
BioMed CentralNutrition & Metabolism

ss
Open AcceResearch
Immunolocalization of RANKL is Increased and OPG Decreased 
During Dietary Magnesium Deficiency in the Rat
Robert K Rude*1, Helen E Gruber2, Livia Y Wei1 and Angelica Frausto1

Address: 1University of Southern California and the Orthopaedic Hospital, 1975 Zonal Ave., GNH 6602, Los Angeles, CA 90089-9317, USA and 
2Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28203, USA

Email: Robert K Rude* - rrude60075@aol.com; Helen E Gruber - helen.gruber@carolinashealthcare.org; Livia Y Wei - livvywei@yahoo.com; 
Angelica Frausto - frausto@usc.edu

* Corresponding author    

Abstract
Background: Epidemiological studies have linked low dietary magnesium (Mg) to low bone
mineral density and osteoporosis. Mg deficiency in animal models has demonstrated a reduction in
bone mass and increase in skeletal fragility. One major mechanism appears to be an increase in
osteoclast number and bone resorption. The final pathway of osteoclastogenesis involves three
constituents of a cytokine system: receptor activator of nuclear factor kB ligand (RANKL); its
receptor, receptor activator of nuclear factor kB (RANK); and its soluble decoy receptor,
osteoprotegerin (OPG). The relative presence of RANKL and OPG dictates osteoclastogenesis.
The objective of this study was to assess the presence of RANKL and OPG in rats on a low Mg diet.

Methods: RANKL and OPG were assessed by immunocytochemistry staining in the tibia for up
to 6 months in control rats on regular Mg intake (0.5 g/kg) and experimental rats on reduction of
dietary Mg (.04%, 25% and 50% of this Nutrient Requirement).

Results: At all dietary Mg intakes, alteration in the presence of immunocytochemical staining of
RANKL and OPG was observed. In general, OPG was decreased and RANKL increased, reflecting
an alteration in the RANKL/OPG ratio toward increased osteoclastogenesis.

Conclusion: We have, for the first time demonstrated that a reduction in dietary Mg in the rat
alters the presence of RANKL and OPG and may explain the increase in osteoclast number and
decrease in bone mass in this animal model. As some of these dietary intake reductions in terms
of the RDA are present in a large segment of or population, Mg deficiency may be another risk
factor for osteoporosis.

Introduction
Severe magnesium (Mg) deficiency (0.04% of nutrient
requirement, NR)[1] results in osteoporosis in rodent
models characterized by decreased bone formation,
increased bone resorption, and increased skeletal fragility
[2-8]. This degree of Mg depletion rarely exists in humans;
however, we have also found that a more moderate die-

tary Mg restriction, 10% of NR and 25% of NR, also results
in bone loss in the rat [9,10]. We have also recently found
that a diet of 50% of NR also causes a reduction in bone
mass (submitted for publication). These studies suggest
that an inadequate Mg intake may be a risk for osteoporo-
sis. The RDA for Mg for adult males is 420 mg/d and for
adult females is 320 mg/d [11,12]; the usual dietary Mg
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intake however falls below this recommendation in a
large proportion of the population [11-13]. Epidemio-
logic studies have demonstrated a positive correlation
between dietary Mg intake, and bone density and/or an
increased rate of bone loss with low dietary Mg intake sug-
gesting that dietary Mg deficiency may be a risk factor for
osteoporosis [13-18].

The cause of this effect of Mg depletion on bone is unclear,
although increased amounts of inflammatory cytokines
have been found in bone of Mg deficient mice and rats
which could increase bone resorption [7,9,10]. The final
pathway of osteoclastogenesis has been proposed to
involve three constituents of a cytokine system: receptor
activator of nuclear factor kB ligand (RANKL); its receptor,
receptor activator of nuclear factor kB (RANK); and its sol-
uble decoy receptor, osteoprotegerin (OPG) [19,20].
RANKL is a membrane bound cytokine-like molecule that
is expressed in preosteoblastic cells. It stimulates the dif-
ferentiation, survival, and fusion of osteoclastic precursor
cells to activate mature RANK expressed in hematopoietic
osteoclast progenitors, and serves as an essential factor for
osteoclastic differentiation and activation. RANKL binds
to RANK with high affinity and this interaction essential
for osteoclastogenesis. OPG is expressed in a variety of cell
types, however in bone it is mainly produced by cells of
osteoblastic lineage. OPG has very potent inhibitory
effects on osteoclast formation. It acts like a decoy recep-
tor and blocks the RANKL/ RANK interaction [19]. The
relative presence of RANKL and OPG therefore dictates
osteoclast bone resorption activity [21-23]. It was the
objective of this study to examine the effect of reduction
in dietary Mg on immunocytochemical presence of
RANKL and OPG in Mg deficient vs. control animals.

Material and methods
Experimental Methods
Studies reported here were approved by the IACUC at the
University of Southern California. Dietary Mg deficiency
was induced for up to 6 months in 6 week old, 150–175 g
female Sprague Dawley rats (Charles Rivers Laboratory,
Wilmington, MA). After acclimation to the vivarium as
previously described [9,10], experimental diets were insti-
tuted. Group pair feeding based on food weight was per-
formed daily in order to keep weight gain as close as
possible in the Mg deficient and control groups as bone
mass is closely correlated with body mass. Distilled deion-
ized water containing < 3 × 10-5 g Mg/L was used for
hydration. Rats were fed either a normal control Mg diet
of 0.05 % Mg (0.5 g/kg or 100% of NR as percent of total
diet) or a Mg-deficient diet (0.04%, 25%, and 50% of NR
Mg) (Harlan Teklad, Madison, WI) as previously
described [10]. The dietary intake of calcium (Ca) was at
or near the recommended intake for rats at 0.5 %.

At the end of each experimental period, rats were anesthe-
tized with ketamine, 50 mg/kg, and zylazine, 10 mg/kg,
intramuscularly (Phoenix Pharmaceuticals Inc, St. Joseph,
MO). Blood samples from the anesthetized rats were
obtained by cardiac puncture and rats were then killed by
open thoracotomy. The femurs and tibias were harvested
at each time point for mineral analysis, micro-computer-
ized tomography, histomorphometry, and immunocyto-
chemistry. Prior publications review the results in terms of
serology, bone mineral density and content and the pres-
ence of inflammatory cytokines [7,9,10].

Immunocytochemical Localizations of RANKL and OPG
The tibia was isolated immediately following euthanasia
and fixed in 2% NBF (Neutral Buffered Formalin) for 24
hrs and decalcified in 20% EDTA 0.1 M Tris pH 7.2–7.3
solution. After dehydration and paraffin embedding at
56°C, sections were cut so that a sagittal section including
the epiphysis and the metaphysis of the tibia was
obtained. As previously described, indirect immunocyto-
chemistry [7,9,10] was used to localize RANKL and OPG;
both primary and secondary spongiosa were evaluated as
described below. RANKL and OPG antibodies were
obtained from R&D Systems, Minneapolis, MN. The
source of antibody was goat. Biotin labeled goat antibody
as the second antibody and streptavidin-HRP attached to
the antibody complex completed immunolocalization.
Rat small intestine tissue containing Peyer's patches and
spleen sections served as a positive control for both
RANKL and OPG antibodies. If the result was comparable
with the established positive staining using the same
experimental conditions, the procedure was validated.

Localization was visualized in the light microscope using
peroxidase substrate containing red dye Nova Red (Vector
Labs, Burlingame, CA) and counterstained with Hematox-
ylin (blue)(Zymed Laboratories, South San Francisco,
CA). The results were photographed in a Zeiss photo
microscope (Carl Zeiss, Thornwood, NY, USA) using a 40
X objective.

Evaluation of Cytokine Localizations
Background localization was minimal compared with
positive and negative controls. No difference in back-
ground localization was observed between Mg deficient
and control rats. Cells and tissues stained specifically as
described for the antigen in the literature [24,25]. Inten-
sity was graded as 0 = no localization, 1 = weak localiza-
tion, 2 = moderate, and 3 = strong localization. The
quantitative estimate of numbers of cells staining was a =
<20%, b = 20–60%, and c = >60%. The mean relative pos-
itivity was <1b = 0; 2a and 2b = 1; and 3b and 3c = 2
[24,25]. In this study, in some instances, no clear staining
was observed for OPG at 4 and 6 months in animals on
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Immunocytochemical staining of RANKL in bone from Mg deficient and control animalsFigure 1
Immunocytochemical staining of RANKL in bone from Mg deficient and control animals. A. Represents animals on a 25% NR 
diet and B. the control group. Note the positive staining of osteoclasts (solid arrows) and osteoblasts (open arrows) in A. while 
minimal staining is observed the control animals (B). C. Represents animals on a 50% NR diet and D. the control group. Again, 
as observed in C., Mg deficient animals have much more intense staining of RANKL of osteoclasts (solid arrows) and osteob-
lasts (open arrows) than is observed the control animals (D).
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the 25% NR Mg diet, therefore, a minimum value of 0.01
was given to allow for calculation of RANKL/OPG ratio.

Results
Our prior studies have documented that dietary Mg intake
at .04% 10%, and 25% of NR in the rat results in bone loss
and an increase in inflammatory cytokines TNFα and IL1β
[9,10]. Similar observations have been made at the 50%
NR level (submitted for publication). As discussed in the
Introduction, the final pathway of osteoclastogenesis has
been proposed to involve RANKL and OPG [19-23]. We
have examined the immunocytochemical presence of
these two cytokines in Mg deficient vs. control animals.
Examples of immunocytochemical staining are shown for
RANKL in Figure 1 and for OPG in Figure 2. In rats fed a
diet containing 0.4% of NR, there was an increase in stain-
ing in many cells of the bone microenvironment; RANKL
was increased by 448% in osteoblasts on day 1, in lym-
phocytes by 157% on day 3 and 100% on day 8, and in
osteoclasts by 64% on day 22. No difference was observed
at 28 or 84 days of depletion. OPG, in contrast, was
reduced in osteoblasts by 75% on day 3 and 149% by day
21. In mononuclear cells, OPG was reduced by 53% on
day 1, 100% on day 3, and 233 % on day 8. This effect
continued by day 28 when OPG was decreased in osteob-
lasts by 27% and in osteoclasts by 74%. At 12 weeks of Mg
depletion OPG had decreased in all components of the
bone environment: osteoblasts by 108%, osteoclasts by
167%, megakaryocytes by 85%, and mononuclear cells by
92%. While these percentage changes are of interest, it is
the relative presence of RANKL to OPG in bone that dic-
tates overall effect on osteoclastogenesis. The ratio of
RANKL/OPG relative immunostaining was calculated at
this dietary intake and is shown in Table 1; the higher the
value the greater the preponderance of RANKL. As noted,
it was only on or after day 22 of the experimental diet that
the ratio data suggest an excess of RANKL.

Samples were obtained at 2, 4, and 6 months from ani-
mals on the 25% NR intake. The percent changes and ratio
of RANKL/OPG are shown in Tables 2 and 3. RANKL
appears higher at the 2 and 6 month points in osteoclasts,
but is lower in osteoblasts from animals with Mg defi-
ciency. OPG was quite suppressed in both ostoclasts and
osteoblasts in Mg deficient animals. The ratio calculated,
however, showed a preponderance of RANKL to OPG.

At the 50% NR dietary intake, samples were obtained at 3
and 6 months. These data are shown in Tables 4 and 5. At
this dietary intake level, RANKL is increased in both oste-
oclasts and osteoblasts of Mg depleted rats while OPG is
decreased. The ratios of RANKL/OPG again favor a relative
increase in RANKL in Mg deficiency.

Discussion
In our prior publications, we have clearly demonstrated
that Mg deficiency results in bone loss and is accompa-
nied by an increase in osteoclast number and indices of
bone resorption [6-10]. It was hypothesized that since Mg
depletion induces a rise in substance P with subsequent
stimulation of inflammatory cytokines such and TNFα,
IL1β, and IL6, that this may be the mechanism for bone
loss [26]. Indeed, we have demonstrated an increase in the
immunolocalization of TNFα and IL1β in the Mg defi-
cient rat and mouse [7,9,10]. Both cytokines are known to
stimulate osteoclastic bone resorption. These changes
were observed to begin very early in the course of Mg
depletion. In contrast, the relative change in RANKL to
OPG to favor bone resorption did not occur until at least
4–6 weeks into depletion at the dietary intake of .04% NR.
The relative presence of RANKL and OPG dictates osteo-
clast bone resorption activity as discussed above. Osteo-
clasts can be formed or activated in a RANKL and/or a
RANKL-independent mechanism by TNFα [19-23]; there-
fore, TNFα and IL1β may be directly responsible for the
early osteoclastic bone resorption and the decline in OPG
and an increase in RANKL/OPG which follows later in the
course of depletion. Responses to varying dietary intakes
also appear to differ in absolute changes in RANKL and
OPG. We did not assess early changes at the 25% or 50%
NR, and thus we do not known if there were any changes
in RANKL or OPG at these time points with these higher
Mg diets. As was observed at the 3 months time point (84
days) in the .04% NR diet, there was a remarkable fall in
OPG at the higher Mg diets relative to control. While
RANKL was also increased in osteoclasts at both the 25%
and 50% NR diets, an increase was only observed in oste-
oblasts at the 50% NR diet. The reason for this is unclear.
The ratio of RANKL/OPG throughout favors osteoclas-
togenesis and suggests that this may be a major mecha-
nism for the increase bone loss in Mg deficiency.

It is clear that dietary Mg deprivation does result in a
reduction in bone mass and that there may be other rea-
sons for decrease bone mass as well. We have also
observed a decrease in osteoblastic bone formation
[6,7,9,10]. This could be related to a decrease in PTH and
1,25(OH)2-vitamin D relative to control [9,10,27,28].
Several other potential mechanisms may account for a
decrease in bone mass/strength during Mg deficiency. Mg
is mitogenic for bone cell growth, and therefore Mg defi-
ciency may result in a decrease in bone formation [29].
Mg also affects crystal formation; a lack of Mg results in a
larger, more perfect crystal which may affect bone strength
[30]. Serum IGF-1 levels have also been observed to be
low in the Mg deficient rat; decreased IGF-1 may adversely
influence skeletal growth[31].
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Immunocytochemical staining of OPG in bone from Mg deficient and control animalsFigure 2
Immunocytochemical staining of OPG in bone from Mg deficient and control animals. A. Represents animals on a 25% NR diet 
and B. the control group. Note the minimal staining of osteoclasts (solid arrows) and osteoblasts (open arrows) in A. while 
positive staining is observed the control animals (B). C. Represents animals on a 50% NR diet and D. the control group. Again, 
as observed in C., Mg deficient animals have minimal staining for OPG in osteoclasts (solid arrows) and osteoblasts (open 
arrows), while much more intense staining is observed in the control animals (D).
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A limitation of studies employing immunocytochemistry
is that this approach may be influenced by observer sub-
jectivity and bias and intra-observer variation. Our find-

ings, however, are provocative and further assessment
employing other techniques are indicated and may
include assessment of cytokine gene expression using

Table 1: Ratio of RANKL/OPG in Osteoclasts and Osteoblasts in Rats on a .04% NR Diet

Osteoclast Osteoblast

Day 1 Control 1 0.44
Day 1 .04% NR 0.4 .046
Day 3 Control 0.6 0.55
Day 3 .04% NR 0.51 0.24
Day 8 Control 1 0.44
Day 8 .04% NR 0.25 0.33
Day 15 Control 1.25 0.29
Day 15 .04% NR 0.79 0.38
Day 22 Control 0.65 0.05
Day 22 .04% NR 0.12 0.25
Day 28 Control .029 0.12
Day 28 .04% NR .052 0.16
Day 84 Control .096 0.14
Day 84 .04% NR 0.256 1.66

As shown in Table 1 there is no apparent excess of RANKL relative to OPG in rats on a diet containing .04% of NR until after day 22.

Table 2: Percent Difference in Immunocytochemical Staining for RANKL and OPG

25% NR

Osteoclast Osteoblast

RANKL OPG RANKL OPG

2 Month 25% vs Control 86 -150 -10 -113
4 Month 25% vs Control -16 -160 -232 -160
6 Month 25% vs Control 116 -700 -82 -700

As shown in Table 2, the percent relative difference in immunocytochemical staining in rats on a diet containing 25% NR Mg for RANKL in 
osteoclasts was increased at 2 and 6 months and decreased in osteoblasts. Staining for OPG was markedly decreased in both cell lines at all time 
points compared to control.

Table 3: Ratio of RANKL/OPG in Osteoclasts and Osteoblasts in Rats on 25% NR Mg Diet

25% NR

Osteoclast Osteoblast

2 Month Control 2.32 9.82
2 Month 25% NR 108 18.75
4 Month Control 3.41 4.88
4 Month 25% NR 50 25
6 Month Control 3.12 2.12
6 Month 25% NR 54 31

As shown in Table 3, the ratio of RANKL to OPG was increased in Mg deficient animals relative to controls in both cell types which favors 
osteoclastogenesis.
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both in situ and laser capture microdissection/gene array
analyses. These approaches would address the question of
whether low Mg intake influences gene cytokine expres-
sion, and allow study of specific cell types such as mono-
nuclear cells, osteoblasts and osteoclasts. We have, by in
situ hybridization data, demonstrated much greater gene
expression of substance P and of TNFα in rats on a 10%
NR Mg diet compared to control animals (unpublished
data).

Conclusion
We have, for the first time, demonstrated that a reduction
in dietary Mg in the rat alters the presence of RANKL and
OPG and may explain the increase in osteoclast number
and decrease in bone mass in this animal model. As these
dietary intake reductions in terms of the RDA are present
in a large segment of or population, Mg deficiency may be
another risk factor for osteoporosis.
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