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Abstract
The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most
ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity
to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress
from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'.
This is based on the notion that mitochondria may be able to both amplify membrane-derived
redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio.
We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting
the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled
to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-
thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and
resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic
environment with excessive calories, the protective nature of this system may lead to escalating
insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial
overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic
flexibility) may determine insulin resistance. Genetically and environmentally determined
mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to
inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and
biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols,
alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point
might lead to a feed forward insulin resistance cycle in the presence of excess calories. We
therefore suggest that as oxidative stress determines functional longevity, a rather more
descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and
accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic
stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his
environment.
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Introduction
The nutritional milieu which modern humans have cre-
ated for themselves is leading to rampant levels of obesity,
type II diabetes (T2D) and insulin resistance [1]. This is
resulting in a reduction in life expectancy.

The condition that precedes T2D, the 'metabolic syn-
drome', is currently defined as central obesity plus two
factors: raised triglycerides (TGs), reduced HDL, hyperten-
sion and evidence of pathological insulin resistance, such
as raised fasting plasma glucose (FPG, now defined as >
5.6 mM) or previous diabetes [2]. Sources of oxidative
stress include fat overloaded cells in visceral adipose tissue
(VAT) and the liver [3-6], and may represent 'metaboli-
cally triggered inflammation' or 'meta-inflammation' [7].
The metabolic syndrome is also associated with increased
activity of the hypothalamic pituitary adrenal axis (HPA)
and sympathetic nervous system (SNS), raised cortisol
levels, and sex-specific alterations in androgens, which
may represent an inability to adapt to an increased 'allo-
static' workload [8]. The metabolic syndrome may there-
fore represent a metabolically inflexible phenotype, in
which mitochondrial function and capacity for fuel usage
are critical factors [9].

The metabolic syndrome is a continuum and may sit at
the opposite end of the oxidative stress spectrum to the
long-lived phenotype induced by calorie restriction [10].
A common feature of these two phenotypes is the involve-
ment of the insulin/insulin-like growth factor axis, where
the reduced activity associated with calorie restriction
increases activity of the DAF 16/FOXO (forkhead) stress
resistance transcription factors first described in
Caenorhabditis elegans [11]; increased activity of these fac-
tors, in turn, can inhibit insulin signalling [12]. In evolu-
tionary terms, insulin resistance may be good, as it
ensures deposition of fat [13] and reduces oxidative redox
signalling-induced stress, especially in muscle and adi-
pocytes [14,15]. Indeed, thriftiness, which encapsulates
insulin resistance, can be viewed as being genetically
canalised and is a complex trait that most higher organ-
isms exhibit. As well as an immediate response to famine,
an emerging concept is that organisms can also be predis-
posed to it epigenetically via imprinting from their par-
ents or even grandparents [16]. In human terms, different
races, due to climate and geography, may well have
slightly different predispositions to it – which may be
reflected in differing fat distributions [17,18]. For
instance, races with 'cold-genes' may be better protected
[19]. An important organelle in this process is the mito-
chondrion: their ATP/ROS efficiency seems to improve
during calorie restriction, but decreases in the metabolic
syndrome and diabetes [20-22]. Mitochondria play a very
important role in the aging process [23], and thus, modu-
lation of oxidative stress.

We believe that it is now possible to provide a basic
hypothesis to explain insulin resistance and the metabolic
syndrome by studying redox signalling. In short, insulin
resistance is determined by the ability to resist oxidative
stress ('redox-thriftiness'), which is itself modulated by
mitochondrial hormesis ('preconditioning') and thus,
hormetic stimuli like physical activity and fasting. The
development of the metabolic syndrome could then be
defined by a "thrifty-inflammatory tipping point" – the point
when insulin resistance goes from being thrifty (e.g. gen-
erally restricted to the musculature) to inflammatory
(involving more tissues, such as adipose tissue). We pro-
pose that temporal and tissue specific insulin resistance is
a friend as long as you live within your hormetic zone, but
it may become your enemy in a modern sedentary envi-
ronment. This paper outlines the underlying mechanisms
relating to 'redox-thriftiness', its relationship to an ancient
redox signalling mechanism, and how it might be modi-
fied. The list of potential hormetic stimuli may extend to
include plant polyphenols, unsaturated fats and alcohol,
as well as some pharmaceuticals, such as metformin and
the statins. Ultimately, the term 'metabolic syndrome' is
not truly descriptive of the condition now afflicting a large
fraction of mankind. We propose a more appropriate term
might be the 'Lifestyle-Induced Metabolic InflexibiliTy
and accelerated AGEing', or, 'LIMIT-AGE' syndrome. The
ultimate conclusion from this may be that 'thriftiness' is
only bad for us without hormetic stimuli; a situation that
very rarely occurred in prehistoric times – until humans
made their environment almost totally risk and hormetic
stress free. It is likely that any level of hormesis is better
than none: this may be critical in reintroducing 'postive
hormetic stressors' into a modern lifestyle.

Insulin resistance and FOXO – built in safety?
Excessive insulin signalling can shorten lifespan by reduc-
ing a key stress resistance transcription factor, FOXO
(forkhead box class-O 1). FOXO in turn can inhibit insu-
lin signalling. Data might suggest that FOXO may well be
very active in the metabolic syndrome as a protective
response at the cellular level.

Life is thrifty
Although much has been made of the 'thrifty genotype'
[24], and its relationship to the metabolic syndrome [25],
it is becoming clear that most animals, including humans,
respond to prolonged fasting/starvation by improving
feed efficiency, which is associated with selective tissue
insulin resistance, hyperinsulinaemia on feeding, an
accelerated rate of fat storage (i.e. catch-up fat), and prob-
ably, suppressed thermogenesis in certain organs/tissues
[13]. This can result in a 'thrifty phenotype' – which can
also be epigenetically imprinted to adapt future genera-
tions [26], resulting in thin-fat babies, who are more at
risk in a modern environment [27,28]. More recently, an
Page 2 of 26
(page number not for citation purposes)



Nutrition & Metabolism 2009, 6:16 http://www.nutritionandmetabolism.com/content/6/1/16
epigenetic/genetic canalisation hypothesis that amalga-
mates the thrifty genotype/phenotype hypotheses has
been proposed. This hypothesis makes the point that life
has always been exposed to feast and famine, so thriftiness
is in fact an inherent property of many higher organisms
and is resistant to mutational perturbations [16].

Stress resistance inhibits insulin action and saves energy: 
the role of FOXO
Skeletal muscle insulin resistance in obese and type 2 dia-
betic patients is associated with increased activity of the
stress c-jun N-terminal kinase (JNK) pathway [29]. Fur-
thermore, transcriptional analysis of circulating white
blood cells from type 2 diabetics shows that genes associ-
ated with JNK activity are upregulated, while those associ-
ated with oxidative phosphorylation are down-regulated
[30]. Indeed, adipocyte-derived inflammation is thought
to drive activation of JNK, which may well be one of the
main underlying mechanisms of insulin resistance in the
metabolic syndrome [31]. However, the JNK stress path-
way is also associated with longevity because of the fact
that it inhibits insulin signalling [32]. One of the ways it
is thought to do this is by activating FOXO [33,34].

FOXO describes a family of transcription factors FOXO1,
FOXO3a, FOXO4 and FOXO6, the mammalian orthologs
of C. elegans DAF-16, which modulate the expression of
genes involved in apoptosis, the cell cycle, DNA damage
repair, oxidative stress, cell differentiation, as well as glu-
cose metabolism. They undergo inhibitory phosphoryla-
tion by many protein kinases. Their activities are also
modulated by acetylases, as well as deacetylases, such as
the sirtuin, SIRT1(silent mating type information regula-
tion 2 homolog 1), and by polyubiquitylation [35]. They
are key in development, fasting, stress resistance and calo-
rie restriction-induced longevity, whose function is sup-
pressed by high insulin/IGF-1 activity [36]. FOXO activity
can also increase glucose and lipids, decrease insulin, sup-
press growth and inflammation, and with AMPK, they
increase appetite in response to fasting [37-39].

Increased expression/activity of FOXO can increase activ-
ity of PPAR γ co-activator 1 (PGC-1), which also plays a
key role in longevity and the calorie restriction phenotype,
in particular, it increases the expression of PPAR α [40]:
19% of the genes that are regulated during calorie restric-
tion are modulated by PPAR α – including acute phase
response (APR) genes [41]. PGC-1 is key in mitochondrial
biogenesis and resistance to oxidative stress [42]. How-
ever, in muscle, exercise induced PGC-1 activation sup-
presses FOXO, but might result in a generalised anti-
inflammatory effect induced by mitochondrial biogenesis
[43]. FOXO is also important in autophagy, another
important process in calorie restriction induced longevity
[44].

Increased expression of FOXO in the liver, pancreas and
adipose tissue has been shown to inhibit insulin signal-
ling [12,45] and appears to induce a shift to fatty acid
metabolism [46]. Importantly, they auto-amplify the
insulin-Akt pathway by upregulating production of PI3k/
Akt, so ensuring survival by stimulation of growth path-
ways in low nutrient conditions [33]. In white adipose tis-
sue (WAT), FOXO1 appear to suppress the formation of
new adipocytes, and in brown adipose tissue (BAT), sup-
press thermogenesis; expression of a mutant, inactive
FOXO1 in the adipose tissue of mice seems to improve
insulin sensitivity under high fat feeding and spare triglyc-
erides, which is associated with increased thermogenesis
and energy expenditure. In these mice there was a decrease
in subcutaneous fat, but an increase in visceral fat – which
was associated with an increased number of smaller adi-
pocytes. There was also an increase in the number of adi-
pocytes in BAT, which had increased expression of PGC-1
and uncoupling protein 1 (UCP -1) [47].

FOXO can inhibit leptin-induced appetite suppression in
the hypothalamus [38] and insulin-induced beta cell pro-
liferation in the pancreas [48]. The observation that insu-
lin and leptin resistance go hand-in-hand, and in general
are associated with obesity [49], does suggest that insulin
and leptin can be viewed as anti-thrifty (they both
increase energy usage and suppress appetite). Certainly,
mice with reduced IRS-2 signalling are insulin resistance,
hyperphagic and eventually develop obesity and T2D
[50]. The fact that insulin and leptin signalling pathways
cross-talk suggest a synergistic effect [51]. Hence, the find-
ing that leptin resistance and increasing levels of leptin
can also predict the metabolic syndrome [52], would sug-
gest an evolutionary resistance paradigm to ensure contin-
ued energy seeking and storage behaviour – even when fat
mass is increased. FOXO is very likely to play a key role in
this.

Redox negative feedback involving FOXO
ROS (and reactive nitrogen species, RNS) are not simply
dangerous by-products, but essential components of cell
signalling pathways [53,54]. Low levels of ROS seem to
promote growth, whereas higher levels induce cell arrest
[55]. ROS can active FOXO, which suggests that FOXO act
as a negative regulator on increased ROS production
[42,56-58]. FOXO are also modulated by AMPK – the
archetypal energy sensor of the cell, which is itself activated
by ROS [59,60]. FOXO activity is suppressed by insulin sig-
nalling in the short term, but this suppression is lost in the
longer term – especially under stressful conditions, and
involves a feed back loop that upregulates components of
the Akt insulin signalling pathway [57]. Hence, excessive
growth signalling it tightly modulated as it can result in
excessive oxidative damage. Indeed, it has been proposed
that feeding is associated with increased oxidative stress
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and can be viewed as inflammatory [61]. Glucose can also
directly modulate FOXO function via O-linked-N-
acetylglucosamine (O-GlcNAc), improving resistance to
oxidative stress [62]. In C. elegans, overexpression of O-Glc-
Nac transferase (OGT) can result in insulin resistance,
whereas knocking out its function may improve insulin sig-
nalling and is associated with suppressed dauer formation
and increased carbohydrate storage, but decreased lipid
storage [63]. Indeed, increased flux through the hex-
osamine pathway has been known to be associated with
insulin resistance (and thus, diabetes) for many years; addi-
tion of O-GlcNac is now a well described process to modu-
late the function of multiple proteins [64]. This would
support the idea that FOXO can oppose insulin signalling
and glucose-induced oxidative stress.

From an evolutionary perspective, some FOXOs are
known to translocate to the nucleus in times of fasting
and/or oxidative stress, so improving somatic protection,
but reducing energy allocation to growth and reproduc-
tion. However, after extended fasting, there is evidence, at
least in C. elegans, that they translocate back out of the
nucleus in what appears to be an Akt-Pi3K dependent
mechanism. The explanation for this appears to be that
somatic protection comes at an energy cost (e.g. manufac-
ture of anti-oxidant proteins), and once anti-oxidant
defences have been improved, the process is downregu-
lated [65]. Thus, continual growth signalling and exces-
sive calories might cause FOXO to remain active and thus
continue to be active in the metabolic syndrome.

FOXO and nature of thriftiness
Failure to eat is a strong negative selective pressure, which
has likely led to an imbalance between orexigenic
(stronger) and anorexic (weaker) signals, leading to high
feed-efficiency and a propensity to store fat [66-68]. As
both inflammation, and feeding (via increased Akt signal-
ling), might act to suppress FOXO activity, but FOXO
activity may be important in resistance to stress via sup-
pression of ROS – it could be argued that FOXO must be
a powerful counter-regulatory mechanism. Certainly,
TNF-α is known to activate FOXO, which can then induce
apoptosis [69]. However, inhibitor of kappa B kinase
(IκBK), which also activates nuclear factor kappa B (NF-
κB), can also inhibit members of the FOXO family [70],
implying a finely tuned response around modulation of
potentially energy consuming immune responses. It is
therefore of interest that a high fat diet can induce a pro-
inflammatory response in the hypothalamus and insulin
resistance [71], while chronically elevated levels of leptin
can also induce leptin resistance – which may be part of
an obesity-driven vicious cycle [72]. These observations
could be partly explained by FOXO activity.

Two recent pieces of research suggest that redox is integral
to the appetite/anorexic mechanism, and integrate this

action with the endocannabinoid system (ECS). Via acti-
vation of AMPK, ghrelin results in increased mitochon-
drial oxidation of fatty acids, increased ROS and a
concomitant increase in anti-ROS mechanisms, including
transcription of UCP-2 and increased mitochondrial bio-
genesis. This has the overall effect of reducing mitochon-
drial membrane potential and ROS production.
Importantly, it appears that orexigenic neuropeptide Y/
agouti-related protein (NPY & AgRP) neurons become
active in a low ROS situation, which is the opposite of
anorexigenic pro-opiomelanocortin/cocaine- and
amphetamine-regulated transcript (POMC) cells, which
appear to rely more on glucose and are more active at
higher ROS levels. Hence, the orexigenic circuit may rely
more on fatty acids, whereas the anorexic one relies more
on carbohydrate [73]. In another study, via activation of
PKC, ghrelin was found to activate diacylglycerol lipase
(DGL), which increases 2-arachidonoylglycerol (2-AG),
so activating the CB-1 receptor: this then auto-activates
itself in a positive feed-forward loop involving PKC again.
Without the involvement of CB-1, ghrelin becomes inef-
fective [74].

This data suggests that the ECS is involved in altering cel-
lular redox and that this may link in with FOXO and mito-
chondrial function, both of which are involved in appetite
control. Furthermore, it also suggests that orexigenic cir-
cuits may well rely on lower levels of redox to function,
whereas anorexic ones rely on higher levels. Hence, exces-
sive calorie intake, especially of high glycaemic index car-
bohydrate, might induce the anorexic circuit to fail or
down regulate to protect itself, leaving the orexigenic one
intact, as it has better oxidative stress resistance; it would
also be more likely to function during starvation, when
lipids become the predominant fuel in the body. It would
also support the use of low carbohydrate diets, which can
often reverse many symptoms of the metabolic syndrome
[75].

In summary, the above support the hypothesis that exces-
sive insulin (and leptin) signalling can increase oxidative
stress. Hence, resisting the signalling is a vital counterbal-
ance in survival and fulfils a basic evolutionary paradigm
of coupling food seeking and storage behaviour with
resistance to oxidative stress. Thus, FOXO may well epito-
mise thriftiness, and the default setting to continual stress
(e.g. over-eating) must be to maintain its activity.

Mitochondria, hormesis and the metabolic 
syndrome: 'redox-thriftiness'
A notable finding in the metabolic syndrome and T2D is
that muscle mitochondrial function seems to be reduced
[22]. This mitochondrial dysfunction is also found in
other tissues, including the vascular endothelium and
may be related to mitochondrial overload by excessive
glucose flux through the electron transport chain (ETC)
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[76]. Adipocytes can also suffer from fatty acid overload,
leading to mitochondrial dysfunction and oxidative
stress. Under normal circumstances, adipocytes may be
able to burn off excessive fat as heat, so preventing lipo-
toxic damage to other organs [77].

As insulin signalling plays a vital role in controlling mito-
chondrial function, this suggests that insulin resistance,
reduced mitochondrial function, and the metabolic syn-
drome are all linked. As mitochondria are potentially
wasteful of energy, it is likely that reduced food availabil-
ity would, via natural selection, select for the minimal
functional mitochondrial density needed to produce
energy – 'symmorphosis' or economy of design [78]. In
contrast, it is now becoming apparent that various stres-
sors, such as exercise, fasting, and some polyphenols, can
induce mitochondrial biogenesis via a process called
'mitohormesis' – all of which are associated with
improved functional longevity [79]. The most important
of these may well be exercise, and it has been suggested
that the increased inflammatory tone seen in the meta-
bolic syndrome may be due to reduced PGC-1 activity,
which has a strong anti-inflammatory effect [43].

The ecological stress theory of ageing suggests that opti-
mal survival (longevity) is probably reliant on a degree of
stress to stimulate resistance to these stressors; in essence,
a (mild) degree of stress stimulates the cell (organism) to
improve its anti-stress mechanisms, which by and large
result in an improved ability to resist oxidative stress and
upregulate DNA repair – this process is known as 'horme-
sis'. These stressors include heat, cold, calorie restriction,
excessive gravity, exercise and irradiation. As these stimuli
result in long lasting effects, they might be expected to
slow the ageing process. The downside may therefore be
that removal of these stresses might be expected to reduce
biological fitness; in their optimal environment, animals
normally live in a 'hormetic zone' [80] – which could also
be described as the 'Goldilocks' zone, neither too comfort-
able, but not too harsh. In this light, mitohormetic stimuli
must be critical for optimal functioning. In order to shed
light on the nature of insulin resistance, we have devel-
oped the concept of mitochondrially-driven 'redox-thrifti-
ness'. Underlying this is an emerging concept that the
mitochondrium plays a critical role in the modulation of
redox signalling, and thus, insulin resistance. Therefore,
by improving mitochondrial function (defined by the
ATP/ROS ratio), not only is metabolic flexibility
improved, but inflammation and insulin resistance can be
reduced, as the signalling pathway has less negative
impact on intracellular redox.

Mitochondrial amplification of membrane-derived redox 
signals
Many membrane-based receptors and kinase-based path-
ways (e.g. p38 MAPK [mitogen activated protein kinase],

JNK and IKK/NF-κβ) may signal via or be modulated
through redox-based mechanisms [81,82]. MAPKs are a
large family of kinases that control cellular proliferation
and arrest in a redox-dependent manner: low levels of
hydrogen peroxide result in proliferation, whereas
increased levels suppress growth and eventually, induce
apoptosis. Thus, mitochondrial production of hydrogen
peroxide is critical in controlling cell growth and arrest.
However, it now appears that MAPKs are also located in
the mitochondrium, and that their translocation to the
nucleus, or cytosol, or even back into the mitochondrium,
is dependent on oxidation status. Thus, different levels of
oxidation result in different patterns of MAPK redistribu-
tion throughout the cell. As mitochondrial dysfunction is
common in cancer cells, this might suggest that the inabil-
ity to increase peroxide production would maintain cell
growth [83]. Mitochondria can also amplify ROS signals,
for instance, ROS can inhibit the mitochondrial permea-
bility transition pore (MPTP), resulting in increased mito-
chondrial ROS, which can be propagated throughout the
cell [84]. Moreover, mitochondria are also critical in cal-
cium signalling: calcium can activate mitochondrial func-
tion, but calcium plus other physiological stimuli can also
increase ROS release – a 'two-hit' mechanism that might
escalate normal physiology to pathology [85].

ROS is not the only redox signal: reactive nitrogen species
(RNS), as well as hydrogen peroxide and carbon monox-
ide, are also important. These superoxide radicals may
have slightly different functions. For instance, membrane-
derived nitric oxide (NO) is a potent stimulator of mito-
chondrial biogenesis and may work by inhibiting mito-
chondrial function as a competitor for oxygen at
cytochrome oxidase; this may also induce production of
mitochondrial nitric oxide – suggesting an amplification
effect. It can therefore modulate energy production [54].
Indeed, it has been suggested that it can fine tune the
bioenergetics of the cell, inducing a mild 'metabolic
hypoxia' that induces cytoprotection [53]. Carbon mon-
oxide, produced by haem oxygenase, may also play a sim-
ilar role by inhibiting cytochrome oxidase and increasing
ROS, resulting in mitochondrial biogenesis [86].

One of the concepts that emerges from the above is that
low level redox signalling is important in maintaining
critical cellular function, while a slight increase induces
cytoprotection – but too much will induce cell death. Cer-
tainly, the cell cycle is now thought to be controlled by
redox [87]. An example of this may come from the role of
inducible nitrogen oxide synthase (iNOS) versus endothe-
lial NOS (eNOS): iNOS is very important in pathogen
resistance, as it can induce large amounts of NO. When
combined with ROS, it becomes highly toxic in the form
of peroxynitrite [88]. TNFα can inhibit eNOS function in
adipose and muscle tissue [89], but can increase iNOS. It
has now been proposed that a 'yin-yang' eNOS/iNOS bal-
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ance plays an important role in modulating insulin resist-
ance. Insulin-stimulated production of NO by eNOS in
the vasculature ensures capillary bed dilatation in mus-
cles, so enabling efficient glucose dispersal, however, this
process stops working when there is either too little eNOS
activity (e.g. during insulin resistance, or due to eNOS
polymorphisms), or too much iNOS activity (inflamma-
tion), corresponding to too little, or too much NO, respec-
tively [90]. Thus, both ROS and RNS (NO) can not only
be amplified by the mitochondrium, but they also play a
vital role in insulin sensitivity or resistance, depending on
their concentration. High levels of oxidative stress are well
known to be associated with inflammation and insulin
resistance, but importantly, oxidative stress can also be an
important stimulus for mitochondrial biogenesis – which
can thus be viewed as a negative feedback mechanism,
and is discussed in the next section.

Mitochondria, free radicals, and calorie restriction
Calorie restriction induces eNOS, which may be an
important inducer of the mitochondrial biogenesis
observed in calorie restriction involving PGC-1 α
[20,21,91]. One explanation for this is an increase in
autophagy, which recycles damaged components and
results in newer, more efficient organelles. This process is
modulated, in part, by mTOR and FOXO [44,92]. The
resulting mitochondria have a reduced membrane poten-
tial (deltapsi), produce less ROS, use less oxygen and
exhibit an improved ATP/ROS ratio – which might
explain the decrease in energy expenditure induced by cal-
orie restriction [21]. PGC-1α function is also modulated
by AMPK [93], calcium [94], mTOR [95], FOXO [40], and
the sirtuins [96].

The sirtuins are NAD-dependent deacetylases that are
upregulated during calorie restriction, and appear to be
important in stress resistance and longevity. There are sev-
eral members, some of which locate to the mitochon-
drium. One of the reasons they are becoming the focus of
much research is that many plant polyphenols, such as
resveratrol, can mimic calorie restriction-induced longev-
ity – possibly by modulating sirtuin function/expression;
at least two downstream targets are p53 and FOXO
[97,98]. It is now clear that many of these polyphenols
can induce mitochondrial biogenesis, which may be asso-
ciated with direct activation of sirtuins, or indirectly via
their increased expression [99].

The evolutionary strategy for increased mitochondrial
mass and/or efficiency during calorie restriction may
revolve around an enhanced ability to utilise fatty acid
oxidation, which in muscle, maintains the ability to move
and maintain body temperature. Interestingly, fatty acid
oxidation is less reliant on complex 1 of the ETC (the
main source of ROS). This may result in a slightly reduced

ATP output – which may be another reason for increasing
mitochondrial density [100]. The overall effect of calorie
restriction is to enhance the organism's chance of survival
by reducing oxidative stress and ROS, while switching to
easily stored fatty acids. This would support the hypothe-
sis that FOXO shifts metabolism towards burning fats.

Recent data suggest that glucose restriction of C. elegans
increases its lifespan via an induction of respiration,
which is associated with an increase in mitochondrial
ROS and activation of AMPK; the inference is that glycol-
ysis, although inefficient, produces no ROS – so reducing
glucose leads to a hormetic stimulus [101]. Hence, it is
likely that reducing available carbohydrate (starvation),
induces a switch to mitochondrial respiration and
increased ROS, which in turn, activates mitochondrial
biogenesis. This fits well with the observation that calorie
restriction/starvation can induce insulin resistance, which
is associated with an increase in IMTG – so ensuring a
switch to fatty acids as fuel. As suggested by the C. elegans
data, it is now thought that AMPK is critical in the mito-
chondrial bioenergetic process, especially during exercise,
as it can activate PGC-1α [102]. This would support data
that it can improve the ability to oxidise fatty acids and be
able to offset fatty acid-induced insulin resistance, such as
in muscle [103]. Conversely, excessive glucose can inhibit
its function and thus, induce insulin resistance, in muscle
and liver [104]. AMPK is also important in stimulating
fatty acid oxidation in adipose tissues, and is activated by
exercise and hormones, such as leptin and adiponectin
[105]. Critically, inflammatory cytokines, such as TNFα,
are thought to inhibit its function [106]. AMPK may also
modulate the function of the FOXO transcriptional fac-
tors, implying coordination of resistance to oxidative
stress and energy metabolism [107]. There is thus a clear
correlation between improved mitochondrial function
and calorie restriction: given that PGC-1α also upregulates
anti-oxidant capacity, then increasing mitochondrial den-
sity is probably likely to suppress redox growth signalling.
In calorie restriction and/or stress, two critical nutrient
sensors, SIRT1 and AMPK, may well act concordantly to
do this [108]. As indicated, one of the strongest stimula-
tors of PGC-1 is exercise, hence, a lack of exercise may well
result in rising inflammatory tone [43].

Insulin control of mitochondrial function
The above suggests that insulin must have an effect on
mitochondrial function – perhaps by inducing oxidative
stress. Insulin signalling utilises hydrogen peroxide,
which is at least partly generated by the mitochondrial res-
piratory chain and is important in the autophosphoryla-
tion of the insulin receptor [109]. Additionally, mTOR,
which is part of a well conserved serine/threonine kinase
pathway that regulates cell growth in response to nutrient
status, also modulates mitochondrial function. It has a
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pro-survival and proliferative function. Inhibition of this
pathway using rapamycin lowers mitochondrial mem-
brane potential, oxygen consumption, and ATP synthetic
capacity [110]. However, mild inhibition of the mTOR
pathway may also be associated with increased longevity;
it appears to be downregulated in times of stress by factors
such as p53 or AMPK [111]. Its effects on mitochondrial
function are thought to work through a complex with
PGC-1α and another transcription factor, ying-yang 1
[95]. The mTOR pathway can also self inhibit via the s6
kinase [112]. All together, it is likely that insulin can pro-
mote mitochondrial biogenesis as part of a general prolif-
erative function, while stressors promote it as a
mechanism to ensure increased resistance to stress. Cer-
tainly, glucocorticoids can upregulate PGC-1α in muscle,
and can directly modulate mitochondrial function,
including mitochondrial biogenesis – which may involve
glucocorticoid receptors in the mitochondrion itself [113-
115]. Critically, it appears that inflammation can both
suppress insulin signalling and damage mitochondria
(via TNF-α), but this in itself might be a potent mitochon-
drial biogenic signal: LPS treatment of cardiomyocytes
depresses mitochondrial function, but results in activa-
tion of PGC-1α [116].

Redox-thriftiness: 'mitoamplification'
The key to 'redox-thriftiness' is that mitochondria can both
amplify, and suppress, redox signalling. For instance, it is
possible that a small number of high potential mitochon-
dria may amplify the redox growth signal more strongly
than a larger number of low potential mitochondria. In
light of this, we propose the concept of 'redox-thriftiness' to
explain the molecular basis for insulin resistance. Due to
the need to both resist oxidative stress, and save energy, a
rapid mitochondrial amplification of redox growth sig-
nals would result in rapid negative regulation of the sig-
nal. This phenotype would ensure supply of energy to the
brain, energy storage (channel lipids to adipose), a height-
ened inflammatory response, but reduce insulin signal-
ling (as it is potentially life-shortening and may result in
excessive mitochondrial biogenesis). However, with
hormetic stimuli, mitochondrial function (and probably
mass) would improve (increase), so increasing resistance
to oxidative stress and would improve insulin sensitivity.
Hence, the organism would constantly adapt itself to be
optimally effective under normal evolutionary conditions
of feast and famine, with periodic physical activity to
escape predators or find food. Thus, insulin-stimulated
mitochondrial biogenesis would be enhanced – a kind of
feed forward amplification in the presence of hormetic
stimuli.

As oxidative redox drives growth, we suggest that a 'thrifty'
phenotype would probably have a lower mitochondrial
density to reduce energy expenditure ('symmorphosis')

and enhance mitochondria-mediated ROS amplification;
this would both drive insulin resistance and inflamma-
tion. During feeding, this reduced mitochondrial density
would ensure a rapid amplification of ROS and a potent
insulin resistance signal. At low levels, this would ensure
storage, but if amplified by infection, it would enhance
inflammatory responses (including insulin resistance to
ensure energy for the CNS and immune system).
Although this phenotype might be altered by acute stress-
ful energy-requiring mito-hormetic stimuli, even during
calorie restriction when mitochondrial density may
increase, it would be associated with lipid-induced insulin
resistance. The concept of 'redox-thriftiness' is displayed in
figure 1.

Inflammation, a tipping point, life expectancy and 
VAT
We suggest that although optimal in an ancient environ-
ment, 'redox-thriftiness' may lead to a 'redox spiral' in the
absence of constant and appropriate hormetic stimuli and
the presence of unlimited calories. The ensuing insulin
resistance would further inhibit insulin-driven mitochon-
drial biogenesis, so worsening the spiral. There may,
therefore, exist a thrifty-inflammatory tipping point when
normal physiological thrifty insulin resistance gives way
to more generalised inflammatory and pathological insu-
lin resistance [117]. It is therefore likely that the thrifty-
inflammatory tipping point also has a set point, which is
likely to be modulated by both genetics, environment and
epigenetics, and would thus be related to metabolic flexi-
bility, and importantly, by the extent of an innate or pro-
grammed inflammatory response to oxidative stress.

As aging is associated with increased NFκB activity
[118,119], the tipping point could also represent the activa-
tion of an ancient accelerated aging mechanism to shorten
functional longevity and increase population turnover.
Accelerated ageing may well have evolved as an evolution-
ary mechanism against predation, and could also be acti-
vated by 'stress' to weed out less fit organisms. In contrast,
without predation, the natural state of any species is to
develop extreme longevity as this increases reproductive
potential [120]. We also suggest that this same mecha-
nism may have become adopted as a mechanism to pre-
vent excessive weight gain.

Atherosclerosis and hypertension are linked via endothe-
lial dysfunction and an imbalance between oxidative and
anti-oxidant mechanisms, leading to a vicious inflamma-
tory-oxidative cycle – this is largely driven by moieties that
become oxidised, such as LDL. Hence, the development of
diabetes accelerates the process through increased oxida-
tive stress induced by hyperglycaemia and insulin resist-
ance [121]. Molecularly this is thought to occur via
oxidation of LDL via a number of oxidative and carbonyl
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mediated mechanisms [122]. Dyslipidaemia, atheroscle-
rosis, the formation of plaques, and ultimately, thrombo-
sis leads to 'atherothrombosis', and is likely to afflict most
people [123]. It has been calculated that stochastic dam-
age to elastin in the human vasculature may limit ultimate
human life expectancy to about 120 years [124]; thus, any
accelerated damage will clearly reduce this. The tipping
point could have a profound influence on life expectancy,
which in humans is largely (but not exclusively), deter-
mined by cardiovascular disease: the metabolic syndrome
is associated with an earlier than normal onset of many
diseases, including renal disease, cancer, osteoporosis,
depression and neurodegeneration [125-129].

The immune system and energy storage; good and bad for 
the individual
The immune system and the co-evolutionary need to
resist famine and infection – the 'thrifty-cytokine' idea
[130], which is based on the 'metabolic costs of immu-
nity' [131], may be critical in the metabolic syndrome.
Stored energy enables a robust immune response to be
mounted, but might lead to a pro-inflammatory state. The
'metabolic syndrome' phenotype is characterised by path-
ological insulin resistance, dyslipidaemia, hypertension,
hypercoagulability, increased VAT and oxidative stress,
which shares many similarities (although milder) to what
happens in the APR [132,133] and stress response [134].

Indeed, oxidative stress-induced activation of the stress
pathways, JNK & p38 MAPK, and the IκBK/NF-κB path-
way, may provide a unifying hypothesis to explain T2D
[135]. Reduction of JNK1 activity in macrophages can
protect against obesity-induced insulin resistance, while
JNK1-/- mice are highly resistance to diet induced obesity
and appear to have an increased metabolic rate [136,137].
Thus JNK appears to play a central role in obesity and
insulin resistance [138].

This therefore presents a paradox; increased activity of
JNK is associated with increased lifespan, but in the con-
text of the metabolic syndrome, its activity might be asso-
ciated with a reduced lifespan. JNK is a ROS-activated
kinase and is upregulated by many stresses, and cytokines,
and if briefly activated, increases cell survival, however, if
continually active, it induces apoptosis. Likewise, NF-κB is
also activated by ROS, but in contrast suppresses JNK
activity, and thus apoptosis. It may do this, in part, by sup-
pressing ROS by increasing anti-oxidant enzymes
[139,140]. This might begin to explain why, although NF-
κB activity is increased in the metabolic syndrome, its
relationship to insulin resistance may be very tissue spe-
cific: it may be acting to aid in cell survival and suppress
excessive ROS. This may suggest that at least with regards
to insulin signalling, JNK maybe more important than
NF-κB. Given the very strong relationship of obesity to

Insulin resistance protective cycle – the underlying principle for 'redox-thriftiness'Figure 1
Insulin resistance protective cycle – the underlying principle for 'redox-thriftiness'.
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insulin resistance, and the macrophage JNK data above,
increasing levels of obesity may result in increased pro-
inflammatory tone (so increased NF-κB activity), which
results in cytokine-induced activation of JNK – the 'redox
spiral'.

One source of the inflammation may be 'stressed' adi-
pocytes that become overloaded with fat-attracting mac-
rophages [141]. New data suggest that the number of
adipocytes an adult human may be set during childhood/
adolescence [142], hence, in adulthood fat capacity may
be fixed. This suggests that it is possible to overload the fat
storage system. If leptin-deficient mice are engineered to
over-express adiponectin (which can suppress NF-κB),
they can constantly expand their fat tissue, becoming
morbidly obese, but appear to be metabolically healthy
with little adipose tissue inflammation and do not
become insulin resistant: this ability is associated with
increased activity of PPAR γ [143]. PPAR γ is important in
adipogenesis and is suppressed by FOXO [144] and in
general, it appears that NF-κB and the PPARs may mutu-
ally repress each others activity [145-148], which suggests
that the PPARs play a significant role in modulating
inflammation and insulin resistance, and thus, longevity,
as they can be down-regulated by oxidative stress. Insulin
can also increase PPAR γ transcription in adipocytes, prob-
ably via mTOR [149]. Hence, PPAR γ-driven accumulation
of fat is probably protective, but the downside is that it
would probably result in an animal too fat to move. Thus,
suppression of excessive fat storing activity may be impor-
tant in limiting size.

It has been long thought that the response to 'stress' can dic-
tate the propensity to a metabolic syndrome phenotype
[134]; Cushing's syndrome, in which there is an overproduc-
tion of cortisol, generates a very similar phenotype. Cortisol
itself results in increased VAT, insulin resistance, hepatic glu-
coneogenesis and lipogenesis, increased lipolysis and
reduced insulin output. Both the sympathetic nervous sys-
tem (SNS) and hypothalamic pituitary adrenal (HPA) axis
are more active in obesity and the metabolic syndrome. Cor-
tisol also positively modulates 24 hour leptin production,
and at low concentrations, can enhance insulin's actions,
rather than inhibiting them [150]. The increased activity of
the SNS and HPA may also be as a mechanism to prevent
excessive weight gain, and is associated with insulin resist-
ance, and may be one of the actions of leptin [151,152].

It is therefore possible that it is the response to stress itself
that is important, and as previously mentioned, this might
represent a 'weeding out' mechanism for less fit organisms.
However, glucocorticoid release, under normal circum-
stances, prepares the body to meet increased metabolic
demands – for instance, fasting or exercise, or even per-
ceived stress [153]. Thus, although the metabolic syndrome
can be partly explained by increased activity of the SNS and

HPA, it is also likely that it might represent a response to a
more fundamental stress. Corticosteroids are strongly anti-
inflammatory and can both induce endocannabinoid
release (possibly redirecting arachidonic metabolism
towards anti-inflammatory mediators, rather than inflam-
matory prostaglandins) [154], and in some tissues, can
induce mitochondrial biogenesis [113,114]. This might
suggest why the number of fat cells may eventually become
fixed: it is a size limiting mechanism – as fat cells become
more stressed, they start to drive an anorexic response –
which may be very similar to the metabolic syndrome. The
above suggest that storing energy is essential to mount an
immune response, but this same mechanism may also start
to drive a response to limit size using inflammation.

Origins of the dyslipidaemia; inflammation
Acute injury or infection activates the APR, which is asso-
ciated with release of acute phase proteins, hepatic gluco-
neogenesis, hyperlipidaemia and insulin resistance [155].
The process is driven by cytokines and is also associated
with decreased fatty acid oxidation, increased fatty acid
synthesis and triglyceride formation, as well adipose lipol-
ysis [156]. Likewise, the metabolic syndrome is associated
with decreased HDL-c and increased triglycerides, as well
as changes towards more inflammatory (acute phase)
apolipoproteins, with reduced particle size and the pres-
ence of oxidised lipoproteins. It is thus associated with a
very similar inflammatory lipid profile [157]. VAT is met-
abolically very active, and is sensitive to the lipolytic effect
of catecholamines, but insulin resistant – it appears to be
in a permanent lipolytic mode. This results in high levels
of FFA being delivered to the liver and an increase in
hepatic lipase activity; this also decreases lipoprotein par-
ticle size. Critically, as the size of adipocytes increases, so
does the production of lipoprotein lipase (LPL) and cho-
lesterol ester transfer protein (CETP), as well as angi-
otensinogen, PAI-1, IL-6 and TNFα. Insulin and cortisol
increase LPL production – which may explain why activa-
tion of the HPA axis may result in increased VAT [158].

It is now widely acknowledged that atherogenesis is
related to an inflammatory lipid profile, and that the lipid
carrying system is also part of the immune system. For
instance, although HDL can via apolipoprotein A-1 have
a vital role in reverse cholesterol transport and reduce oxi-
dative stress, HDL can also demonstrate a more pro-
inflammatory nature, as it can carry many APR compo-
nents [156,159]. Thus, the dyslipidaemia and insulin
resistance in the metabolic syndrome have all the hall-
marks of being driven by inflammation, which itself, is
most likely triggered by oxidative stress.

A thrifty-inflammatory tipping point and a function for 
VAT?
Excessive substrate levels, inefficient autophagy and stress
signalling would simply overwhelm many cells. This
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would explain the increased endoplasmic reticulum stress
found in obesity and diabetes [160], which leads to
inflammation [161]. This might have the effect of worsen-
ing the lipotoxicity by inhibiting the PPARs, in particular,
PPAR γ, so reducing the capacity to increase pre-adipocyte
proliferation. In effect, rising inflammatory tone might
lead to a reduced capacity to metabolise and store fat
safely, as it might lead to insulin resistance in adipose tis-
sue, resulting in lipolysis.

Thrifty insulin resistance could be determined by reduced
mitochondrial function and 'redox-thriftiness': this ensures
both energy storage, resistance to excessive redox signal-
ling and, quite possibly, a hair-trigger inflammatory
response. As fat mass increases, there is a gradual improve-
ment in the ability to mount a strong immune response,
however, if it is not offset by mitohormetic stimuli, then
it is possible that the innate immune system and the HPA/
SNS become activated. This might initially have the effect
of mildly increasing insulin resistance still further. How-
ever, in combination with excessive calories and rising
inflammatory signals, many cells become "stressed" and
start to inhibit essential functions like mitochondrial bio-
genesis and fat storage. At this point a vicious feed-for-
ward loop is initiated.

Thus thrifty insulin resistance may develop into inflamma-
tion-driven insulin resistance; this itself may be a mecha-
nism to prevent excessive weight gain. Insulin resistance in
adipocytes, in particular, those in VAT, would lead to
increased lipolysis – a symptom of the adipocyte becoming
increasingly insulin resistant. The increased activity of the
HPA axis, with rising levels of corticosteroids, might even
act to accelerate fat burning in adipocytes. This data may
then shed light on a function for VAT: it modulates maxi-
mum fat storage and life expectancy. New data suggest that
indeed, VAT can modify life expectancy – it's removal
extends lifespan [162]. Both calorie restriction and exercise
result in a rapid depletion of VAT; this may support the
hypothesis of Freedland who suggested that there is a criti-
cal visceral adipose tissue threshold (CVATT) [163]. Figure
2 summarises this concept: without hormesis, metabolic
flexibility decreases and in concert with excessive calories,
ectopic fat is deposited, in particular, in the visceral region
– this drives an inflammatory response that may well act to
prevent excessive weight gain, but it will also shorten
lifespan. In contrast, in the presence of hormetic stimuli,
this is much less likely to happen – as any excess calories
may be directed to other fat stores (such as subcutaneous
fat) or burnt off.

Modulation of the tipping point
It is likely that the tipping point may be determined by
many positive hormetic and negative inflammatory fac-
tors, which in turn, modulate the 'redox-thriftiness' set

point and metabolic flexibility. Physical activity is proba-
bly one of the strongest positive stressors, as is fasting:
alternate day calorie restriction (fasting) can invoke many
of the beneficial effects of calorie restriction in both ani-
mals and humans [164-166]. Inflammation is clearly a
negative regulator (increases oxidative stress and induces
insulin resistance), and although beyond the scope of this
paper to fully review, it is likely that many infections, such
as hepatitis C which are associated with increased rates of
T2D [167], could profoundly effect the tipping point.

Dietary composition may also strongly influence it: diets
high in saturated fat tend to be detrimental, whereas diets
high in unsaturated/polyunsaturated fats may be more
healthy [168-170]. In stone age times, the ratio of polyun-
saturated to saturated fat (P/S) in the diet was probably
nearer 1.0 [171,172]. In comparison, dietary studies in the
late 1970 s and early 1980 s indicated that the P/S ratio
was 0.20 and 0.35 in Australia and Finland, respectively
[173,174]. This probably means that humans have
evolved (to varying degrees, depending on environment),
to be dependent on a dietary-, exercise-, temperature-, and
fasting-induced levels of hormesis. This would explain
why many clinical trials of simple anti-oxidants, such as
vitamin E, have failed [175]; simply blocking free radicals,
because of the their role in redox, may reduce intracellular
preconditioning effects. In contrast, some polyphenols,
such as resveratrol do actually appear to have a benefit as
they can induce mitochondrial biogenesis. In this regards,
even polyunsaturated fats could be viewed as 'hormetic'.
This also extend to other compounds, including some
pharmaceuticals, such as statins, metformin, or even alco-
hol.

Tipping point: polyunsaturated hormesis?
PUFA may be potentially hormetic due to their double
bonds; the greater the degree of unsaturation, the greater
the potential for auto-oxidation [176]. Thus, the observa-
tion that the membranes of mitochondria generally have
a lower unsaturation index than other membranes in the
cell (containing more MUFA, but less PUFA), suggests
reduced susceptibility to membrane damage [177]. Oxi-
dation of highly unsaturated fats leads to reactive mole-
cules, such as malondialdehyde (MDA) [178]. Excessive
omega-6 PUFA can instigate mitochondrial nitrosative
damage [179], while omega-3 PUFA, but not MUFA, or
saturated fats, can induce the release of mitochondrial cal-
cium [180]. Rats fed for life a diet very high in PUFA have
a shorter lifespan, but can be protected by coenzyme Q10
supplementation [181]. In a model of breast cancer, feed-
ing pre-pubescent rats controlled levels of n-3 PUFA was
protective and associated with reduced DNA damage,
whereas feeding pre-pubescent rats with a high level of n-
3 PUFA was associated with an increase in cancer and
DNA damage [182].
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Is there evidence that unsaturated fats invoke a protective
response? Unsaturated fats are better ligands for PPAR γ
and δ than saturated fats; PPAR α is less selective and more
promiscuous [183]. This bias may also be evident for the
uncoupling proteins (UCPs), with unsaturated fats, in
particular PUFAs, being more potent UCP activators than
saturated fats [184,185]. One function of the UCPS may
be to transport out potentially damaging lipid peroxides
from mitochondria, so reducing oxidative stress. The
mechanism is thought to involve superoxide activation
via a free radical chain reaction that forms reactive alde-
hydes, such as hydroxynonenal (HNE) derived from
omega-6 PUFAs, or hydroxyhexenal, from omega-3
PUFAs, which are particularly susceptible to peroxide
damage [186].

Lipotoxicity (or at least, a switch to lipid metabolism) is
an important contributor to insulin resistance. However,
this may be dependent on the type of fatty acid. For exam-
ple, palmitate, but not unsaturated fatty acids can induce

myotube IL-6 production [187], while mice over-express-
ing muscle UCP-1, despite having high levels intramyocel-
lular fat, are still insulin sensitive [188]. Certainly,
unsaturated fat can undergo futile cycling, whereas satu-
rated fat does not appear to and can lead to lipotoxicity
[189]. Reduced functioning of UCP-3 could lead to mito-
chondrial lipotoxicity, reduced oxidative capacity and
could contribute to ageing and type 2 diabetes [190].
Increased activity of UCP-2 can protect against obesity,
while decreased activity is associated with type 2 diabetes
[191]. Certainly, there is evidence that PGC-1α, which can
modulate UCP transcription, is down regulated in type 2
diabetes [192]. Their role in fatty acid metabolism is sug-
gested by the observation that the activity of UCPs is
increased during starvation and by a ketogenic diet [193-
195].

Different fatty acids have different insulinotropic capacity
and are critical for glucose-stimulated insulin secretion
(GSIS). It is dictated by the degree of unsaturation and

The tipping point and the metabolic syndromeFigure 2
The tipping point and the metabolic syndrome. Without hormesis, and in the presence of excess calories, VAT can build 
up, which is associated with excessive ectopic fat due to metabolic inflexibility. This is associated with rising oxidative stress 
and a shift from thrifty to inflammatory insulin resistance; this results in the metabolic syndrome and an accelerated ageing phe-
notype.
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chain length – increasing with chain length, but decreas-
ing with degree of unsaturation [196]. Increased PPAR γ
activity suppresses GSIS by upregulating UCP-2 [197],
while PPAR α has been found to be involved in the pan-
creatic adaptation to fasting by also upregulating UCP-2
[198]. This could be indicative of hormesis. Combined
with the well described ability of PPAR γ to improve glu-
cose dispersal, which is now also being described for
PPAR δ [199], as well as PPAR α [200,201], it is likely that
the type of fatty acid can modulate both ends of the insu-
lin axis. For instance, unsaturated fats may reduce the
stress on the insulin axis by maintaining insulin sensitiv-
ity, but reducing GSIS. This may well suggest improved
mitochondrial function and a hormetic effect: unsatu-
rated fatty acids, in the pancreas, would upregulate anti-
oxidant systems (including mitochondrial biogenesis)
that would reduce the glucose-induced ROS signal from
the mitochondrium. In the periphery, this would tend act
to maintain insulin sensitivity by damping down stress-
signalling that would other inhibit insulin signalling func-
tion.

Tipping point: saturated fats and inflammation
Saturated fats have a higher melting point than unsatu-
rated fats, so they make membranes less fluid. The anti-
inflammatory action of glucocorticoids is thought to
partly occur by decreasing the saturated fatty acid content,
while increasing the unsaturated content of lipid rafts, so
increasing membrane fluidity [202]. Saturated fats are
also a major component of bacterial cell walls, and may
activate the innate immune system via TLRs (toll-like
receptors), whereas unsaturated fats, in particular those of
the omega-3 series, inhibit TLR activation [203]. Mice
lacking TLR-4 are substantially protected from lipid-
induced insulin resistance [204]. Lipid rafts are key in
immune and insulin signalling, and as suggested above,
their function can be altered by either cholesterol deple-
tion or by increasing the content of unsaturated fatty acids
– both of which have an anti-inflammatory effect [205].
TLRs also signal through lipid rafts, which are an impor-
tant site of ceramide release. Ceramide is a critical part of
the ancient sphingomyelin stress signally pathway [206]
and is associated with the development of insulin resist-
ance [207].

Saturated fat is known to induce athrogenic hyperlipidae-
mia, a process involving hepatic PGC-1β and SREBP
[208]. Saturated fat is also less effective than unsaturated
fat at stimulating the incretin glucagon-like peptide 1
(GLP-1) from the gut [209]. The biological activities of
GLP-1 include stimulation of GSIS and insulin biosynthe-
sis, inhibition of glucagon secretion and gastric emptying,
and inhibition of food intake.

Altogether, this does suggest that a diet high in saturated
fat is more likely to induce insulin resistance. Data does

tend to support the notion that reverting to diet more like
that of our ancestors by reducing saturated fat, but increas-
ing unsaturated fats, with a high omega-3/omega-6 ratio
may improve insulin sensitivity [210]. Certainly, a diet
high in saturated fat can lead to obesity [211], while epi-
demiological data does imply that replacing saturated fat
with unsaturated fat can improve many symptoms of the
metabolic syndrome, including insulin sensitivity [212].
The above suggest that excessive saturated fat may be non-
hormetic and inflammatory.

Tipping point: the role of anti-inflammatory lipids
Malcher-Lopes and colleagues suggest that the glucocorti-
coid-induced release of 2-AG and anandamide (AEA) is
part of a mechanism to divert arachidonic acid from
inflammatory mediators (the prostaglandins, involving
COX-2), to anti-inflammatory mediators (the endocan-
nabinoids) and a protective profile [154]. Both endocan-
nabiniods and novel docosanoids are neuroprotective
following ischaemia-reperfusion injury [213,214]. Inter-
estingly, hypoxic brain injury induces a rise in mitochon-
drial biogenesis [215].

Endocannabinoids are released on demand, generally by
stressful stimuli, for instance, by stressed adipocytes –
which, it has been suggested, may be part of the cause of
obesity and the metabolic syndrome due to overactivity of
the endocannabinoid system via a feed-forward mecha-
nism [216]. This apparent dysfunction in obesity has led
to the development of CB-1 receptor antagonists, such as
rimonabant, for the treatment of obesity (and its
sequalae) [217]. Although these drugs do induce a degree
of weight loss and reduce symptoms of the metabolic syn-
drome, their long term use is limited due to CNS side
effects, suggesting alternative approaches may be needed
– such as partial agonism [216]. Rimonabant does reduce
pro-inflammatory and pro-thrombotic markers in dia-
betic Zucker rats, suggesting a broad anti-inflammatory
action [218], and it does improve insulin sensitivity in
some tissues; however it also enhances HPA activity in
food-deprived Zucker rats [219] and increases production
of corticosteroids [220]. This suggests it is activating a
stress response.

In adipocytes, 2-AG may improve insulin sensitivity,
while rimonabant reduces it [221]. In muscle, CB-1 recep-
tors may, via ERK and P38 kinase (but not NF-κB or JNK),
inhibit insulin action [222]. At the cellular level, rimona-
bant decreases the fat content of 'obese' adipocytes by
increasing lipolysis, futile cycling and fatty acid oxidation,
which is supported by the transcriptional profile [223]. It
also appears to increase mitochondrial biogenesis in
white adipocytes, a process mirrored in CB-1 knockout
mice [224]. In light of this, we suggest that rimonabant,
via increased adipocyte insulin resistance, enhances lipol-
ysis and in concert with raised levels of corticosteroids,
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stimulates adipocyte mitochondrial biogenesis. It thus
may exaggerate a stress response; this may be driven by
increased CNS stress. Although the appetite suppressing
effects of rimonabant are rapidly lost, clinical trials show
a clear increase in CNS side effects, which has led to a high
discontinuation rate [225].

Rimonabant may therefore be inducing increased energy
turnover by accelerating the previously described adipose-
inflammation-stress weight prevention mechanism. But
at what cost? CB-1 receptor knock out mice, although lean
and resistant to a high fat diet, have a reduced life expect-
ancy [226]. Their transcriptional profile is also similar to
that induced by rimonabant [223]. This might suggest
that very long term and potent inhibition of the CB-1
receptor may be detrimental. Furthermore, CB-1 receptors
may activate AMPK in the brain and heart, but suppress it
in the liver and adipose tissue [227]. The above proposed
mitochondrial biogenic mechanism of rimonabant in
white adipose tissue may suggest that at least in the heart
and brain, it may actually reduce mitochondrial biogen-
esis. It could also in the long term lead to more general-
ised adipose tissue dysfunction and exhaustion.

With regards the tipping point, it would appear that the
inflammatory insulin resistance profile superimposes
over the thrifty insulin resistance profile, resulting in the
adipocyte becoming insulin resistant and amplifying the
inflammatory metabolic profile. This may well invoke a
thermogenic energy wasting response, which is negatively
regulated by increased endocannabinoid release. Further-
more, as endocannabinoids are now being shown to be
PPAR agonists [228], then they may well may increase adi-
pogenesis. Thus, endocannabinoids could be exerting
anti-inflammatory and adipogenic actions in VAT, which
may actually be protective. Teleologically, insulin resist-
ance in most organs is protective, but in adipose tissue, it
may be essential to maintain insulin sensitivity to store fat
until the organism gets too fat; then the development of
adipocyte insulin resistance prevents excessive weight
gain – but this may come at a price.

Tipping point: glucose as an inflammatory signal?
Restricting glucose availability to C. elegans results in oxi-
dative stress and induces mitochondrial biogenesis and
improved longevity [101]. High levels of glucose result in
increased mitochondrial superoxide generation and ROS
[229], which is also an inflammatory signal [230]. Hyper-
glycaemia can activate the inflammatory system via
advanced glycation end-products (AGE), which are
known to increase NFκB activity [231], leading to local-
ised and systemic insulin resistance. Furthermore, glucose
can also induce the release of APR reactants from adipose
tissue [232]. Glucose could, therefore, be viewed as an
inflammatory mediator, which would support Dandona's

concept that insulin can be viewed as anti-inflammatory
[233] and probably has immunomodulatory functions.
Hence, excessive levels of high glycaemic index carbohy-
drates could not only result in a large amount of saturated
fat being created (as glycogen stores become saturated),
but if the pancreas was unable to cope, hyperglycaemia.
Certainly, there is good evidence that high carbohydrate
diets are more likely to result in the metabolic syndrome,
which is supportable by basic biochemistry [234]. It is
thus possible that hyperglycaemia could actually be seen
as inflammatory and be the final 'coup de gras' that trig-
gers feed-forward inflammation as the pancreas decom-
pensates. It could, again, also be viewed as a mechanism
to prevent excessive adiposity.

Tipping point: polyphenol 'xenoergohormesis'
Many non-nutritional components of plants modify tran-
scription, the most well known are the isoflavones
(PPARs), epigallocatechin gallate (EGCG, inhibits the
proteosome), hyperforin (activates cytochrome P450)
and resveratrol (activates sirtuins) [235]. It has been
known for some time that polyphenols, such as EGCG,
can inhibit NF-κB activation [236], which would lead to
reduced inflammatory response, as well as insulin signal-
ing [237]. Some polyphenols can also mimic the longev-
ity effects of sirtuin activation, which are known to be
critical in calorie-restriction induced longevity [238]. This
sirtuin modulating ability has now also been shown for
several isoflavones, and is associated with mitochondrial
biogenesis [99]. It has also been shown that activation of
the retinoid × receptor (RXR), the obligate dimeric partner
of PPAR, can induce thermogenesis [239]. Plus, phytanic
acid, a naturally occurring component of many foods, can
also activate both PPARs and RXRs [240], while activation
of RXR by rexinoids can improve insulin sensitivity [241].
Retinoic acid can also suppress NF-kB activity, which is
associated with a switch from a Th1 to a Th2 response
[242].

It is thought that most polyphenols are secondary metab-
olites involved in plant-defence against stressors such as
ultraviolet light or insects, and many are toxicants that can
suppress growth and can inhibit many aspects of arachi-
donic-based inflammatory pathways [243]. However,
many anti-oxidant components in plants can also be
viewed as part of the plant redox-signalling system; if a
plant is stressed, these components are upregulated to
suppress excessive ROS-driven damage, for instance,
ascorbic acid, α-tocopherol and reduced glutathione.
However, they could also be viewed as a means of sup-
pressing excessive redox signalling [244]. Animals and
plants also share a very high degree of sequence homology
between the ERK pathways [245]. Thus the observation
that many polyphenols can modulate kinase pathways in
animal cells [246,247], including AMPK [248], is relevant.
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Critically, polyphenols appear to have pleiotropic actions,
and can directly modulate mitochondrial function, often
resulting in increased ROS production. For instance, sev-
eral polyphenols (including resveratrol) can inhibit mito-
chondrial proton F0F1-ATPase/ATP synthase [249], while
tetrahydrocannabinol (THC) has been found to inhibit
complexes of the mitochondrial electron transport chain
[250]. However, they may be acting in other ways as well.
For instance, resveratrol can activate MAPK inducing
eNOS; one way it could be doing this is via activation of
the oestrogen receptor [251,252] – activation of the oes-
trogen receptor has been shown recently to modulate
mitochondrial function and decrease superoxide produc-
tion [253]. Interestingly, resveratrol has also been shown
to inhibit HNE activation of the JNK pathway [254], as
well as insulin signalling to Akt and MAPK – which was
not dependent on sirtuins [255].

In light of the data, we propose that it is possible that some
polyphenols may be simultaneously capable of modulat-
ing membrane based redox signalling, while inhibiting
mitochondrial function: this would have the effect of
reducing stress signalling (e.g. derived from inflammatory
signalling), but increasing mitochondrial ROS ('oxidative
preconditioning'), while reducing ATP production – a
potent mitochondrial biogenic signal. The recent observa-
tion that MAPK also locate to the mitochondrium may be
important in this regard [83]. In essence, they may reduce
the ATP/ROS ratio, which is a powerful hormetic signal.
From the point of view of a plant, this is both a potent stress
signal and an effective way (at high doses), of inhibiting
pathogens. Figure 3 outlines the hypothesis.

This could explain the observation that resveratrol can off-
set the life-shortening effects of a high fat diet. In mice,
resveratrol is associated with increased activity of PGC-1α
and AMPK, as well as improved insulin sensitivity [256].
Certainly, there is good evidence that many small mole-
cule activators of the sirtuins, such as resveratrol, can
extend life in C. elegans and D. Melanogaster [238], as well
as in fish [257]; this may support the 'xenohormesis' the-
ory cross-species signalling mechanism [258]. In addi-
tion, the concept of 'exercise mimetics' has been suggested
by Narkar and colleagues [259]: this involves pathways
and factors, such as PPAR δ and AMPK, which are known
to be involved in modulation of PGC-1α. The endurance
improving effect of resveratrol [260] might suggest that
the 'xenohormesis' idea could be extended to the concept
of 'xenoergohormesis', where the eating of plant polyphe-
nols optimally modulates the exercise capacity of an ani-
mal when food is available.

Tipping point: accidental hormetic agents and 'redox-
thriftiness'
Other than the polyphenols discussed before, several mar-
keted pharmaceuticals (and other compounds) can

reduce metabolic syndrome markers and may exhibit
hormetic effects. One of the oldest may be metformin. It
is still first line therapy after lifestyle change for the treat-
ment of type 2 diabetes; it is also one of the few to actually
induce weight loss [261]. It has now been proposed that
its mode of action may involve inhibition of mitochon-
drial complex 1, which increases ROS, and in combina-
tion with NO, increases peroxynitrite which activates
AMPK [262], which then upregulates PGC-1α [263]. This
strongly suggests it is hormetic, and it does improve insu-
lin sensitivity.

Another class of well used drugs are the statins. They can
improve the dyslipidaemia of the metabolic syndrome,
and have been shown to reduce the associated inflamma-
tion and oxidative stress [264]; they also reduce blood
pressure slightly [265]. With regards insulin resistance, the
data is mixed [266-268]. One of their main side effects is
myopathy. One explanation is that they might increase
oxidative stress by decreasing production of mitochon-
drial coenzyme Q10, a potent anti-oxidant [122,269]. In
addition, they can also directly induce mitochondrial dys-
function by inhibiting oxidative phosphorylation and
uncoupling, a property they share with fibrates and glita-
zones [270]. However, they can also induce a precondi-
tioning effect by stimulation of NO and carbon monoxide
and can can activate AMPK [271-274]. It is therefore pos-
sible that although their benefits are limited by inducing
mitochondrial dysfunction, they may also be hormetic.
Thus, they may well display a bimodal effect: in patients
who are already likely to have severely compromised
redox pathways, they may well be less effective. But in oth-
ers, they may induce just enough oxidative stress to be
protective. This may well suggest an alternative mode of
action for the statins: it is not the cholesterol lowering in
the blood, per se, that is important, but actually their
hormetic effect.

Finally, one other well observed drug is alcohol. Across
society its effects appear to follow a 'U'-shaped curved,
being beneficial at lower doses, while becoming toxic at
higher doses. One of its effects is to both increase both
the quantity and protective qualities of HDL-c, perhaps
via increased lipidation [275]. Alcohol is also well
described to induce oxidative stress, principally via a
mitochondrial mechanism that can result in mitochon-
drial dysfunction [276]. Too much alcohol can cause cer-
tainly insulin resistance by damaging the liver [277], in
contrast, there is some data that small amounts of alco-
hol can be associated with improved insulin sensitivity
in healthy adults [278,279]; however, the true extent of
this beneficial effect may be partly confounded by body
composition and lifestyle [280,281]. Although there are
clearly many factors which may obscure an effect, the
above does suggest that alcohol could, at the right doses,
have a hormetic effect.
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Tipping point: epigenotypes, hormesis and metabolic 
flexibility
It has been suggested that as feast and famine were the
normal state of affairs during evolution, the thrifty trait
has become genetically canalised and is thus a robust
characteristic of all life. However, it is modifiable and its
expression is thus a combination of both the genotype
and the environmentally induced phenotype – or the 'epi-
genotype' [16]. One key factor in modifying the epigeno-
type must be hormesis, in particular, the metabolic
flexibility epigenotype epitomised by mitochondrial func-
tion.

With little or no hormetic stimuli, there is likely to be a
gradual reduction in mitochondrial density and a com-
mensurate decrease in both metabolic flexibility and
resistance to oxidative stress. The benefit is that this
reduces the need for energy. In effect, economy of design,
or symmorphosis, reduces metabolism and structure to
the minimal needed. Two ways of viewing this are
depicted in figure 4. The first is the metabolic flexibility
bowl, which represents the epigenotype canal. Without

hormesis, the bowl becomes narrower, and the sides
shorter; it doesn't take much to push the organism to the
edge – but this may provide a powerful signal to adapt.
However, too much, and the organism will not survive or
become severely compromised. This is also depicted by
the adaptability envelope idea (similar to a flight enve-
lope for an aircraft), whereby there is a safe zone, a zone
which is dangerous, but stimulates adaptation – but then
a dangerous no-go zone. For instance, fasting would
improve resistance to oxidative stress and the ability to
store fat safely (more, smaller adipocytes), whereas both
physical activity and cold would induce mechanisms to
burn fat safely (e.g. mitochondrial biogenesis), as well as
also improving the potential to store energy. Under nor-
mal circumstances, all of these would combine to ensure
optimum adaptability. However, without these, continual
calorie intake would exceed the ability of the organism to
deal with the extra lipids beyond its hormetic adaptability
zone, resulting in excessive oxidative stress and inflamma-
tion. This would push the organism past the tipping point
and either out of the bowl, or into the no-go area. This
could then result in the accelerate aging phenotype.

How polyphenols might workFigure 3
How polyphenols might work. Blocking or modulating growth and stress signalling reduces growth drive and redox stress, 
so reducing need for activation of 'growth' stress inhibitory pathways (e.g. JNK). Mildly inhibiting mitochondrial function may 
decrease ATP and increase ROS, which is a strong stimulus for mitochondrial biogenesis (it is a hormetic signal), resulting in an 
enhanced anti-inflammatory/ROS cellular phenotype (1). However, excessive inhibition of this pathway may induce apoptosis in 
some cell types (2). This paradigm might follow the general evolutionary function of these polyphenols in plants: improved 
resistance to stress and pathogens.
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Redox-thriftiness, insulin resistance and 
evolutionary suicide
The concept of 'redox-thriftiness' suggests that insulin
resistance is induced by oxidative stress and is thus a pro-
tective mechanism. Hence, the ability to resist oxidative
stress is associated with insulin sensitivity. As mitochon-
dria are critical in determining resistance to oxidative
stress, then insulin resistance may be determined by the
amount of ATP produced by mitochondria in relation to
their ROS output; having a high density of low potential
mitochondria is probably a mechanism to reduce redox
signalling and thus, oxidative stress (figure 5). However,
whether insulin resistance is viewed as friend or foe
depends on whether it is seen from the viewpoint of the
cell, an organ, the individual organism, or the species:
within 'redox-thriftiness' may lie a higher order mechanism
to improve the fitness of the species at the expense of the
individual, although, paradoxically, it improves the sur-
vival of the cell or organism in the short term.

From the selfish cell to the selfish brain
The brain is almost totally dependent on glucose:
although it constitutes only 2% of the body mass, its
metabolism accounts for 50% of total body glucose utili-
zation. Although the brain does not require insulin to take

up glucose, insulin receptors are found in many areas of
the brain and are vital for normal function. Thus, insulin
resistance in the brain could have an impact on the origins
of the metabolic syndrome and the propensity to increase
obesity [282]. In obesity, the brain becomes insulin resist-
ant and can have too much glucose, which is associated
with accelerated brain aging and may involve NO-
induced oxidative damage to neuronal mitochondria
[283,284]. However, both starvation and triglycerides
reverse obesity-induced suppression of insulin transport
across the BBB [285].

The 'selfish-brain' brain hypothesis in relation to the met-
abolic syndrome posits that insulin resistance and activa-
tion of the SNS/HPA are part of a normal system to
maintain a set point to maintain glucose to the brain. The
brain uses glucose via a localised 'on demand' system, but
as circulating glucose would rapidly run out, it also
ensures an 'on request' allocation system to ensure supply,
which may also be part of the stress reponse system. When
food intake is low (resulting in mild stress), glucose sup-
ply is maintained to the brain via gluconeogenesis, insulin
resistance and suppression of insulin release. When food
is plentiful, the stress system relaxes and the body
becomes insulin sensitive and fat stores are increased until

Depictions of metabolic flexibilityFigure 4
Depictions of metabolic flexibility. The metabolic flexibility 'bowl' and metabolic 'adaptability envelope'.
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both leptin and insulin levels suppress energy intake.
However, if food is excessive, then insulin and leptin sig-
nals rise, activating the SNS, suppressing appetite. If over-
eating continues, the organism gets further away from an
ideal body weight set point, resulting in a continual mild
activation of the stress system (as it attempts to compen-
sate): it is well described that untreated diabetes does
result in weight loss [152]. Indeed, obese patients gener-
ally have a higher basal metabolic rate (BMR) [151],
which does support this hypothesis.

We would suggest that this hypothesis can be integrated
with the 'redox-thriftiness' concept to encompass the 'self-
ish cell'. As it is likely that glucose readily diffuses across
the BBB, and that GLUT-1 and GLUT-3 in the brain are
inversely related to glucose levels [286], hyperglycaemia is
clearly as potentially dangerous to neurons as it is to other
cells. Insulin-induced vasodilatation signals through the
Pi3K/Akt pathway. Thus, endothelial insulin resistance is
probably associated with excessive insulin in combina-
tion with many inflammatory factors, such as oxidised
LDL or hyperglycaemia [287]. Hence, BBB insulin resist-
ance could be viewed as a brain protective mechanism.
Certainly, there is data to suggest that a degree of reduced
insulin signalling in the brain is also associated with an
increase in lifespan [288]. Taken together, a mild degree
of CNS insulin resistance may also be protective, and
would fit the 'redox-thriftiness' hypothesis. This might

explain why the set point may move to a higher body
weight: as the brain receives increasing signals to activate
the SNS via leptin and insulin, it becomes mildly resistant
– which ensures continual positive energy deposition.
Hence, the selfish cell concept would help to explain the
concept of the 'selfish brain'. One corollary of this would
be the development of insulin resistance in adipose tissue,
which could also be viewed as a mechanism to prevent
excessive weight gain. In this respect, the concomitant
increase in HPA activity would not only drive lipolysis via
sympathetic innervation, but quite possibly, increased
mitochondrial biogenesis – which would both enhance
energy usage and protect against lipotoxicity.

From the selfish brain to the selfish species
Is the accelerated aging phenotype associated with the
metabolic syndrome simply a by-product of an unnatural
evolutionary situation, or could it have an adopted func-
tion, such as a mechanism to increase population turno-
ver via reducing life expectancy in times of plenty? For
instance, it might partly explain one widely accepted evo-
lutionary lifespan hypothesis called the 'disposable soma
theory'. This is driven by the balance of energy allocation
between reproduction and somatic maintenance (e.g.
resistance to oxidative stress and repairing the genome).
During times of hardship, somatic maintenance improves
Darwinian fitness (longer breeding cycle resulting from
improved resistance to oxidative stress), whereas in times

Oxidative stress increases insulin resistanceFigure 5
Oxidative stress increases insulin resistance. Oxidative stress increases insulin resistance, which is a feedback mechanism 
to reduce oxidative stress that is modulated by mitochondrial function.
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of plenty, resistance to predation and rapid breeding
become more important. This might be related to a
decrease in growth hormone releasing hormone from the
hypothalamus in response to starvation, resulting in
decreased activity of the insulin/insulin-like growth factor
axis [289]. The origins of this may well be very ancient
indeed, and go right back to the development of unicellu-
lar organism apoptosis – as demonstrated by yeast and
many phytoplankton.

It is thought that mitochondria are descendents of a group
of bacteria (α-proteobacteria) that contain metacaspases.
A critical determinate of cell death is oxidative stress
[290,291]. Mitochondria may well undergo a form of pro-
grammed death, 'mitoptosis', which can drive cell death,
'apoptosis', which in turn can drive accelerated senescence
of the entire organism or 'phenoptosis' [292]. Thus, 'redox-
thriftiness' and insulin resistance can be viewed as a mito-
chondrially-associated mechanism to resist oxidative
stress, which is modulated by the environment to ensure
survival of the species. Optimal fitness thus comes when a
species lives in its hormetic zone; many humans now pat-
ently live well outside it – as their environment is far to
benign [80]. A disturbing possibility is that that it may be
an example of the beginnings of a man-made evolution-
ary suicide [293,294]. For example, some countries in the
Gulf have obesity rates of 30–50%, with diabetes rates
approaching 20–30% or more in some places [295-297].
The discovery of oil in this region in the last 60 years has
resulted in an unprecedented explosion of wealth in only
2–3 generations – well within epigenetic 'memory' of a
tougher time. Virtually all hormetic stimuli have probably
been removed. As the median age in these countries is rel-
atively low, it could begin to have a serious impact on the
average life expectancy. Developing diabetes at a young
age can reduce life expectancy by at least 14 years [298].
However, morbidity sets in long before frank diabetes
develops. For instance, excessive insulin resistance and
diabetes are both associated with a decrease in cognitive
ability [299,300], while the metabolic syndrome is associ-
ated with a significant decrease in a broad range of sexual
function metrics in both sexes [301]. In short, popula-
tions in the Gulf are now well out side their 'metabolic
flexibility bowls' and 'adaptability envelopes'.

Conclusion: the "Goldilocks hormetic zone" and 
the LIMIT-AGE syndrome
Mild oxidative stress and mitochondrial biogenesis lead
to optimal functioning, metabolic flexibility and an
improved ability to resist toxic oxidative stress. Hence,
modern man needs to live in a hormetic zone that stimu-
lates optimal functioning, a sort of "Goldilocks hormetic
zone" – neither too severe, or too easy.

Physical activity and calorie restriction are two potent
mechanisms hormetic mechanisms, but emerging data

now also support some polyphenols as having hormetic
effects. In particular, molecules that result in activation of
AMPK, PPAR δ and PGC-1α [259,260]. Certainly, there
are other multiple hormetic stimuli that might have a lon-
gevity inducing effect, including heat stress and dehydra-
tion; the commonality being activation of common stress
pathways [302,303]. It is also possible that some pharma-
ceuticals may have hormetic effects. Thus, our view of
some diseases may well need to change: a lack of hormesis
reduces our ability to withstand excessive calories due to
metabolic inflexibility, leading to the increased expres-
sion of maladies ranging from atherosclerosis, to diabetes,
to cancer. This suggests zero hormesis is the most danger-
ous of all, and that any additional hormesis will bring
about some benefit. This may well be epitomised by the
high risk of a sedentary lifestyle, and the benefit of even
some exercise – even if taken up in later age [304,305].

In conclusion, 'redox-thriftiness' and insulin resistance may
be part of highly conserved survival mechanism. In some
circumstances, it may also lead to the metabolic syn-
drome, which may be better described as the LIMIT-AGE
concept. Redox-thriftiness is tightly linked into mitochon-
drial function and thus must be modulated by hormetic
stimuli. This explains why exercise and nutritional 'stres-
sors' are potent treatments for the metabolic syndrome.
The hypothesis may also begin to explain some failures,
and successes, of modern day therapeutic treatments.
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