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Metabolic effects of milk protein intake strongly
depend on pre-existing metabolic and exercise
status
Bodo C Melnik1*, Gerd Schmitz2, Swen Malte John1, Pedro Carrera-Bastos3, Staffan Lindeberg3 and Loren Cordain4
Abstract

Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence
that metabolic effects of milk protein intake have to be regarded in the context of the individual’s pre-existing
metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine.
Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass
surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial
hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate
pre-existing metabolic disturbances of obese, insulin resistant individuals.
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Introduction
Recently McGregor and Poppitt suggested milk protein
intake for the improvement of metabolic health [1].
However, the authors missed important insights into
branched-chain amino acid (BCAA) metabolism under
conditions of obesity and insulin resistance. They em-
phasized beneficial effects of milk protein ingestion for
skeletal muscle but ignored adverse effects of BCAAs on
adipose tissue and long-term β-cell homeostasis. Obvi-
ously, milk’s physiological function promoting neonatal
growth is not restricted to the musculoskeletal system. It
is the intention of this Perspective article to demonstrate
that the evaluation of metabolic effects of milk protein
consumption has to consider the nutritional and endo-
crine status and the level of physical activity of the milk
protein consumer.
Milk proteins increase BCAA influx
Plasma BCAAs (leucine, isoleucine, valine) and glutam-
ine/glutamate are increased in obesity, insulin resistance
and type 2-diabetes (T2D) [2-9]. An extra daily intake of
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53 g milk protein but not 53 g meat increased serum in-
sulin and insulin resistance in 8-year-old boys [10]. Im-
paired BCAA catabolism of adipocytes is a crucial
metabolic deviation of obesity [11,12] (Figure 1A). As
BCAA plasma levels in obesity are already elevated an
additional BCAA influx may further deteriorate the pre-
existing metabolic imbalance. In fact, the marked de-
crease in BCAA plasma levels resulting from gastric
bypass surgery is associated with weight loss and im-
proved insulin sensitivity [13,14]. Palaeolithic, physically
active hunter-gatherers consumed structural proteins
like fish and meat. In contrast, modern Neolithic
humans have “mutated” into physically inactive individ-
uals, who particularly consume signalling proteins from
milk providing abundant “fast dietary proteins” leading
to high plasma BCAA and glutamine levels [15]. Palaeo-
lithic dairy-free diets exhibit lower insulin levels with
improved insulin sensitivity protecting against the devel-
opment of diseases of civilization [16-19].
Mechanical stimuli increase mTORC1-mediated muscle
protein synthesis
According to our opinion it may be hazardous to pro-
mote milk protein consumption especially in obese indi-
viduals with sedentary lifestyles and/or insulin resistance.
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Figure 1 BCAA metabolism in obese, sedentary subjects versus healthy, physically active individuals. A. Deviated BCAA metabolism in
obese, sedentary individuals. B. BCAA metabolism in healthy physically active individuals. BCAA = branched-chain amino acids (leucine, isoleucine,
valine). RYGP = Roux-en-Y gastric bypass surgery.
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Although BCAAs are required for mTORC1-dependent
muscle protein synthesis [20,21], BCAA intake alone is
not sufficient to significantly increase muscle mass. Mech-
anical stimuli, which activate mTORC1 in myocytes, are
of critical importance to cause significant skeletal muscle
hypertrophy [22,23] (Figure 1B). Intriguingly, eccentric
muscle contractions increase mTORC1 activation by
phosphorylation of tuberous sclerosis complex-2 (TSC2)
associated with the translocation of TSC2 away from the
lysosome [24]. According to a recent model, mTORC1 ac-
tivation occurs at the lysosome and is mediated through
an amino acid-sensing cascade involving RAG GTPases,
Ragulator and vacuolar H+-ATPase [25,26]. Whey pro-
teins contain highest amounts of BCAAs [27-29]. Whey
protein intake after resistance exercise substantially in-
creased mTORC1 activity in skeletal muscle of healthy
young men [30]. Thus, weight loss and muscle gain in
conjunction with increased milk protein intake may only
be successful in combination with enhanced physical
activity (Figure 1B) [31]. In contrast, additional intake of
BCAAs in sedentary obese subjects may further deterior-
ate metabolic control resulting in hyperinsulinemia, insu-
lin resistance and T2D (Figure 1A).

Milk protein consumption and postprandial
hyperinsulinemia in obesity
Of all animal proteins, whey proteins contain the highest
amount of leucine (14% of total amino acids) [27]. Whey
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proteins are “fast proteins” [15], that are hydrolysed
within minutes in the intestine and immediately increase
BCAA levels in the systemic circulation thus functioning
like an intravenous administration of amino acids [29,32].
In healthy lean individuals oral administration of leucine
induces postprandial hyperinsulinemia especially in com-
bination with increased glucose intake [33,34]. In obese
subjects, oral administration of leucine induces exag-
gerated and prolonged postprandial hyperinsulinemia
without significant changes of blood glucose levels
[34-36]. In children, daily intake of 53 g milk protein,
but not of 53 g meat induced hyperinsulinemia and in-
sulin resistance under fasting conditions [10]. In over-
weight adolescents daily intake of 35 g whey protein or
casein significantly increased fasting plasma insulin
levels [37]. Thus, there is substantial evidence that in-
creased milk protein consumption in obese individuals
persistently over-stimulates insulin secretion, which in
the long term may promote early onset of β-cell apop-
tosis. Milk-stimulated islet cell hyperplasia and β-cell
hyperresponsiveness are obviously physiological meta-
bolic effects that promote anabolism and postnatal
growth. However, experimental evidence in β-cell TSC2−/−

deficient mice indicates that persistently increased
mTORC1-mediated β-cell stimulation from the be-
ginning of postnatal life induced hyperinsulinemia and
enhanced β-cell proliferation during adolescence but early
onset of β-cell apoptosis with decreased insulin secretion
in adulthood [38].

Milk consumption, obesity and risk of type 2-diabetes
Milk ingestion is a novel human behaviour introduced
by the Neolithic revolution, industrially maximized by
widespread refrigeration technology [39]. The NHANES
[40] and the Growing-Up Today Study [41] observed in-
creased BMI in children and adolescents in association
with increased milk consumption. Weight gain associ-
ated with increased milk intake has also been observed
in healthy adults [42]. Supplementation of milk protein
(either 35 g whey protein, skim milk protein, or casein)
to overweight adolescents further increased body weight
[37]. Accordingly, chronic leucine supplementation in
rats on a high-fat diet further increased body weight
[43]. Leucine plays a pivotal role for mTORC1 activation
[44-46] including adipocytes [47,48]. Leucyl-tRNA syn-
thetase is another recently identified key mediator for
BCAA-induced mTORC1 activation [49]. mTORC1 is a
central regulator of adipogenesis linking BCAA abun-
dance to mTORC1-driven obesity [50]. BMI is a critical
determinant for the induction of pubertal growth. Not-
ably, the NHANES study found a correlation between
milk consumption in children with increased BMI [40]
and early age of menarche [51], a risk factor for the de-
velopment of obesity, T2D and metabolic syndrome
[52-56]. Milk proteins are enriched in glutamine [57],
the precursor of the glutaminolysis pathway, which plays
a crucial role for insulin secretion [58]. Remarkably, glu-
tamate dehydrogenase is allosterically activated by leu-
cine [59,60]. Thus, leucine- and glutamine overload by
high milk protein consumption, may permanently over-
stimulate insulin secretion and mTORC1 signalling. In
fact, elevated plasma levels of BCAAs and glutamate are
positively correlated with increased BMI and insulin
resistance [4,7].
Increased BCAA availability and insulin resistance
There is compelling evidence that amino acid availability
regulates S6 kinase and multiple translation factors [61].
BCAAs by increasing mTORC1-S6K1 signalling act as
positive signals for maintenance of protein stores, while
inhibiting other actions of insulin at multiple levels [62]. In
amino acid-infused humans, over-activation of mTORC1-
S6K1 pathway increased inhibitory insulin receptor sub-
strate (IRS)-1 phosphorylation at Ser312, Ser636/639 and
Ser1101 resulting in insulin resistance of skeletal muscle
[63-65]. Thus, there is substantial evidence that inappropri-
ate activation of mTORC1-S6K1 signalling by amino acids
induces insulin resistance, the fundamental metabolic devi-
ation leading to T2D [9,63-66]. Whey proteins in contrast
to meat proteins provide fast hydrolysable BCAAs compar-
able to a BCAA infusion promoting insulin secretion
and insulin resistance, major intrinsic mechanisms of
milk signalling [10,67].
Milk protein consumption and risk of prostate cancer
Nutrition plays an important role in mTORC1-driven
cancer development [26,46,68,69]. mTORC1 steers pros-
tate cancer (PCa) initiation and metastasis [69]. Accumu-
lating evidence links PCa initiation and progression to
increased milk protein consumption and milk-mediated
activation of mTORC1 [70]. The European Prospective
Investigation into Cancer and Nutrition confirmed that
high intake of dairy protein is associated with an in-
creased risk of PCa [71]. A 35 g/day increase in dairy
protein intake was associated with an increased risk of
PCa of 32% [71]. Furthermore, increased PCa-specific
mortality has recently been associated with increased
whole milk intake [72]. In contrast to meat, milk and milk
protein fractions contain substantial amounts of exosomal
microRNAs, predominantly microRNA-21 [73-75], that is
an oncogenic and adipogenic microRNA [76,77]. Remark-
ably, addition of commercial milk to PCa cell cultures
increased the proliferation of cancer cells by 30% [78]. Fur-
thermore, commercial milk contains substantial amounts
of the let-7 microRNA family [75]. Notably, it has recently
been demonstrated that over-expression of let-7 induced
insulin resistance [79,80].
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Conclusions
There is no evidence that milk proteins per se improve
metabolic health. In contrast, increased consumption of
milk proteins may further impair BCAA metabolism of
obese, insulin resistant, sedentary individuals. It is now
clear that not calorie restriction but BCAA restriction
extends lifespan in Drosophila melanogaster [81,82]. Re-
duction of BCAA intake with reduced mTORC1 activa-
tion explains the metabolic benefits of dietary restriction
[83,84]. Persistent leucine-mediated hyperinsulinemia in
obesity induced by persistent milk protein consumption
may promote an earlier onset of β-cell apoptosis.
Epidemiological evidence underlines the association be-
tween increased milk intake and higher BMI, increased
milk intake and early onset of menarche, and the associ-
ation of increased BMI as well as early menarche and in-
creased risk of T2D. Thus, we recommend a more
careful and restricted use of milk proteins, especially in
the setting of pre-existent obesity, insulin resistance as
well as sedentary life style.
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