items for 
Overviews of Reviews) guidelines [43]. The PRIOR 
checklist is presented in Additional file 1: Appendix 1.

Eligibility criteria
We included systematic and meta-analysis reviews that 
assessed the impact of RV on AD in both human and ani-
mal studies. We have included both animal and human 
studies in this review because it is crucial for the evalu-
ation of interventions [44–47]. Animal studies provide 
valuable insights into mechanisms, efficacy, and safety, 
serving as a bridge between basic research and clini-
cal applications [48, 49]. They offer predictive value by 
exploring intervention effects before testing them in 
humans [49]. Animal studies also help identify poten-
tial harms and safety concerns [50]. By understanding 
the underlying biological mechanisms through animal 
studies, researchers can develop targeted treatments for 
humans. Furthermore, including animal studies respects 
ethical boundaries and allows exploration of interven-
tions that may not be feasible or ethical in humans [47, 
51–53]. Thus, integrating animal and human studies 
in an umbrella review provides a more robust evidence 
base, supporting informed decision-making in both pre-
clinical and clinical research.

We defined systematic reviews as peer-reviewed stud-
ies that follow a specific methodology, including having 
a clearly reported research question, conducting a sys-
tematic search of at least two databases, and performing 
systematic data synthesis. Importantly, those system-
atic reviews that followed the PRISMA guidelines were 
included. These reviews aim to provide a comprehensive 
and unbiased summary of existing evidence on a specific 
topic—the role of RV in AD. Additionally, the eligibility 
criteria used in other overviews of systematic reviews 
should be replicated to ensure consistency across differ-
ent reviews. Certain types of reviews were excluded from 
the definition of systematic reviews: Reviews with only 
one author were excluded because systematic reviews 
typically involve a team of researchers working together 
to minimize bias and enhance reliability; reviews that 
searched only one database were also excluded, as this 
can lead to incomplete coverage of relevant studies.

Information sources and search strategy
We conducted an extensive search across multiple 
databases, including Embase, MEDLINE (PubMed), 
Cochrane Library, Web of Science, Epistemonikos, and 



Page 4 of 15Azargoonjahromi and Abutalebian  Nutrition & Metabolism           (2024) 21:15 

Google Scholar, with the aim of finding relevant research. 
Studies must be written in English and published in peer-
reviewed journals. The search was not restricted by the 
publication start date and covered until October 15, 2023. 
We utilized specific terms such as “resveratrol,” “wine,” 
“SIRT1 activator,” “3,5,4′-trihydroxy-trans-stilbene,” 
“cis- and trans-resveratrol,” “peanuts,” and “resveratrol 
supplement”. These terms were combined with keywords 
associated with “Alzheimer’s disease,” “neurodegenerative 
conditions,” “cognitive function,” “beta-amyloid,” “neu-
rofibrillary tangles,” “tau protein,” “systematic review,” and 
“meta-analysis”.

To clarify, we conducted thorough searches in men-
tioned databases by combining different terms. For 
instance, we explored “resveratrol” combined with “Alz-
heimer’s disease” in each database, then “resveratrol” 
combined with “neurodegenerative conditions”, and so 
forth. We experimented with diverse search methods, 
using quotation marks, Boolean operators and incor-
porating these terms into sentences. It is important 
to note that our searches were not limited to specific 
words; instead, these words were integral components 
of sentences crafted for each database. Additional file 2: 
Appendix 2 shows details of the search strategy used in 
the present umbrella review.

In addition to the database search, we conducted a 
thorough review of the reference lists in relevant review 
papers and papers that met our study entry criteria. This 
supplementary step enabled us to discover further pub-
lished research by examining the references cited within 
those papers.

Selection process
We sorted the included reviews based on the popula-
tion and intervention comparisons (known as PICOs) 
while ensuring adherence to the PRISMA guidelines 
[54]. In cases where multiple reviews addressed the same 
comparison for the same population, we prioritized the 
review with the most recent search date and complete-
ness of the search, as well as the highest quality. To assess 
overlap, the first author (A.A.) extracted this informa-
tion from the reviews, and the second author (F.A.) 
cross-verified the data. Additionally, we evaluated the 
methodological quality of the included reviews using 
a checklist specifically designed for systematic reviews 
called AMSTAR-2 (A MeaSurement Tool to Assess sys-
tematic Reviews) [55]. Both authors (A.A. and F.A.) 
independently assessed each publication and reached a 
consensus on the quality through discussions. Any stud-
ies that did not meet the criteria outlined in AMSTAR-2 
were excluded from the analysis. The final decision on 
which reviews to include was made through agreement 
between two of the authors (A.A. and F.A.).

Data collection process
Two of the authors involved in the overview indepen-
dently extracted data from each systematic review using 
an electronic form that was created and tested before-
hand. Any disagreements that arose were resolved 
through consensus among the authors. In the event 
that inconsistent data were identified across the system-
atic reviews, our plan was to extract data from all the 
included reviews and address the discrepancies by con-
tacting the authors of those reviews, retrieving primary 
studies from the included reviews, and searching relevant 
trial registries. We intended to discuss any potential dis-
crepancies in the Results section of this umbrella review; 
however, it is worth noting that no inconsistent data were 
identified during the extraction process.

Data items, synthesis methods, risk of bias assessment
Research has been conducted on the connection between 
RV consumption and AD in both animal and human sys-
tematic reviews. Of these six systematic reviews [56–61], 
four were systematic reviews involving human subjects 
[56, 58, 60, 61], while two involved animal subjects [57, 
59]. We excluded certain studies from the analysis for 
various reasons. Firstly, studies that assessed AD but 
focused on components other than RV due to lack of suf-
ficient data were excluded. The presence of a confounder 
in this situation raises the question of whether RV has 
influenced AD symptoms or if other components have 
played a role. Additionally, studies that evaluated only 
SIRT1 or polyphenols and nutrients without any admin-
istration of RV were also excluded. The reason for this 
is that SIRT1 can be influenced by various other condi-
tions and components [62–64], leading to potential bias. 
Furthermore, studies that examined wine but did not 
measure RV within them were excluded as well. This is 
because wine contains numerous other components that 
have been demonstrated to have similar effects as RV can 
[65].

To conduct the screening process, two authors inde-
pendently reviewed the titles and abstracts of relevant 
publications. For doing so, we used both EPPI-Reviewer 
(version: 6.15.0.2) and Microsoft excel 2021; This enabled 
us to effectively remove duplicate records and perform 
subsequent screening. Any discrepancies or conflicts 
were carefully reviewed and reanalyzed in order to reach 
a resolution. Publications that raised doubts about their 
context or eligibility were included in the list for full-text 
screening.

In determining the risk of bias of a systematic review 
with meta-analysis, we relied on the Risk of Bias in Sys-
tematic Reviews (ROBIS) tool [66]. Specifically, we con-
sidered a systematic review with meta-analysis to be of 
high quality if it demonstrated low risk of bias in the first 
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three domains of the ROBIS tool. These domains encom-
passed the specification of study eligibility (domain 1), 
the methods used to identify and select studies (domain 
2), and the methods used to collect data and appraise 
studies (domain 3). In order to assess studies that 
required additional scrutiny, we employed the Cochrane 
“Risk of Bias” tool [67]. This tool provided a framework 
for a comprehensive evaluation of the potential biases 
present in those studies.

Results
A total of 31 studies were collected through multiple 
databases, and three articles were found by carefully 
examining the reference lists of publications that had 
already been identified. Out of the total of 34 system-
atic reviews, we carefully selected only 6 for systematic 
evaluation. The reason for this selection was that some of 
the reviews failed to meet the inclusion criteria as deter-
mined by the AMSTAR-2 and ROBIS tools. Addition-
ally, certain reviews did not adhere to the recommended 
PRISMA guidelines. Moreover, several reviews were 
found to be rife with confounding factors. For instance, 
these reviews examined the simultaneous administration 
of other components alongside RV, making it challenging 
to ascertain the precise impact of RV alone. Furthermore, 

some studies neglected to consider comorbid conditions 
when analyzing the effects of RV on AD patients. This 
introduced a potential bias, as the AD patients in ques-
tion were also afflicted with other diseases or disorders 
such as stroke, depression, diabetes, and cardiovascular 
diseases, among others. Given this scenario, there are 
additional factors at play that can influence the impact of 
RV, thereby preventing us from reaching a definitive con-
clusion. Thus, six studies [56–61] were evaluated in this 
umbrella review. Figure 1 shows a flowchart of the selec-
tion of pertinent studies.

Out of these six studies [56–61], four were systematic 
reviews involving human subjects [56, 58, 60, 61], while 
two involved animal subjects’ systematic reviews [57, 
59]. The methodological details of studies have been 
summarized in Table 1, which followed PICOS (Popula-
tion, Intervention, Comparison, Outcomes, and Study) 
criteria.

Human systematic reviews
According to a systematic review of three randomized 
clinical trials, [56] RV and its metabolites have the poten-
tial to traverse the blood–brain barrier (BBB), potentially 
influencing cognitive function and brain metabolism. 
They discovered some exciting results, but there was no 

Fig. 1 The flowchart of the selection of pertinent studies
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significant loss observed in a particular segment they 
were investigating. They also examined various biomark-
ers and found that while some of their trajectories or 
patterns had changed, there were no apparent treatment 
effects on specific factors related to AD, such as plasma 
plasma Aβ42, CSF Aβ42, CSF tau, CSF phosphotau 
181, hippocampal volume, entorhinal cortex thickness, 
MMSE, CDR, ADAS-cog, NPI, glucose, or insulin metab-
olism The authors advise caution when interpreting the 
findings related to the altered biomarker trajectories, 
suggesting that further analysis and consideration are 
necessary. However, a pilot study conducted on individu-
als with mild cognitive decline in AD demonstrated posi-
tive outcomes in terms of cognitive function and brain 
metabolism. Additional studies suggest that RV may have 
the potential to seal a leaky BBB and contribute to cog-
nitive and functional improvement in AD patients. In a 
proof-of-concept study, RV was found to reduce glycated 
hemoglobin (HbA1c), preserve hippocampal volume, and 
enhance hippocampal resting-state functional connectiv-
ity in individuals at risk for dementia [56].

Another systematic review reported that compared 
to the group receiving a placebo, the administration of 
RV demonstrated a mitigating effect on the decline of 
Mini-Mental State Examination (MMSE) scores, Alz-
heimer’s Disease Cooperative Study—Activities of Daily 
Living (ADCS-ADL) scores, and CSF Aβ42 levels over 
the course of the 52-week trial. However, there was no 
observed alteration in tau levels. Furthermore, RV and its 
primary metabolites were detectable in both plasma and 
CSF. The decline in CSF Aβ40 and plasma Aβ40 levels 
was more pronounced in the placebo group compared to 
the RV treatment group, resulting in a significant differ-
ence at week 52. This means that the levels of CSF Aβ40 
and plasma Aβ40 in the placebo group decreased more 
significantly over time compared to the RV treatment 
group. Notably, there was a significant decrease in the 
mean values of the RV group when compared to the pla-
cebo group (p < 0.03) [60].

In addition, Kocatürk et  al. 2022 found that adminis-
tering 500 mg of RV for a duration of one year resulted 
in reductions in CSF Aβ40 and CSF Aβ42 levels, as well 
as a decrease in serum Aβ40 levels in individuals with 
AD [58]. Likewise, Xu Lou et al., 2023 reported that RV 
intake, irrespective of dosage, can enhance brain volume, 
reduce MMSE scores, and improve AD scores in AD 
patients. In individuals with mild cognitive impairment, 
RV prevents the decline in Standard Volumes of Inter-
est and increases Resting-state Functional Connectivity 
scores. Moreover, the group receiving RV exhibited nota-
ble improvements, reflected in higher rates of improve-
ment indicated by good rate, MMSE scores, and FIM 
scores (p < 0.05), as well as lower clinical indicators and 

ADAS-cog scores (p < 0.001). Additionally, trans-RV has 
demonstrated a neuroprotective effect in patients with 
mild to moderate AD, as evidenced by change scores 
on ADAS-cog, MMSE, ADCS-ADL, and NPI showing 
less deterioration in the treatment group compared to 
the control group, although none of the change scores 
reached statistical significance [61].

In summary, the potential outcomes of taking RV from 
these human systematic reviews [56, 58, 60, 61] are as 
follows:

• Potential to traverse the BBB, influencing cognitive 
function and brain metabolism.

• Positive outcomes in cognitive function and brain 
metabolism in individuals with mild cognitive decline 
in AD.

• Mitigating effect on the decline of MMSE and 
ADCS-ADL scores in AD patients.

• Reduction in CSF Aβ40 and plasma Aβ40 levels, 
while a more pronounced decline observed in the 
placebo group.

• Reductions in CSF Aβ40, CSF Aβ42, and serum Aβ40 
levels in individuals with AD.

• Enhancements in brain volume and resting-state 
functional connectivity in AD patients and individu-
als with mild cognitive impairment.

• Neuroprotective effect in patients with mild to mod-
erate AD, while showing less deterioration in change 
scores on ADAS-cog, MMSE, ADCS-ADL, and NPI 
in the treatment group compared to the control 
group.

Animal systematic reviews
Two systematic reviews [57, 59] reported in this regard 
that RV supplementation provided protective benefits 
against memory loss and brain pathology in AD trans-
genic (3xTg-AD) mice, as well as improving cognitive 
function in healthy nontransgenic (NoTg) mice. In addi-
tion, RV reduced anxiety levels and the accumulation of 
Aβ and phosphorylated tau (p-tau) aggregates specifically 
in the hippocampus of 3xTg-AD mice. The beneficial 
effects of RV were attributed to its activation of AMP-
activated protein kinase (AMPK), leading to the upreg-
ulation of SIRT1 and cAMP response element-binding 
protein (CREB) [68]. Furthermore, the findings indicated 
that RV effectively reduced inflammation in both rat 
astrocytes and N9 microglia cell lines, suggesting that 
targeting the NF-κB signaling pathway could be a signifi-
cant approach in the treatment of AD [69].

In addition to such findings, a long-term dietary sup-
plementation of RV (150 mg/kg per day) significantly 
enhanced cognitive abilities and decreased AD markers 
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in the brains of SAMP8 mice. These markers included 
reduced levels of Aβ42, decreased p-tau, increased 
phosphorylation of glycogen synthase kinase 3β 
(GSK-3β) at Ser9, and decreased expression of TNFα, 
IL-6, and IL-1β [70]. Further, RV effectively reduced 
the levels of reactive oxygen species (ROS), indicating 
its potential in preventing cognitive decline and neuro-
chemical changes. Not to mentioned that RV facilitated 
neural repair in the mouse model of AD [71]. Of note, 
RV-induced mitophagy, which a process that eliminates 
damaged mitochondria to maintain their quality, has a 
protective effect against oxidative damage caused by Aβ 
in PC12 cells in in vitro AD model [72].

In addition to the aforementioned, an animal sys-
tematic review [57] that assessed 19 animal stud-
ies reported that RV-fed mice, irrespective of dosage, 
showed significant declines in Aβ counts and burden 
in various brain regions, including the medial cor-
tex, striatum, and hypothalamus. Additionally, RV-
induced activation of SIRT1 decreased Aβ42 and Aβ40 
(p < 0.05) accumulation in SAMP8 animals. The study 
also revealed that RV effectively sustained the integrity 
of the BBB and inhibited Aβ1–42 from crossing it and 
accumulating in the hippocampus. More interestingly, 
the group of mice treated with RV showed a notewor-
thy reduction in Aβ42 levels compared to the control 
group that received the vehicle treatment (p < 0.00001) 
[57].

In addition to the accumulation of Aβ in the brain, 
abnormalities in the tau protein are also considered a 
major factor in the development of AD [73]. Studies 
show RV reduces hyperphosphorylated tau levels in 
AD mice by decreasing CDK5 and GSK3β activity, pre-
venting tau phosphorylation at Ser396, and lowering 
p-tau levels in the cortex (p < 0.01) and hippocampus 
(p < 0.05). Further, RV reverses SIRT1 inactivation and 
tau hyperphosphorylation in both rats and mice. This 
suggests that active SIRT1 plays a role in attenuating 
tau hyperphosphorylation by reducing ERK1/2 phos-
phorylation (p < 0.05) and regulating neuronal PP2A 
activity. Noteworthy, RV treatment demonstrated cog-
nitive improvement in rats with early AD by reducing 
tau activity and the activity of the Aβ–caspase3–Akt–
GSK-3β-tau pathway (p < 0.05). These findings sug-
gest that RV holds promise as a potential therapeutic 
approach for AD [57].

In summary, the results of RV administration from 
these animal systematic and meta-analysis reviews [57, 
59] are as follows:

• Protective benefits against memory loss and brain 
pathology in 3xTg-AD.

• Improved cognitive function in healthy NoTg.

• Reduction in anxiety levels and accumulation of Aβ 
and p-tau aggregates in the hippocampus of 3xTg-
AD mice.

• Activation of AMPK, leading to upregulation of 
SIRT1 and CREB.

• Reduction of inflammation in rat astrocytes and N9 
microglia cell lines.

• Enhanced cognitive abilities and decreased AD mark-
ers in the brains of SAMP8 mice, including reduced 
levels of Aβ42 and p-tau.

• Decreased expression of TNFα, IL-6, and IL-1β in 
the brains of SAMP8 mice.

• Reduction of ROS.
• Facilitation of neural repair in a mouse model of AD.
• Significant declines in Aβ counts and burden in vari-

ous brain regions in RV-fed mice.
• Sustained integrity of the BBB and inhibition of 

Aβ1–42 accumulation in the hippocampus.
• Reduction of hyperphosphorylated tau levels in AD 

mice.
• Reversal of SIRT1 inactivation and tau hyperphos-

phorylation in rats and mice.
• Cognitive improvement in rats with early AD.

Table  2 provides a summary of the findings derived 
from both human and animal studies investigating the 
effects of RV intake in cases of AD.

Discussion
This comprehensive overview of six systematic reviews 
[56–61] examining the effects of RV in AD cases, both 
in humans and animals, reveals significant evidence sup-
porting RV intake as a therapeutic or protective agent for 
individuals with AD. However, it should be noted that 
further studies with reduced limitations are necessary, as 
a few human studies have reported no significant effects 
of RV intake in AD protection.

Recent research suggests that RV may hold therapeu-
tic potential for AD [33–36]. This is due to its ability to 
exert anti-amyloidogenic effects [74], provide neuropro-
tection [75], promote neurogenesis [76], and alleviate 
oxidative stress [77]. However, it is important to note that 
not all studies consistently report positive outcomes [39, 
40]. Furthermore, existing systematic reviews on RV and 
AD face limitations, such as variations in study designs, 
participant characteristics, dosage regimens, treatment 
durations, and outcome measures. These limitations can 
introduce inaccuracies and potentially overlook con-
founding factors. Therefore, the objective of this study 
was to critically evaluate the evidence while addressing 
these limitations.

The question that arose was whether RV can have a 
positive impact on AD. After evaluation included studies 
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[56–61], despite some limitations that will be discussed at 
the end of this section, we found that RV can show prom-
ise in various aspects of AD treatment. Indeed, all these 
studies mentioned that RV has protective effects against 
memory loss and cognitive decline, reduces AD-related 
markers such as Aβ and p-tau, and improves cognitive 
function and brain metabolism in AD cases. The forth-
coming paragraphs will discuss the potential mechanisms 
through which RV can exert these effects.

Most studies suggest that RV has the ability to cross 
the BBB [78, 79], which is a protective barrier that sepa-
rates the bloodstream from the brain. By traversing the 
BBB, RV can directly access the brain tissue and exert 
its effects. The presence of RV in the brain can influence 
cognitive function, which refers to various mental pro-
cesses such as memory, attention, and problem-solving in 
AD cases [80]. Additionally, RV exhibits promising health 
advantages by stimulating AMPK within the brain [81, 
82].

Research on the activation of AMPK by resveratrol has 
revealed a range of mechanisms, some of which appear 
intricate and occasionally conflicting. One of these mech-
anisms involves an increase in the ratio of AMP to ATP, 
as indicated by certain studies [83]. Additionally, other 
research suggests that the activation of AMPK by resver-
atrol relies on upstream serine/threonine kinases, such as 
LKB1 [81, 84], and calcium/calmodulin-dependent pro-
tein kinase kinase β (CaMKKβ) [85, 86]. Of interesting, 
it has been observed that RV can trigger AMPK inde-
pendently of the AMP-to-ATP ratio [81]. This activation 
results in elevated glucose absorption [87, 88], improved 
mitochondrial function, [88], and the promotion of neu-
roprotective effects through anti-inflammatory action, 
enhanced autophagy, anti-oxidant activation through 
the Nrf2 pathway, and restoration of energy levels [89]. 

Therefore, RV’s ability to traverse the BBB is significant as 
it allows it to directly interact with the brain, potentially 
influencing cognitive function and brain metabolism.

Aβ peptides are a group of peptides involved in the 
formation of amyloid plaques in neurodegenerative dis-
eases like AD [90]. The main types of Aβ peptides include 
Aβ40, Aβ42, and Aβ38, with Aβ42 being more prone to 
aggregation and considered more toxic [91]. Aβ43 and 
other variants like Aβ37, Aβ39, Aβ45, and Aβ46 also 
exist but are less common [92, 93]. The relative levels and 
aggregation properties of these peptides are believed to 
play a role in the development and progression of AD, 
though their exact mechanisms are still being studied 
[94].

Analyzed human systematic reviews suggest that RV 
can lead to a reduction in CSF Aβ40 and Aβ42 levels, as 
well as serum Aβ40 levels, in individuals with AD. The 
precise mechanisms by which RV can do so is not fully 
understood; yet one of which is that RV may modulate 
amyloid precursor protein (APP) processing and favor 
the non-amyloidogenic pathway, thus reducing the pro-
duction of Aβ40 and Aβ42 peptides [85, 95]. APP is a pro-
tein found in cell membranes that is involved in normal 
brain function. However, in AD, there is a disturbance 
in the processing of APP, resulting in the accumulation 
of Aβ peptides, including Aβ40 and Aβ42, which are the 
hallmark of AD [96]. APP can be processed through two 
main pathways: The amyloidogenic pathway and the non-
amyloidogenic pathway. In the amyloidogenic pathway, 
APP is cleaved by enzymes called β-secretases (such as 
β-secretase 1, or BACE1) and γ-secretases, resulting in 
the production of Aβ peptides [97, 98].

RV has been suggested to modulate APP processing 
and promote mostly the non-amyloidogenic pathway. 
The non-amyloidogenic pathway involves the cleavage 

Table 2 A summary of the impact of RV on AD cases from human and animal systematic reviews analyzed in this umbrella review 
[56–61]

Studies Findings References

Human studies Potential impact on BBB traversal, cognitive function improvement and metabolism in mild AD, and AD biomarkers 
reduction

[56]

Mitigation of MMSE and ADCS-ADL decline in AD patients [60]

Reduction in CSF Aβ40, Aβ42, and serum Aβ40 in AD individuals [58]

Improving brain volume, reducing MMSE scores, significant improvements in clinical indicators and ADAS-cog scores, 
and showing less deterioration in ADAS-cog, ADCS-ADL, and NPI scores

[61]

Animal studies Protective effects against memory loss, cognitive enhancement, and reduction of AD-related markers [57, 59]

Reduced anxiety levels, lowered Aβ and p-tau in hippocampus of AD model mice [57, 59]

Activation of AMPK, reduced inflammation in rat astrocytes and microglia [57, 59, 68]

Reduced pro-inflammatory cytokines, ROS, neural repair in AD models [70, 71]

Decreased hyperphosphorylated tau, SIRT1 reactivation in animal models, significant reductions in Aβ burden, and sus-
tained BBB integrity in RV-fed mice

[57]
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of APP by α-secretase, which prevents the formation of 
Aβ peptides [99, 100]. RV has been proposed to boost 
the activity of α-secretase, an enzyme involved in the 
non-amyloidogenic cleavage of APP. When α-secretase 
activity is increased, it cleaves APP within the Aβ region, 
preventing the formation of Aβ peptides. As a result, 
there is a decrease in the production of Aβ40 and Aβ42, 
which are associated with the development of amyloid 
plaques in AD [101, 102]. Notably, RV can upregulate 
the expression of α-secretase while downregulating the 
expression of β-secretase. This modulation of secretase 
enzyme expression favors the non-amyloidogenic path-
way and reduces Aβ production [103].

Of note, a study reported that RV does not affect the 
levels of APP holoprotein and its C-terminal proteolytic 
fragments, these data indicate that RV does not target 
an Aβ-producing activity, but rather promotes Aβ clear-
ance [95]. Indeed, this study pointed out that RV does 
not hinder the production of Aβ, as it does not interfere 
with the enzymes responsible for generating Aβ, namely 
β-secretase and γ-secretase. Instead, RV facilitates the 
breakdown of Aβ within cells through a mechanism that 
involves the proteasome [95, 104]. Further research is 
needed to elucidate the detailed mechanisms of RV in 
modulating APP processing and thus reducing Aβ pep-
tides in the context of AD.

In addition to the aforementioned, RV has been shown 
to upregulate SIRT1 in normal and AD cases [105, 106]. 
SIRT1, a sirtuin protein primarily found in neurons’ 
nuclei, dynamically regulates cellular processes such 
as aging, metabolism, and neuroprotection [107, 108]. 
Patients with AD and mild cognitive impairment have 
been found to exhibit lower levels of SIRT1 compared 
to healthy individuals [109], indicating that measuring 
serum SIRT1 levels could potentially serve as an early 
biomarker for AD diagnosis. In animal models of AD, the 
accumulation of Aβ was shown to suppress SIRT1 levels, 
whereas the administration of RV, a compound that acti-
vates SIRT1, significantly reduced Aβ deposition in the 
brain [110]. SIRT1 activation enhances the production 
of ADAM10, an enzyme that promotes the breakdown of 
APP through α-secretase activity, resulting in decreased 
Aβ levels in mouse brain tissue affected by AD [111]. 
Moreover, SIRT1 reduces the activity of ROCK1 and 
BACE1, leading to reduced Aβ levels [112]. For instance, 
in AD monkey models, interventions such as calorie 
restriction and SIRT1 overexpression were associated 
with lower brain Aβ levels, which correlated inversely 
with SIRT1 levels [113]. A recent study also supports the 
role of SIRT1 in activating α-secretase and further inhib-
iting Aβ production [114]. Together, these findings high-
light the potential of SIRT1 as both a therapeutic target 
and a biomarker for AD.

In the context of AD, SIRT1 has garnered significant 
interest due to its involvement in pathways related to the 
disease’s development and progression. These pathways, 
along with involving Aβ metabolism, include the regu-
lation of tau phosphorylation [115, 116], modulation of 
inflammation [117–119], mitigation of oxidative stress 
[120], and regulation of synaptic plasticity [121]. (For fur-
ther gaining information about the role of SRIT1 in brain 
cells, see [106]) (Fig. 2).

As per these analyzed systematic reviews, it was indi-
cated that RV has a potential to activate SIRT1; indeed, 
RV can interact directly with SIRT1 and stimulate its 
enzymatic activity related to SIRT1 [57, 59]. Upon the 
whole, RV has the potential to activate SIRT1 by directly 
interacting with the protein and enhancing its enzymatic 
activity, thereby providing beneficial in preventing AD.

Another probable mechanism is that RV activates 
CREB [122, 123], a transcription factor involved in 
memory formation and neuronal plasticity, potentially 
enhancing cognitive function in AD cases [124, 125]. RV 
stimulates the activation of CREB signaling pathways by 
regulating levels of cAMP [122]. This activation leads to 
the transcription and expression of genes related to syn-
aptic plasticity, neuronal survival, and memory formation 
[122, 126, 127]. Increasing the expression of genes like 
brain-derived neurotrophic factor (BDNF) and its recep-
tor TrkB, RV enhances synaptic plasticity and potentially 
improves cognitive function in AD cases [128–130]. 
Of note, progression of AD is accompanied by reduced 
levels of BDNF in the brain [131], blood [132], and CSF 
[133] of AD patients. Conversely, higher levels of BDNF 
in the blood have been correlated with improved cogni-
tive function in individuals with AD [134].

Limitations
This umbrella review on the role of RV in AD has sev-
eral limitations that should be acknowledged. First, the 
included studies encompass a diverse range of study 
designs, such as randomized controlled trials, observa-
tional studies, and preclinical experiments. This varia-
tion introduces heterogeneity in the results, making it 
challenging to draw definitive conclusions. Differences in 
participant characteristics, RV dosage, treatment dura-
tion, and outcome measures across studies further con-
tribute to the heterogeneity, limiting the ability to pool 
data and perform quantitative analyses.

Another limitation is the variability in RV dosages 
and formulations used across studies. Factors such as 
food intake and individual variations in metabolism 
can influence the absorption and bioavailability of RV 
[135–137]. This variability in RV dosages and formu-
lations may contribute to inconsistent findings across 
studies and hinder the ability to determine the precise 
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effects of RV on AD. The lack of standardized dosing 
protocols for RV limits the comparability and general-
izability of the results.

Some studies included in this umbrella review did 
not fully account for potential confounding factors 
that could influence the effects of RV on AD. Factors 
such as genetic predisposition, coexisting medical con-
ditions, and concomitant medication use may interact 
with RV and modify its effects [32, 138]. The het-
erogeneity in participant characteristics across stud-
ies may introduce confounding variables that are not 
adequately controlled for, thus limiting the ability to 
attribute observed effects solely to RV.

Notwithstanding these limitations, this umbrella 
review offers important insights into the current evi-
dence regarding the involvement of RV in AD. How-
ever, it is crucial for future research to address the 
limitations identified in order to enhance the qual-
ity and applicability of the evidence. This will ulti-
mately contribute to the development of RV-based 
interventions for the prevention and treatment of 
AD. As a result, researchers can improve the cred-
ibility and trustworthiness of the evidence, leading to 
more informed decision-making when considering the 
potential use of RV in managing AD.

Conclusion
Taken together, this umbrella review of systematic 
reviews aimed to evaluate the potential impact of RV on 
AD. We found that RV may hold potential as a beneficial 
treatment for AD, based on evidence from both human 
and animal studies. One key factor that contributes to its 
effectiveness is RV’s ability to cross the BBB, allowing it 
to directly impact cognitive function and brain metabo-
lism. RV achieves this by modulating AMPK and influ-
encing the processing of APP. Through this modulation, 
RV helps reduce the accumulation of Aβ peptides and tau 
proteins, which are characteristic of AD. Additionally, RV 
has been found to increase the levels of SIRT1, CREB, 
and BDNF, which are proteins associated with neuronal 
health and protection. These combined effects make RV 
a promising therapeutic agent for the treatment and pre-
vention of AD.
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Fig. 2 Activation of SIRT1 through RV has exhibited a range of potential benefits in brain cells. These benefits encompass neuroprotection 
against degeneration, increased neuronal survival, improved synaptic plasticity, anti-inflammatory properties, and enhanced blood flow 
and neurovascular health. RV-induced SIRT1 activation aids in reducing oxidative stress, enhancing mitochondrial function, and facilitating 
the clearance of toxic protein aggregates like Aβ plaques and tau tangles. Furthermore, SIRT1 plays a critical role in regulating synaptic plasticity 
and neurogenesis for optimal learning and memory, in particular among those who suffering from AD
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