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Abstract
Background  Previous studies have linked sports-related concussions and repeated subconcussive head impacts in 
contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) 
highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain 
injury, but clinical research has shown mixed results.

Methods  We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American 
football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, 
on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food 
frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via 
reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis.

Results  FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 
polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma 
lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; 
p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species 
containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment 
group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in 
Weeks 17 and 21.

Conclusions  This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA 
and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the 
effects of sports-related concussions and repeated subconcussive head impacts.

Trial Registration  All deidentified data are available at ClinicalTrials.gov #NCT0479207.
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Background
Prior research has shown an increase in biomarkers asso-
ciated with brain injury and neurodegeneration in con-
tact sport athletes following concussions and repeated 
subconcussive injuries [1–8]. Animal models have dem-
onstrated a reduction in these biomarkers when supple-
mented with the omega-3 (n-3) highly unsaturated fatty 
acids (HUFA), specifically docosahexaenoic acid (DHA) 
and eicosapentaenoic acid (EPA) [9–15]. However, data 
from clinical studies measuring the impact of DHA + EPA 
supplementation on biomarkers of brain injury in contact 
sport athletes is limited and the results are inconclusive 
[1, 8, 16, 17].

Supplementation with DHA, the predominant HUFA 
within the brain, exhibits neuroprotective effects after 
brain injury [18–20]. While DHA and EPA can be syn-
thesized from the essential n-3 polyunsaturated fatty acid 
(PUFA), alpha-linolenic acid (ALA), this conversion is 
inefficient [21]. This inefficiency is due, in part, to high 
concentrations of dietary omega-6 (n-6) PUFA such as 
linoleic acids (LA) and its n-6 PUFA metabolic products 
that compete as substates within the HUFA biosynthetic 
pathway [22–25]. For example, there has been a ∼ 4-fold 
increase in dietary LA over the past 70 years (from 2 to 
3% up to 6–9% of daily energy consumed) driven by the 
addition of vegetable oil products (soybean, corn, palm, 
and canola oils, as well as margarine and shortenings) to 
the modern Western diet [22, 23]. Thus, the typical US 
diet, including that of athletes, lacks adequate concentra-
tions of ALA and n-3 HUFA, and this results in unbal-
anced n-6 to n-3 PUFA and HUFA ratios [26–29].

Numerous studies have shown increased DHA concen-
trations in plasma [16, 21, 30–33], inflammatory cells, 
and cerebrospinal fluid [34, 35] following dietary supple-
mentation with n-3 HUFA. Notably, our research in the 
early 1990s revealed that human supplementation with 
n-3 HUFA, when complexed to triglycerides, led primar-
ily to the incorporation of EPA into neutrophil complex 
lipids, namely phosphatidylcholine (PC) and phosphati-
dylethanolamine (PE), and this incorporation depended 
on duration and dose [36]. However, advancements in 
understanding the dynamics of incorporation of different 
forms of n-3 HUFAs (such as triglycerides, ethyl esters, 
or phospholipids) into plasma lipid classes and molecu-
lar species have been limited. This knowledge gap makes 
it difficult to determine the capacity of n-3 HUFA sup-
plementation to impact cellular or brain complex lipids. 
Consequently, gaining a deeper understanding in this 
area is crucial, especially when the objective is to enrich 
brain lipids containing n-3 HUFA. This enrichment has 

the potential to benefit human health in various contexts, 
including recovery from concussions and repeated sub-
concussive injuries in contact-sport athletes [31].

DHA is not synthesized in the brain and animal mod-
els, and emerging studies suggest DHA enrichment of 
brain lipids occurs through two primary mechanisms. 
These are via: (1) passive diffusion as a non-esterified free 
fatty acid (FFA) or (2) an active transport system utiliz-
ing the major facilitator superfamily domain-containing 
protein 2 (MFSD2A) protein transporter and a DHA-
containing lysophosphatidylcholine (LPC-DHA) as a 
substrate [37–44]. In this context, it’s essential to under-
stand how supplementation utilizing different n-3 HUFA 
forms and approaches affects the composition of circu-
lating fatty acids, including PUFA and HUFA, in plasma 
lipid classes and molecular species. Such insights could 
shed light on the inconsistent results observed across 
different clinical studies. In the current study, we exam-
ined the influence of n-3 HUFA, provided as ethyl esters 
(DHA [2.5 g] and EPA [1.0 g]), on the plasma lipid pro-
files in collegiate American football players.

Methods
Participants
National Collegiate Athletic Association Division I 
American football athletes, cleared by the team phy-
sician to participate in University of Arizona athlet-
ics, were recruited by research personnel as previously 
described [1]. A total of 38 participants volunteered and 
provided written informed consent. Nine participants 
did not complete the study protocol. There were no seri-
ous adverse events and most athletes dropped out due to 
unrelated injuries, time demands, or GI discomfort. A 
consort diagram and table of adverse events have been 
published previously [1].

Dietary intervention design
A schematic of the intervention design is illustrated in 
Fig.  1. A randomized, double-blind, placebo-controlled, 
parallel-group design was employed with DHA + EPA or 
placebo treatment group randomly assigned by a stat-
istician as previously described [1]. Participants took 
six-1 g soft gel capsules 5-days per week for 26 weeks. In 
the DHA + EPA group, each capsule contained 407  mg 
of DHA and 170 mg of EPA as ethyl esters with the six 
capsules providing 2.4 g/d DHA and 1.0 g/d EPA. In the 
placebo group, each capsule contained no DHA or EPA 
but oleic acid (713  mg) and linoleic acid (14  mg) from 
high-oleic safflower oil with the six capsules providing 
4.2  g/d oleic acid and 84  mg/d linoleic acid. Capsules, 
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provided by Pharmavite (West Hills, California), were 
labeled (“A”, “B”) to maintain blinding and were identical 
in appearance.

The fatty acid composition of DHA + EPA and placebo 
capsules are described previously [1]. Supplement com-
pliance was set at > 80% for each subject and was assessed 
by research staff daily via visual supervision and count-
ing returned/unconsumed capsules. Whole blood was 
collected at baseline (before pre-season non-contact 
conditioning), Week 17 (after training camps, contact 
practices, and 4 regular season games), Week 21 (after 
8 regular season games), and then at week 26 (3–4 days 
after the last game of the season) (Fig. 1).

Dietary intake analysis
Participants completed the validated 10-page Block 
2014.1 Food and Activity Questionnaire with study per-
sonnel at baseline (Block, 1990). Questionnaires were 
sent to NutritionQuest for analysis which provided an 
estimate of usual dietary intake over the previous year 
(NutritionQuest, Berkeley, CA). All study participants 
were asked to limit dietary fish and fish oil intake upon 
consent for the duration of the study.

Biospecimen collection
Whole blood in 10 mL ethylene diamine tetra-acetic 
acid (EDTA), 7.5 mL powdered glass clot activator, and 
4.5 mL tri-sodium citrate was collected by trained study 
personnel at each timepoint in a certified blood collec-
tion room at the football training facility. EDTA and clot 
activator vacutainer tubes were centrifuged at 3000 rpm 
for 15  min within 2  min and after 30  min of collection 
respectively. Aliquots of plasma from EDTA tube and 
serum from clot activator tube were transferred to poly-
propylene vials and stored at − 80 ℃ until analysis.

Targeted lipidomic analysis to determine concentrations 
of phospholipids, lyso-phospholipids, non-esterified fatty 
acids, acyl carnitines and diacylglycerides
Lipid metabolites were isolated from plasma via a single-
phase extraction method adapted from Bielawski et al. 
[45] and separated using reversed-phase liquid chroma-
tography as described below. Targeted lipidomics analy-
sis was performed using an Agilent 1200 HPLC tandem 
Thermo Quantum Ultra triple quadrupole mass spec-
trometer to quantify levels of major molecular species 
of lysophospholipids (LPL), phospholipids (PL), FFA, 
acylcarnitines (AcCa), and diacylglycerides (DAG). All 
data was collected and processed in Thermo LCQuan 
Software.

Lysophospholipid analysis
LPL analysis was achieved utilizing mass transitions 
adapted from Huynh et al. [46]. 10ul of LPL internal stan-
dards mix containing 2 μm lysophosphatidylserine (LPS) 
17:0(d5)/0:0, lysophosphatidylcholine (LPC) 16:0(d9)/0:0, 
lysophosphatidylethanolamine (LPE) 16:0(d9)/0:0 was 
added to samples prior to extraction and utilized for 
quantification of the respective LPL classes. C16, C18:1, 
C18:2, and C20:4 molecular species for lysophospha-
tidylcholine, lysophosphatidylethanolamine, and lyso-
phosphatidylserine (Cayman Chemical) were used as 
standards for calibration curves which ranged from 10 
pmol/ml to 5000 pmol/ml. LPLs were separated using 
an Agilent Poroshell 120 EC-C18 1.9  μm (2.1 × 50  mm) 
column with mobile phases composed of water con-
taining 2 mM ammonium formate/0.1% formic acid 
(MPA) and methanol containing 1 mM ammonium for-
mate/0.1% formic acid (MPB) at a flow rate of 300  µl/
min. Chromatographic gradient elution began at 40% A 
and remained there for the first minute, proceeding to 
1% A at 6 min and remaining there for 10.5 min, before 

Fig. 1  Schematic of study design
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returning to 40% MPA over 1.5 min and remaining there 
until the end of the 20-minute run.

Diacylglyceride analysis
DAG analysis was achieved utilizing mass transitions 
adapted from Huynh et al. [46]. 50ul of DAG internal 
standards mix containing 1  μm DAG(19:0/0:0/19:0), 
DAG(15:0/0:0/15:0), DAG(16:0-d9/16:0/0:0), 
DAG(13:0/0:0/13:0) was added to samples prior to extrac-
tion and utilized for quantification. DAG(18:0/16:0/0:0), 
DAG(18:0/14:0/0:0), DAG(18:0/20:4/0:0), 
DG(18:2/0:0/18:2), DG(14:0/14:0/0:0), DG(24:1/0:0/24:1), 
DAG(16:0/0:0/18:3), DG(12:0/12:0/0:0), 
DG(16:0/0:0/16:0), DG(20:0/0:0/20:0), DG(18:0/20:4/0:0), 
DG(18:1/0:0/18:1) molecular species (Cayman Chemi-
cal) were used as standards for calibration curves which 
ranged from 2.5 pmole/ml to 800 pmol/ml. For molecules 
without standards, the closest related molecular species 
with a standard was utilized. DAG molecules were sepa-
rated using a Peeke Spectra C-8 3 μm (3 × 150 mm) col-
umn utilizing MPA and MPB at a flow rate of 500 µl/min. 
Chromatographic gradient elution began at 30% A and 
remained there for the first minute, proceeding to 1% A 
at 10 min and remaining there for 9 min, before returning 
to 30% MPA over 0.5 min and remaining there until the 
end of the 30-minute run.

Acylcarnitines analysis
AcCa analysis was achieved utilizing mass transitions 
adapted from Giesbertz et al. [47]. 50ul of AcCa internal 
standards mix containing 2  μm DL-Carnitine-d9, AcCa 
10:0-d3, and AcCa 18:1-d3 was added to samples prior 
to extraction and utilized for quantification. L-Carnitine, 
AcCa 16:0, AcCa 18:2, AcCa 18:1, AcCa 6:0, AcCa 18:0, 
AcCa 14:0, AcCa 4:0, and AcCa 20:4 molecular species 
(Cayman Chemical) were used as standards for calibra-
tion curves which ranged from 2.5 pmol/ml to 800 pmol/
ml. For molecules without standards, the closest larger 
carbon chain length standard was utilized. AcCa mol-
ecules were separated using a Peeke Spectra C-8 3  μm 
(3 × 150  mm) column utilizing MPA and MPB at a flow 
rate of 500  µl/min. Chromatographic gradient elution 
began at 60% A and remained there for two minutes, pro-
ceeding to 2% A at 10 min and remaining there for 7 min, 
before returning to 60% MPA over 0.5 min and remaining 
there until the end of the 20-minute run.

Phospholipids analysis
PL analysis was achieved utilizing mass transitions 
adapted from Huynh et al. [46]. 50ul of PL inter-
nal standards mix containing 2  μm PC(16:0d-9/16:0), 
PE(16:0d-9/16:0), phosphatidylserine (PS)(16:0d-9/16:0) 
was added to samples prior to extraction and utilized for 
quantification of the respective PL classes. PE(16:0/18:1), 

PC(18:1(9Z)/16:0), and PS(18:1/18:1) molecular species 
(Cayman Chemical) were used as standards for calibra-
tion curves for their respective classes. Calibration curves 
ranged from 10 pmol/ml to 5000 pmol/ml. The chro-
matographic gradient was similar to the DAG method, 
though mobile phases were adapted for PL. Mobile phase 
A consisted of water: methanol: acetonitrile (1:1:1) with 
0.1% acetic acid, while mobile phase B consisted of iso-
propanol with 0.1% acetic acid at a flow rate of 500  µl/
min on a Peeke Spectra C-8 3 μm (3 × 150 mm) column.

Plasma phospholipid molecular species (PC, PE, PS) 
concentrations were assessed and putative fatty acid 
identification at the sn-1 and sn-2 position of the glyc-
erol backbone was determined using PubChem (National 
Library of Medicine, National Center for Biotechnology 
Information) and Chem Spider (Royal Society of Chem-
istry, 2023).

Free fatty acid analysis
FFA were extracted separately utilizing methods adapted 
from Okahashi et al. [48]. Extraction utilized Monospin 
C18 (GL Sciences) spin columns that were conditioned 
with methanol and water prior to sample addition. Sam-
ples were prepared by adding 50 µl MeOH (0.1% formic 
acid), followed by centrifugation to separate phases. 
The upper layer was then added to columns with 50ul 
of internal standard mix containing 2  μm C22:6 n-3-
d5, C18:1(9Z)-d17, C20:4-d11, C16:0-d5 FFA (Cayman 
Chemical) and columns were washed with 40% MeOH 
twice prior to elution with 100 µl of 90% MeOH with 2% 
acetic acid. Samples were then transferred to liquid chro-
matography-mass spectrometry (LC-MS) vials for analy-
sis. C14:0, C16:0, C18:0, C18:1n9, C18:2n6, C18:3n3, 
C20:2Δ11,14, C20:3n6, C20:4n6, C20:5n3, C22:5n3, and 
C22:6n3 molecular species (Cayman Chemical) were 
used as standards for calibration curves that ranged from 
10 pmol/ml to 5000 pmol/ml. For molecules without 
standards, the closest larger carbon chain length stan-
dard was utilized. Gradient elution was achieved using 
a Peeke Spectra C-8 3  μm (3 × 150  mm) column with 
mobile phase A consisting of water: methanol: acetoni-
trile (1:1:1) with 0.1% acetic acid, while mobile phase B 
consisting of isopropanol with 0.1% acetic acid. Mass 
transitions for free fatty acid molecular species were 
adapted from Huynh et al. [46].

Statistical analysis
Changes in lipid species concentrations from baseline 
within treatment groups and between treatment groups 
were compared using Student’s T-test. Other statisti-
cal analyses were performed using the RStudio statisti-
cal computing environment (RStudio, Version 1.3.1093 
© 2009–2020 RStudio, PBC, Boston, MA) together with 
R version 4.0.5 (R: A Language and Environment for 
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Statistical Computing, R Core Team, R Foundation for 
Statistical Computing, Vienna, Austria, 2020). Positively 
skewed outcome variables were transformed using the 
natural log. Linear mixed-effects models were fit using 
the lme4 [49] package. Hypothesis tests and estimated 
marginal means calculations were performed using the 
lmetest [50] and emmeans [51] packages, respectively. 
The effects of DHA + EPA treatment was compared to 
placebo on markers of interest (LPL, PL, FFA, AcCa, 
DAG) by time, group, and time-by-group interactions. 
In the estimated marginal means analyses, p-values were 
adjusted using Tukey’s method. P-values < 0.05 were con-
sidered statistically significant for all analyses.

Results
Participant demographic and dietary lipid intake data
Twenty-nine NCAA American football players com-
pleted a randomized, placebo-controlled, double-
blinded, parallel group design trial designed to determine 
the impact of DHA + EPA supplementation on selected 
plasma lipid classes and molecular species. The complete 
study protocol and adverse events were reported previ-
ously [1]. Demographic data is shown in Table 1. Dietary 
n-3 PUFA and HUFA intake (grams) was assessed by 
food frequency questionnaire (FFQ) at baseline and is 
reported in Table 1. Unexpectedly, dietary intakes of EPA 
(C20:5n-3), docosapentaenoic acid (DPA)(C22:5n-3), and 
DHA (C22:6n-3) were significantly higher in the placebo 
group compared to the DHA + EPA treatment group, 
although these increases were ​​very modest ranging from 
a 0.01% increase in DPA to a 0.7% increase in DHA.

Effects of DHA + EPA supplementation on the 
concentrations of DHA, DPA, and EPA in plasma lipid 
classes
Figure 2 illustrates plasma concentrations (pmol/mL) of 
HUFA (DHA, EPA, and arachidonic acid [ARA]) esteri-
fied in LPL, PL, AcCa, DAG lipid classes, and FFA at 
baseline, Week 17, Week 21, and Week 26 following a 
26-weeks regimen of placebo or DHA + EPA supplemen-
tation. Mean and standard deviation values can be found 
in Supplemental Table 1. In both groups (placebo and 
DHA + EPA), DHA was found primarily complexed to 
PL (PL-DHA) with smaller quantities in LPL (LPL-DHA) 
or as FFA (FFA-DHA) (Fig.  2A). Following DHA + EPA 
supplementation, PL-DHA, LPL-DHA, and FFA-DHA 
plasma concentrations significantly increased from base-
line in the treatment group and were significantly greater 
than those in the placebo group (Fig.  2A). The great-
est increase in DHA after DHA + EPA supplementation 
occurred within DHA-containing phospholipids with 
smaller increases in LPL-DHA and FFA-DHA.

Similar to DHA, plasma EPA was primarily found 
esterified within phospholipids (PL-EPA), with small 
quantities present complexed to LPL (LPL-EPA) or as 
a FFA (FFA-EPA) in baseline samples from both the 
placebo and DHA + EPA treatment groups (Fig.  2B). 
Following DHA + EPA supplementation, EPA plasma 
concentrations were significantly increased in PL, LPL 
and FFA with the greatest increase occurring in EPA-
containing PL.

In both groups, ARA was primarily esterified within 
PL (PL-ARA) and LPL (LPL-ARA) with small quanti-
ties present as FFA (FFA-ARA) and DAG (DAG-ARA) 
(Fig. 2C). Following DHA + EPA supplementation, plasma 
concentrations of ARA within PL and FFA significantly, 
albeit modestly, decreased from baseline (Fig. 2C). There 
was no change in PL-ARA and DAG-ARA plasma con-
centrations in the DHA + EPA treatment group from 
baseline or compared to placebo (Fig. 2C).

DHA, EPA, and ARA esterified in AcCa was minimal 
at 1.0 pmol/mL in both treatment and placebo groups at 
baseline. Following DHA + EPA supplementation, DHA 
concentrations in AcCa (AcCa-DHA) were significantly 
increased and ARA concentrations in AcCa (AcCa-ARA) 
were significantly decreased from baseline in the supple-
mentation group compared to placebo (Supplemental 
Fig. 1).

Effects of DHA + EPA supplementation on plasma 
concentrations of HUFA-containing LPL classes
As mentioned previously, DHA-containing lysophos-
phatidylcholine (LPC-DHA) is thought to be the pri-
mary substrate for the MFSD2A transporter so we next 
determined the impact of EPA + DHA supplementation 
on the major plasma LPL classes. At baseline in both the 

Table 1  Demographic characteristics, dietary n-3 fatty acid 
intake by group as percent of total in the placebo and DHA + EPA 
treatment groups

Placebo
(N = 17)

DHA + EPA
(N = 12)

p-value

Demographic Data (mean [SD])
  Age (years) 20.5 (2.2) 20.3 (0.78) 0.818
  Height (inches) 73.7 (2.0) 72.2 (3.6) 0.236
  Weight (pounds) 221.5 (41.4) 206.8 (39.0) 0.337
n-3 PUFA and HUFA (mean g / d [SD]) assessed by FFQ
  C18:3 1.99 (0.69) 2.07 (1.38) 0.859
  C18:4 0.02 (0.02) 0.03 (0.02) 0.697
  C20:4 0.24 (0.12) 0.19 (0.10) 0.263
  C20:5 (EPA) 0.06 (0.04) 0.02 (0.01) 0.004**
  C22:5 (DPA) 0.03 (0.01) 0.02 (0.01) 0.035*
  C22:6 (DHA) 0.13 (0.08) 0.05 (0.03) 0.003**
2-tailed, 2-sample unequal variance T-test was used for calculating p-value. 
SD, standard deviation; g, grams; d, day; n-3, omega-3; PUFA, polyunsaturated; 
HUFA, highly unsaturated fatty acid; EPA, eicosapentaenoic acid; DPA, 
docosapentaenoic acid; DHA, docosahexaenoic acid
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Fig. 2  Changes in plasma concentrations of DHA (A), EPA (B), and ARA (C) containing lipid classes. Changes from baseline * <0.05, ** <0.01, *** <0.001, 
**** <0.0001. Between group differences + < 0.05, ++ <0.01, +++ <0.001. LPL, lysophospholipid; PL, phospholipid; AcCa, acylcarnitine; DAG, diacylglycerol; 
FFA, free fatty acid; DHA, docosahexaenoic acids; EPA, eicosapentaenoic acid; ARA, arachidonic acid
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placebo and treatment groups, all three primary n-3 and 
n-6 HUFA, DHA, EPA, and ARA, were found esterified 
primarily within LPC compared to lyso-PE (Fig. 3).

The plasma concentration (pmol/ml) of DHA-contain-
ing LPC (LPC-DHA) was greater in the placebo group 

compared to the DHA + EPA group at baseline, consis-
tent with differences in dietary intake of DHA between 
groups (Table 1). However, after DHA + EPA supplemen-
tation, the plasma concentration of LPC-DHA was signif-
icantly increased from baseline at all timepoints and was 

Fig. 3  Box plots displaying changes in plasma concentrations of LPL complexed to DHA (A-B), EPA (C-D), and ARA (E-F). Changes from baseline and/or 
within group differences * <0.05, ** <0.01, *** <0.001, **** <0.0001. Between group differences + < 0.05, ++ <0.01, +++ <0.001. LPC, lysophosphatidylcho-
line; LPE, lysophosphatidylethanolamine; DHA, docosahexaenoic acids; EPA, eicosapentaenoic acid; ARA, arachidonic acid
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significantly greater than placebo at Week 17 and Week 
21 (Fig.  3A). In contrast, DHA was not found incorpo-
rated into major LPE (LPE-DHA) in the placebo group or 
following supplementation.

The plasma concentrations (pmol/ml) of EPA within 
LPC (LPC-EPA) and LPE (LPE-EPA) were significantly 
increased in the DHA + EPA treatment group when com-
pared to baseline at all time points. Additionally, these 
were significantly greater than the placebo group at Week 
17 and Week 21 (Fig. 3C).

Overall, baseline concentrations of ARA-containing 
LPC and LPE were greater than that of DHA- and EPA-
containing LPL. ARA-containing lyso-PC (LPC-ARA) 
was found in higher concentrations than lyso-PE (LPE-
ARA) (Fig. 3E-F). The plasma concentration (pmol/ml) of 
LPC-ARA was not significantly different between treat-
ment groups at any time point; however, concentrations 
of LPC-ARA were significantly lower in the DHA + EPA 
supplementation group at Week 17 and Week 21 when 
compared to baseline (Fig.  3E). Smaller concentrations 

of ARA were found in LPE molecular species compared 
to LPC with no between or within group differences 
(Fig. 3F).

Effects of DHA + EPA supplementation on plasma 
concentrations of HUFA-containing phospholipid (PL) 
molecular species
The primary n-3 and n-6 HUFA, DHA, EPA, and ARA, 
were complexed to both PC and PE molecular spe-
cies, with the highest concentrations in PC (Figs.  4, 5 
and 6). As expected from the class analysis (Fig.  4A), 
the plasma concentration of DHA-containing PC and 
PE molecular species increased after DHA + EPA sup-
plementation (Fig.  4). The highest concentration of 
DHA in both treatment groups at baseline was found 
as PC38:6 (C16:0 + C22:6[DHA]) which significantly 
increased in the DHA + EPA treatment group com-
pared to baseline at all timepoints and was significantly 
greater than placebo at Weeks 17 and 21. Plasma con-
centration of PC36:6 (C14:0 + C22:6[DHA]), PC38:7 

Fig. 4  Box plots displaying changes in plasma concentrations of PL complexed to DHA. Changes from baseline and/or within group differences * <0.05, 
** <0.01, *** <0.001, **** <0.0001. Between group differences + < 0.05, ++ <0.01, +++ <0.001. PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
DHA, docosahexaenoic acids
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(16:1 + C22:6[DHA]), PC(C18:0 + C22:6[DHA], and 
PC40:8(C18:2 + C22:6[DHA]) were all significantly 
increased in the DHA + EPA treatment group com-
pared to baseline at week 17 and 21. In contrast, there 
were no temporal changes in the DHA concentrations 
in any of the PC molecular species in the placebo group. 
Overall, concentrations of DHA-containing PE molecu-
lar species were considerably less than PC; however, 
PE(C16:0 + C22:6[DHA]), PE(C18:0 + C22:6[DHA]), and 
PE(C18:1 + C22:6[DHA]) increased in the DHA + EPA 
group compared to baseline at Week 17 and Week 21 
(Fig.  4F-H). There were no temporal changes in DHA-
containing PE molecular species in the placebo group.

Like DHA, the primary EPA-containing phos-
pholipids were PC molecular species with minimal 
amounts complexed in PE molecular species. PC36:5 
(C16:0 + C20:5[EPA]) and PC38:5 (C18:0_C20:5[EPA]) 
were the primary EPA-containing PC molecular spe-
cies observed and both increased significantly in the 
DHA + EPA group compared to baseline at weeks 
17 and 21 with significant differences in the two 

treatment groups at those same time points for PC36:5 
(C16:0 + C20:5[EPA]) (Fig. 5A-B). Plasma concentrations 
of PE36:5 (C16:0 + C20:5[EPA]) were minimal but did 
increase in the DHA + EPA treatment group at Week 17 
compared to baseline and were significantly higher at 
Week 17 compared to Week 26 (Fig. 5C).

Plasma ARA concentrations were also higher in PC 
compared to PE molecular species; specifically, (PC38:4 
(C18:0 + C20:4[ARA]) and (PC40:4 (C20:0 + C20:4[ARA]) 
were major molecular species (Fig.  6). Plasma concen-
trations of (PC40:4 (C20:0 + C20:4[ARA]) decreased 
significantly in the DHA + EPA group from base-
line at Week 17 and were significantly lower than 
the placebo group at Weeks 17, 21, and 26 (Fig.  6B). 
PE(C16:0 + C20:4[ARA]) and PE(C18:0 + C20:4[ARA]) 
showed a significant decrease in concentration in 
the DHA + EPA treatment group at Weeks 17 and 21 
(Fig. 6C-D). PE38:5(C18:1 + C20:4[ARA]) plasma concen-
trations decreased at all timepoints compared to baseline 
in the DHA + EPA group and were significantly less than 

Fig. 5  Box plots displaying changes in plasma concentrations of PL complexed to EPA. Changes from baseline and/or within group differences * <0.05, 
** <0.01, *** <0.001, **** <0.0001. Between group differences + < 0.05, ++ <0.01, +++ <0.001. PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, 
phosphatidylserine; EPA, eicosapentaenoic acids
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concentrations in the placebo group at Week 17 and 21 
(Fig. 6E).

Effects of DHA + EPA supplementation on plasma 
concentrations of non-esterified HUFA
Plasma concentrations (pmol/ml) of DHA and EPA as 
FFA (FFA-DHA, FFA-EPA) increased with DHA + EPA 
supplementation, while there was no change in plasma 
concentrations of FFA containing ARA (FFA-ARA) 
(Fig. 7A-C). FFA-DHA plasma concentrations increased 
in the DHA + EPA group from baseline at Week 17 and 
Week 21 with significantly higher concentrations than 
the placebo group at all time points (Fig. 7A). FFA-EPA 
plasma concentrations increased from baseline at all 
timepoints in the DHA + EPA group, with significantly 
higher concentrations than the placebo group at Week 17 
and Week 21 (Fig. 7B). FFA-ARA plasma concentrations 

decreased from baseline in the placebo group at Weeks 
21 and 26 (Fig. 7C).

Discussion
DHA is not thought to be synthesized in significant 
amounts within the brain [51] and therefore must cross 
the blood-brain barrier (BBB) from plasma sources to 
enrich brain tissue. Animal studies suggest two mecha-
nisms by which DHA crosses the BBB and enters the 
brain: (1) through passive diffusion as FFA or (2) as DHA-
containing LPC via the MFSD2A transporter [40, 41, 43, 
52]. Research on HUFA incorporation of DHA and EPA 
into lipid molecular species following supplementation 
in humans remains limited. This study aimed to ascer-
tain whether the molecular species of major polar lipid 
classes and FFA containing DHA and EPA were enriched 
when healthy athletes received supplementation of EPA 
and DHA in the form of ethyl esters. Such findings would 

Fig. 7  Box plots displaying changes in plasma concentrations of DHA (A), EPA (B), and ARA (C) as FFA. Changes from baseline and/or within group differ-
ences * <0.05, ** <0.01, *** <0.001, **** <0.0001. Between group differences + < 0.05, ++ <0.01, +++ <0.001

 

Fig. 6  Box plots displaying changes in plasma concentrations of PL complexed to ARA. Changes from baseline and/or within group differences * <0.05, 
** <0.01, *** <0.001, **** <0.0001. Between group differences + < 0.05, ++ <0.01, +++ <0.001. PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
PS, phosphatidylserine; ARA, arachidonic acids
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shed light on whether this method of supplementation 
increases the lipid molecular species known to cross the 
BBB and thus potentially impart neuroprotection.

In this study, several significant findings emerged. 
Firstly, we verified both a low dietary intake of n-3 HUFA 
and a high n-6:n-3 essential PUFA dietary ratio of 15.5 
to 1 in collegiate male athletes. This underscored the 
need for oral n-3 DHA + EPA supplementation to elevate 
plasma (and potentially brain) DHA and EPA levels. Sec-
ondly, post DHA + EPA supplementation, we observed 
marked increases in FFA-DHA concentrations (as shown 
in Fig. 7A), which are known to passively diffuse across 
the BBB. Additionally, we noted elevated LPC-DHA con-
centrations (Fig.  3A), the primary DHA molecular spe-
cies proposed to be capable of crossing the BBB via the 
MFSD2A transporter.

Contact sport athletes are at a high risk for head injury 
from sports related concussions and repeated subcon-
cussive head impacts. DHA and EPA play crucial roles in 
brain development and repair. Notably, DHA is present 
in high concentrations within neuronal cell membranes 
[39, 53–56]. Given the low dietary intake of n-3 PUFA 
and n-3 HUFA, as well as the high ratio of n-6:n-3 dietary 
essential PUFA [57], supplementation is necessary to 
elevate both plasma and brain n-3 HUFA levels. Research 
on animal models indicates that elevated brain n-3 HUFA 
concentrations, resulting from dietary DHA supple-
mentation, can reduce neuroinflammation and enhance 
recovery following head injuries [10, 11, 18, 58–60]. 
However, there’s a major research gap in understanding 
the correlation between plasma and brain DHA and EPA 
levels in humans. Freund Levi et al. examined whether 
oral n-3 HUFA supplementation could alter the fatty acid 
concentration and HUFA profile of the cerebrospinal 
fluid in Alzheimer’s Disease patients (n = 33) [61]. Their 
findings highlighted an elevation in both plasma and CSF 
DHA, EPA, and overall n-3 HUFA concentrations in the 
supplement group versus the placebo group [61]. After 
assessing the relationship between n-3 HUFA in plasma 
and CSF, they found a correlation for EPA and a weaker 
association for DHA [61]. Here, we observed a substan-
tial surge in circulating plasma LPC-DHA and FFA-DHA 
molecular species in collegiate American football athletes 
post-supplementation with DHA + EPA as ethyl esters. 
Thus, enhancing plasma levels of these DHA-containing 
lipids that potentially cross the BBB by known mecha-
nisms has the capacity to elevate brain concentrations in 
this demographic.

Pastor et al. conducted targeted lipidomics to track 
the incorporation of n-3 HUFA into the plasma lipids of 
cystic fibrosis patients. This was a study population of 50 
participants (placebo = 25, DHA = 25), who underwent 12 
months of supplementation with seaweed oil at a dosage 
of 50 mg/kg/day, containing a maximum of 3 g of DHA/

day [62]. This study found elevated n-3 HUFA plasma 
concentrations in the DHA-supplemented group com-
pared to the placebo group. DHA was primarily incor-
porated into cholesterol esters and PC classes, which 
combined, accounted for 97% of the DHA increase post-
supplementation [62]. In the current study which focused 
on lipid molecular species with the potential to cross the 
BBB, we observed an increase in total DHA concentra-
tions, mainly incorporated within PC molecular species. 
Importantly, we also observed rises in LPC-DHA and 
FFA-DHA molecular species.

While this study focused on the effects of n-3 HUFA 
supplementation in the form of ethyl esters, supplements 
often present n-3 HUFAs complexed to triacylglycerides 
or phospholipids. Consequently, it is essential to under-
stand not only the impact of these supplements on the 
levels of lipids known to cross the BBB but also to inno-
vate new more brain bioavailable forms of n-3 HUFA-
containing supplements. Such advancements could 
better optimize the enrichment of these plasma lipid 
pools for more effective brain enrichment.

Conclusions
This study demonstrates that n-3 HUFA supplementa-
tion, in the form of ethyl esters, enhances the plasma 
lipid pools in male athletes, that have the capacity to 
potentially enrich brain lipids. Future research is needed 
to investigate the rise in plasma DHA resulting from vari-
ous forms and doses of supplementation (ethyl ester, PL, 
TAG) with the objective of determining which form and 
dosage maximize increases in plasma DHA-LPC and 
DHA-FFA concentrations. Concurrently, innovations 
in n-3 HUFA supplement forms and strategies could be 
developed to optimize the enrichment of plasma lipids 
that traverse the BBB. Collectively, these efforts could 
potentially enrich brain lipids in ways that mitigate the 
effects of sports-related concussions and repeated sub-
concussive head impacts.
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