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Abstract

Background: It is hypothesized that dietary linoleic acid (LA) promotes chronic and acute diseases in humans by
enriching tissues with arachidonic acid (AA), its downstream metabolite, and dietary studies with rodents have
been useful for validation. However, levels of LA in research diets of rodents, as published in the literature, are
notoriously erratic making interspecies comparisons unreliable. Therefore, the ability to extrapolate the biological
effects of dietary LA from experimental rodents to humans necessitates an allometric scaling model that is rooted
within a human equivalent context.

Methods: To determine the physiological response of dietary LA on tissue AA, a mathematical model for
extrapolating nutrients based on energy was used, as opposed to differences in body weight. C57BL/6J mice were
divided into 9 groups fed a background diet equivalent to that of the US diet (% energy) with supplemental doses
of LA or AA. Changes in the phospholipid fatty acid compositions were monitored in plasma and erythrocytes and
compared to data from humans supplemented with equivalent doses of LA or AA.

Results: Increasing dietary LA had little effect on tissue AA, while supplementing diets with AA significantly
increased tissue AA levels, importantly recapitulating results from human trials.

Conclusions: Thus, interspecies comparisons for dietary LA between rodents and humans can be achieved when
rodents are provided human equivalent doses based on differences in metabolic activity as defined by energy
consumption.

Background
As surrogates for human inquisition, animal models
reside at the core of medical innovation. Through care-
ful environmental control, these genetically similar mod-
els facilitate therapeutic advancements in the magnitude
of human disease. Rodent dietary composition is of par-
ticular interest in the field of nutrition research as it
provides a way to assess the translational ability of indi-
vidual dietary constituents, through appropriate dosing
of nutrients, to physiological effects observed in humans
consuming similar levels of nutrients.
Dietary profiles of n-6 polyunsaturated fatty acid

(PUFA), linoleic acid (LA) and the relationship to chronic
and acute diseases, in both rodents and humans, appears

to lie in tissue enrichment of the downstream metabolite,
arachidonic acid (AA) [1-3]. It is hypothesized that meta-
bolism of dietary AA produces bioactive compounds
called eicosanoids that are positively correlated with the
appreciation of tissue AA [4]. While the relationship of
AA and eicosanoids is well established, the response to
dietary LA on changes in tissue levels of AA, within the
context of a human equivalent diet, remains inconclusive.
The inconsistent use of n-3 and n-6 essential fatty

acids (EFAs) in the background of rodent diets is perva-
sive in the literature [5-10]. These EFAs are important
components of the Western diet and can impact the AA
phospholipid pool when absent or provided at insuffi-
cient quantities in the diet. Despite suggestions other-
wise, a systematic review of the human literature reports
that increases in dietary LA do not appear to signifi-
cantly modify AA levels in phospholipids of plasma/
serum or erythrocytes when supplemented to standard
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Western diets [11]. Therefore, if precise physiological
nutrient translation of fatty acids is desired, it may be
important for dietary aspects of the rodent model to
bear firm resemblance to human dietary components.
This study was designed to investigate a putative stan-

dard for allometric scaling with regards to an animal diet-
ary design as it relates to the relationship between dietary
LA and tissue AA. This is the first study to examine the
physiological response of dietary LA on changes in AA
levels in plasma/serum or erythrocyte phospholipids when
provided at human equivalent supplemental doses within
the context of a Western background diet, based on a per-
centage of energy (i.e., metabolic activity). We further
investigated the potential contribution of dietary AA on
tissue AA content within the context of a Western-type
diet. This mathematical model using a surrogate of meta-
bolic activity instead of differences in BW for allometric
scaling should better equate interspecies translation and
accommodate the differences in metabolic disparity
between rodents and humans.

Methods
Animals
Sixty-two C57BL/6J male mice (Harlan Laboratory,
Indianapolis, IN), 6-7 weeks of age, were randomly

assigned to nine dietary groups; 5-7 animals per group
were housed 2-3 animals per cage in a temperature con-
trolled room with a 12 hr light-dark cycle. Prior to
sacrifice, animals were fasted overnight. All animal pro-
cedures were approved by the University of Tennessee
Animal Care and Use Committee in accordance with
NIH guidelines.

Diets
All animals were maintained on a control diet for one
week prior to being transferred to one of the experi-
mental diets or maintained on the control diet. The
control diet was based on a US17 Monsanto diet with
slight modifications in macronutrient distributions
(Table 1). The diet was designed to mimic the Wes-
tern diet with the following distribution (% of energy):
protein 16%, carbohydrates 50% and lipids 34%
(Research Diets, New Brunswick, NJ) [12]. Within the
lipid fraction, saturated, monounsaturated and polyun-
saturated fats were designed to be provided at 13%,
14% and 7% of energy, respectively. The polyunsatu-
rated fats LA, ALA, AA and EPA+DHA were provided
at 6%, 0.6%, 0.07% and 0.1% of energy, respectively.
These levels are similar to those suggested in the lit-
erature for humans on a Western diet [12,13] and/or

Table 1 Composition of the diets

Dietary Groups

1 2 3 4 5 6 7 8 9

Diet -2%1 LA Control +2% LA +4% LA +6% LA +8% LA +0.23% AA +0.45% AA +1.36% AA

g/100 g

Protein 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4

Carbohydrate 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7

Lipid 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8

g/kg

Casein 171 171 171 171 171 171 171 171 171

L-Cysteine 3 3 3 3 3 3 3 3 3

Corn Starch 337 337 337 337 337 337 337 337 337

Maltodextrin 10 85 85 85 85 85 85 85 85 85

Sucrose 114 114 114 114 114 114 114 114 114

Cellulose 57 57 57 57 57 57 57 57 57

Cocoa Butter, Deodorized 47.5 42.57 38.12 33.4 28.72 23.99 41.47 40.37 35.97

Flaxseed Oil 5.11 5.11 5.11 5.11 5.11 5.11 5.11 5.11 5.11

Palm Oil, Bleached, Deodorized 66.5 59.6 53.38 46.8 40.23 33.62 59.6 59.6 59.6

Safflower Oil, USP 17.75 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35

Trisun Extra 34.2 30.65 27.46 24.06 20.69 17.29 30.65 30.65 30.65

Sunflower Oil - - 14.6 29.30 43.90 58.60 - - -

Arachidonic Acid, Ethyl Ester 0.40 0.40 0.40 0.40 0.40 0.40 1.10 2.2 6.6

Eicosapentaenoic Acid, Ethyl Ester 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Docosahexaenoic Acid, Ethyl Ester 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
1% change with regards to energy. In addition, the following were also included in the diet but are not listed above (g/1000 g): mineral mix S10026,11 g;
dicalcium phosphate, 15 g; calcium carbonate 6.2 g; potassium citrate, 1 H2O, 18.7 g; vitamin mix V13401, 11.4 g; alpha-tocopheryl acetate (500 IU/g), 0.1 g.

Abbreviations: AA, arachidonic acid; LA, linoleic acid
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supported by the DRIs for median daily intakes [14].
AA and EPA+DHA were provided as ethyl esters
(NuChek Prep, Elysian, MN). Experimental diets
remained isocaloric and were formulated using the
control diet as the background diet containing LA at
~6% of energy with additional adjustments in LA con-
tent (-2%, +2%, +4%, +6%, +8% of energy) with the
addition (or subtraction) of sunflower oil (70% w/w
LA) at the expense of cocoa butter, palm and trisun
oils based on the ratios found in the control diet. The
diets supplemented with AA were adjusted at the
expense of cocoa butter.
Water and food were provided ad libitum for 21-25

days. Fresh diets were provided daily and uneaten food
was discarded to minimize oxidation prior to consump-
tion. Fatty acid analysis of the diets is presented in
(Table 2).

Fatty acid analysis
Animals were randomized on a 5 day sacrifice cycle.
Following 21-25 days on the experimental and control
diets, 0.5-1.0 ml of whole blood was collected via car-
diac puncture under anesthesia (isofluorane inhalation)
using a tuberculin syringe with a 25 gauge needle con-
taining an anticoagulant (3.8% trisodium citrate).
Whole blood was centrifuged at 660 × g for 4 min at
room temperature for separation of plasma and a pel-
let that was predominately erythrocytes, where each
fraction was subjected to lipid extraction. Three ml of
chloroform-methanol (1:2, v/v) were added to each

fraction, and lipids were extracted with chloroform (1
ml) plus saline (1 ml), followed by chloroform (1 ml)
(2×). The pooled chloroform extracts were evaporated
and resuspended in a small amount of chloroform
(~25 μL), and phospholipids were separated via thin
layer chromatography (TLC) using HPTLC plates pre-
coated with silica gel 60 (Merck, Darmstadt, Germany)
using a chloroform-methanol (8:1, v/v) solvent system.
The phospholipids were recovered from the TLC plates
and saponified in 0.5 N NaCl and in the presence of
BF3 in methanol at 86°C. Fatty acid methyl esters were
extracted with equal volumes of hexane (2×) and
evaporated under nitrogen. Fatty acid methyl esters
were resuspended in hexane and analyzed by gas chro-
matography with a Hewlett-Packard 5880 gas chroma-
tograph (Rochester, NY) using a DB23 capillary
column (0.25 mm × 30 m) (J and W Chromatography,
Folsom, OH) with hydrogen as the carrier gas, with
temperature programming from 160°C to 250°C at 3.5°
C/min The internal standard 1,2 diheptadecanoyl-sn-
glycero-3-phosphocholine (17:0) (Avanti Polar Lipids,
Alabaster, AL) was added to each sample prior to lipid
extraction. The fatty acid methyl esters were identified
by comparing the retention times with those of known
standards (NuChek Prep, Elysian, MN). The fatty acids
are presented as mole %.

Statistical analysis
Phospholipid fatty acid content in plasma and erythro-
cytes were compared across treatment groups using a

Table 2 The fatty acid composition of the diets

Dietary Groups

1 2 3 4 5 6 7 8 9

-2%1 2% 4% 6% 8% 0.23% 0.45% 1.36%

Fatty Acids LA Control LA LA LA LA AA AA AA

12:0 0.472 0.42 0.39 0.34 0.27 0.26 0.42 0.43 0.42

14:0 0.69 0.69 0.59 0.56 0.48 0.43 0.63 0.65 0.66

16:0 26.48 24.69 22.66 20.63 18.71 16.8 24.62 24.31 23.71

16:1 0.17 0.1 0.15 0.14 0.09 0.09 0.15 0.16 0.16

18:0 13.13 11.39 11.19 10.08 9.52 8.5 11.69 11.29 10.54

18:1n-9 42.44 40.44 38.44 36.62 35.00 33.06 40.11 39.79 39.00

18:2n-6 13.24 18.93 23.23 28.24 32.5 37.39 19.01 19.05 19.08

18:3n-3 1.78 1.79 1.77 1.8 1.77 1.8 1.78 1.84 1.83

20:0 0.58 0.54 0.52 0.49 0.48 0.44 0.55 0.55 0.51

20:1 0.14 0.17 0.15 0.15 0.17 0.14 0.16 0.17 0.14

20:4n-6 0.21 0.21 0.22 0.22 0.2 0.22 0.55 1.11 3.32

20:5n-3 0.09 0.03 0.08 0.07 0.06 0.1 0.05 0.09 0.06

22:0 0.31 0.31 0.34 0.37 0.42 0.46 0.31 0.29 0.30

22:6n-3 0.26 0.29 0.27 0.28 0.29 0.31 0.3 0.27 0.27
1% change with regards to energy
2g/kg diet

Abbreviations: AA, arachidonic acid; LA, linoleic acid.
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one-way analysis of variance (ANOVA), followed by
Tukey’s Honestly Significant Difference (HSD) post-hoc
test to determine significant differences between groups.
All data were tested for normality, homogeneity of var-
iance, and for outliers. The data were evaluated by SPSS
18 statistical package (University of Tennessee, Knox-
ville, TN). Data was considered significant at p < 0.05.

Results
Food intake and weight gain were not statistically differ-
ent between dietary groups (data not shown).

Fatty acid composition of plasma phospholipids
The composition of oleic acid and LA in plasma phos-
pholipids tended to reflect differences in dietary levels
of these fatty acids; however, much of these effects were
not statistically significant (Figure 1 and Table 3). The

dietary group with the lowest levels of LA and highest
levels of oleic acid (group 1) had the lowest levels of LA
and highest levels of oleic acid in the plasma phospholi-
pids, respectively. The levels of AA did not change in
any of the groups with increasing or decreasing levels of
dietary LA (Table 3). DHA levels were not different
among groups, with the exception of group 5. When
AA was supplemented to the diets, tissue AA levels pro-
gressively increased in a dose responsive manner at the
expense of LA (Figure 2 and Table 4), but tissue DHA
levels did not change. A summary of the effects of LA
and AA supplementation are provided in (Figure 1 and
Figure 2), respectively.

Fatty acid composition of erythrocyte phospholipids
The composition of oleic acid and LA in the phospholi-
pids of erythrocytes reflected differences in dietary levels
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Figure 1 Effects of increasing/decreasing dietary linoleic acid on changes in plasma/serum phospholipid fatty acid concentration. Mice
were fed background diets that mimicked the composition of a Western diet with increasing or decreasing levels (% change, based on energy)
of linoleic acid. The data (mole %) is presented as mean ± SD. Means with the same superscript within the same row (i.e., individual fatty acid)
are not statistically different at (p < 0.05). Groups of bars within each fatty acid without superscripts indicate no significant differences were
observed among groups. Abbreviations: LA, linoleic acid.
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of these fatty acids where LA supplementation signifi-
cantly increased LA in the tissues (Table 5 and Figure 3).
Levels of dihomo-gamma-linolenic acid (20:3n-6) and
AA were unaffected by changes in dietary LA. Similarly,
DHA content in erythrocytes were unaffected by
changes in LA intake. When AA was supplemented in

the diets, erythrocyte AA content, as well as that of its
metabolites 22:4 n-6 and 22:5 n-6 progressively
increased primarily at the expense of LA, but reductions
in dihomo-gamma-linolenic acid were also observed
(Table 6 and Figure 4). DHA levels were not reduced
with increasing levels of dietary AA.

Table 3 The fatty acid composition of plasma phospholipids from mice fed linoleic acid supplemented diets

Dietary Groups

Fatty Acid 1 2 3 4 5 6

-2% LA1 Control +2% LA +4% LA +6% LA +8% LA

16:0 33.54 ± 0.932 34.40 ± 0.80 33.60 ± 1.03 33.25 ± 0.96 35.29 ± 1.15 32.87 ± 0.88

18:0 13.68 ± 0.55 13.41 ± 0.31 13.07 ± 0.56 13.84 ± 0.61 13.97 ± 0.66 13.49 ± 0.54

18:1n-9 12.50 ± 0.50 11.69 ± 0.65 9.11 ± 0.64 9.23 ± 0.70 10.29 ± 1.26 10.10 ± 1.18

18:2n-6 17.80 ± 0.28a 19.22 ± 0.42ab 20.58 ± 0.44ab 21.86 ± 0.93b 22.15 ± 1.53b 22.46 ± 1.27b

20:4n-6 13.41 ± 0.40 12.74 ± 0.50 13.94 ± 0.84 13.39 ± 0.63 11.77 ± 0.75 13.10 ± 0.63

22:6n-3 9.07 ± 0.98a 8.54 ± 0.56ab 9.09 ± 0.60a 8.43 ± 0.59ab 6.53 ± 0.79b 7.99 ± 0.49ab

1%change with regards to energy
2Relative abundance (mol%) presented as mean ± SEM
abMeans with the same superscript within the same row are not statistically different at p < 0.05, Tukey’s honestly significant difference.

Abbreviations: LA, linoleic acid
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Figure 2 Effects of increasing dietary arachidonic acid on changes in plasma/serum phospholipid fatty acid concentration. Mice were
fed background diets that mimicked the composition of a Western diet with increasing levels (% change, based on energy) of arachidonic acid.
The data (mole %) is presented as mean ± SD. Means with the same superscript within the same row (i.e., individual fatty acid) are not
statistically different at (p < 0.05). Groups of bars within each fatty acid without superscripts indicate no significant differences were observed
among groups. Abbreviations: AA, arachidonic acid.
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Comparison of LA and AA data in the mouse to similar
data generated in human clinical trials
When the mouse data for LA was plotted against similar
data generated in human clinical trials based on %
energy [11], the results were similar between species
(Figure 5). When the mouse data for AA was plotted
against similar data generated in human clinical trials
based on % energy [11], the changes in AA levels in the
mice resembled the human data at the two lowest doses
but not at the highest dose (Figure 6).

Discussion
Animal models are not intended to replace humans,
but be a substitute that is often better controlled and
better able to answer narrow research questions that
could not be done, on a practical basis, with humans.
A common challenge faced by nutrition researchers

who are interested in interspecies comparisons is iden-
tifying an appropriate background diet and appropriate
doses for supplemented nutrients. In order to make
these choices, studies have to be performed that can
demonstrate human equivalent responses to ensure
translation between species. Without these fundamen-
tal studies, no guidelines can be formulated governing
scientific justification for dosing when extrapolation to
humans is desired. Currently, no guidelines exist for
appropriate dosing of dietary PUFAs for experimental
models (i.e., mice, rats) as they relate to humans and
their intakes. As such, the overall objective of this
research was to determine the extent to which supple-
mentation of human equivalent doses of LA and AA
changed tissue AA content within the context of a
Western-type diet using a common experimental
rodent model. These results were then compared to
similar data generated from clinical trials with increas-
ing and decreasing levels of dietary LA [11]. This is
the first known study of its kind.
Interspecies relationships of body mass and mamma-

lian physiology have been explored for over a century
where various aspects of metabolism are proportional
to an exponent of body weight (Wn), with “n” being
between 0.67 and 0.75 [15-18]. Interspecies compari-
sons with regards to energetics were in part pioneered
by Brody and Kleiber where they described the non-
linear relationship between metabolic rate and body
mass as it relates to allometric scaling (as reviewed by
[19]). They described the concept that the relationship
between metabolic rate (MR) and body weight could
be linearized with the following equation: MR = a(W n)
(where “a“ is a proportionality constant, “W” is in Kg
and “n” is an exponent between 0.70 and 0.75). More
recently, Rucker and Storms (2002) elegantly described

Table 4 The fatty acid composition of plasma
phospholipids from mice fed arachidonic acid
supplemented diets

Dietary Groups

2 7 8 9

Fatty Acid Control +0.23% AA1 +0.45% AA +1.36% AA

16:0 34.40 ± 0.872 33.62 ± 0.82 33.71 ± 1.07 34.76 ± 0.81

18:0 13.41 ± 0.34 13.25 ± 0.42 13.34 ± 0.53 12.82 ± 0.36

18:1n-9 11.69 ± 0.72 11.80 ± 0.83 11.69 ± 0.96 11.53 ± 0.94

18:2n-6 19.22 ± 0.46a 18.88 ± 0.59ab 17.04 ± 0.28bc 15.47 ± 0.41c

20:4n-6 12.74 ± 0.54a 14.21 ± 0.66ab 15.94 ± 0.81bc 17.93 ± 1.00c

22:6n-3 8.54 ± 0.55 8.52 ± 0.52 8.28 ± 0.51 7.51 ± 0.45
1%change with regards to energy
2Relative abundance (mol%) presented as mean ± SEM
abcMeans with the same superscript within the same row are not statistically
different at p < 0.05, Tukey’s honestly significant difference.

Abbreviations: AA, arachidonic acid

Table 5 The fatty acid composition of erythrocytes phospholipids from diets supplemented with linoleic acid

Dietary Groups

Fatty Acid 1 2 3 4 5 6

-2% LA1 Control +2% LA +4% LA +6% LA +8% LA

16:0 34.19 ± 0.662 34.80 ± 0.63 34.40 ± 0.48 32.81 ± 0.69 34.67 ± 0.62 33.57 ± 0.71

18:0 13.77 ± 0.30 14.09 ± 0.52 15.45 ± 0.43 14.73 ± 0.45 14.18 ± 0.30 15.35 ± 0.57

18:1n-9 17.57 ± 0.40a 16.63 ± 0.46a 14.50 ± 0.34b 14.61 ± 0.21b 14.48 ± 0.28b 14.09 ± 0.31b

18:2n-6 10.69 ± 0.13a 12.03 ± 0.23b 12.23 ± 0.24b 13.09 ± 0.48bc 13.72 ± 0.28cd 14.52 ± 0.12d

20:3n-6 1.18 ± 0.33 1.12 ± 0.04 1.22 ± 0.61 1.19 ± 0.08 1.18 ± 0.03 1.18 ± 0.06

20:4n-6 14.33 ± 0.54 13.60 ± 0.57 14.58 ± 0.45 15.12 ± 0.65 14.56 ± 0.41 13.66 ± 0.74

22:4n-6 1.40 ± 0.05 1.27 ± 0.13 1.44 ± 0.10 1.62 ± 0.13 1.67 ± 0.06 1.51 ± 0.10

22:5n-6 0.40 ± 0.05 0.45 ± 0.02 0.50 ± 0.03 0.58 ± 0.10 0.55 ± 0.02 0.47 ± 0.04

22:5n-3 0.70 ± 0.04 0.64 ± 0.04 0.60 ± 0.03 0.63 ± 0.05 0.60 ± 0.03 0.57 ± 0.05

22:6n-3 5.76 ± 0.34 5.37 ± 0.49 5.43 ± 0.20 5.64 ± 0.36 5.29 ± 0.27 4.99 ± 0.54
1%change with regards to energy
2Relative abundance (mol%) presented as mean ± SEM
abcdMeans with the same superscript within the same row are not statistically different at p < 0.05, Tukey’s honestly significant difference.

Abbreviations: LA, linoleic acid
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the pitfalls of using differences in body weight as a
means of making interspecies extrapolations for micro-
nutrients because of these non-linear relationships [20].
They addressed the appropriateness of several mathe-
matical approaches to extrapolate nutrient intake
between mice and humans and suggested food (energy)
intake rather than body weight should be used to extra-
polate nutrients for interspecies comparisons [20,21].
Interestingly, when this concept was applied to a variety
of standardized semi-purified diets (i.e., AIN76A,
AIN93G, AIN93M), extrapolations of the micro- and
macronutrients (i.e., PUFA) better mimicked recom-
mended intakes (i.e., the DRIs) when based on energy
differentials as compared to body weight (Table 7 and
Table 8). This provided the rationale, if not a scientific
justification, for the background diet and doses used in
this study.
With this in mind, we generated a “human equiva-

lent” background diet where the macronutrient com-
position mimicked that of the human diet when based
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Figure 3 Effects of increasing/decreasing dietary linoleic acid on changes in erythrocyte phospholipid fatty acid concentration. Mice
were fed background diets that mimicked the composition of a Western diet with increasing or decreasing levels (% change, based on energy)
of linoleic acid. The data (mole %) is presented as mean ± SD. Means with the same superscript within the same row (i.e., individual fatty acid)
are not statistically different at (p < 0.05). Groups of bars within each fatty acid without superscripts indicate no significant differences were
observed among groups. Abbreviations: LA, linoleic acid.

Table 6 The fatty acid composition of erythrocyte
phospholipids from diets supplemented with arachidonic
acid

Dietary Groups

Fatty Acid 2 7 8 9

Control +0.23% AA1 +0.45% AA +1.36% AA

16:0 34.80 ± 0.692 34.08 ± 0.86 34.43 ± 0.91 35.17 ± 0.95

18:0 14.09 ± 0.57 14.56 ± 0.31 14.03 ± 0.37 13.95 ± 0.34

18:1n-9 16.64 ± 0.50 16.49 ± 0.15 15.94 ± 0.29 15.62 ± 0.51

18:2n-6 12.03 ± 0.25a 10.85 ± 0.16b 9.65 ± 0.18c 7.84 ± 0.07d

20:3n-6 1.12 ± 0.05a 0.94 ± 0.01b 0.77 ± 0.02c 0.44 ± 0.01d

20:4n-6 13.60 ± 0.63a 15.13 ± 0.52ab 16.77 ± 0.53bc 18.71 ± 0.93c

22:4n-6 1.27 ± 0.15a 1.54 ± 0.09ab 1.90 ± 0.07bc 2.20 ± 0.11c

22:5n-6 0.45 ± 0.03a 0.49 ± 0.02ab 0.57 ± 0.04ab 0.73 ± 0.05c

22:5n-3 0.64 ± 0.06 0.64 ± 0.03 0.65 ± 0.03 0.55 ± 0.04

22:6n-3 5.37 ± 0.54 5.28 ± 0.23 5.29 ± 0.37 4.78 ± 0.40
1%change with regards to energy
2Relative abundance (mol%) presented as mean ± SEM
abcdMeans with the same superscript within the same row are not statistically
different at p < 0.05, Tukey’s honestly significant difference.

Abbreviations: AA, arachidonic acid
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on energy (Table 9) and evaluated the impact of diet-
ary LA (4%-14% of energy) and AA (0.08%-1.35% of
energy) on changes in tissue AA levels in plasma and
erythrocyte phospholipids. These amounts translate
into human equivalent levels of 9-31 g/d and 0.18-2.7
g/d of LA and AA, respectively, and are within those
ranges reported in the DRIs for humans and/or used
in clinical trials [14,22]. Importantly, as opposed to
rodent diets that selectively provide only one or two of
the essential fatty acids (EFAs) (i.e., corn oil or soybean
oil based diets), our background diet contained all the
major n-6 and n-3 PUFAs found in the human diet (i.
e., LA, ALA, AA and long chain n-3 PUFA). This is
critical as all of these fatty acids are found in the Wes-
tern diet and can have an impact on tissue AA levels.
For this reason, there has been great interest placed
upon n-6 PUFA metabolism, particularly when all
EFAs are sufficiently provided in the diet at human
equivalent levels.

The rodent model has been the superior target for
investigation of specific fatty acids and downstream
metabolites on tissue fatty acid composition since 1963
when Mohrhauer and Holman explored the metabolism
of dietary EFAs [7]. In this classic and highly cited
paper, rodents were initially fed a fat-free diet (i.e. with
the exclusion of all EFAs) prior to supplementation with
LA (ethyl linoleate) up to 5% from energy, where a
721% increase in liver AA composition was observed
with the highest doses. Other studies recapitulated these
earlier results when LA was provided to a background
diet that lacked nearly all or completely all n-3 and n-6
PUFAs [9,10]. When LA was increased from nearly 0%
of energy to 6-7% of energy in rodents, liver AA compo-
sition increased 173%-518% [6,8]. Increasing LA from
6% of energy to 27% of energy (or a human equivalent
dose of 59 g/d) resulted in a 134% increase in tissue AA
composition [5]. The addition of LA at supra-physiologi-
cal doses (i.e., 17.3% of energy) from a background diet
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containing 7% LA, increased AA content by 375% when
no other EFAs were provided [10]. However, when
more moderate levels of LA were supplemented to a
diet containing human equivalent levels (i.e., 6.6% to
13.2% of energy), AA content in liver phospholipids
increased a modest 6% [8]. Notably, tissues have a
requirement for unsaturated fatty acids for structural
function and to help maintain membrane fluidity. When
animals are fed a diet that exclusively contains a single
PUFA (i.e., LA), its selective and robust conversion to a
more highly unsaturated form is not surprising. These
findings underscore the differential impact of dietary LA
in rodent diets on changes in tissue AA content when
the background diet is devoid of LA and/or other
PUFAs, or providing LA at doses approaching pharma-
cological levels.
What is an appropriate background diet in rodents

and what is an appropriate dose of LA that has

translational ability to humans? This would be depen-
dent upon the human literature; that is, what is the
effect of LA on changes in tissue AA in individuals con-
suming a typical Western diet? The DRI (observed med-
ian intakes in the US population) for LA is 12 g/d and
17 g/d for women and men, respectively (approximately
6% of energy) [14]. In a recent review of the literature,
decreasing LA content in the diet up to 90% or increas-
ing the levels up to 550% was not associated with
changes in AA content in the phospholipid pools of
human plasma/serum (see Figure 5) or erythrocytes
[11]. It is not unreasonable to think that with a back-
ground diet containing LA, ALA, AA, and long-chain n-
3 PUFAs (i.e., EPA and DHA) at typical intakes, modify-
ing LA levels may not influence tissue AA levels in
these populations. Hence, in order to establish a human
equitable response to dietary LA on tissue AA composi-
tion in the rodent model, it seems best accomplished
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when all EFAs are present in the diet, especially for
results that are expected to translate proportionally to
humans.
Increasing LA from 0% to 2% of energy replete tissue

pools of n-6 PUFAs by increasing AA phospholipid con-
centrations [23]. Intake of LA above 2-3% of energy in
humans is not reportedly accompanied by an increase in
AA content in plasma or erythrocyte phospholipids
[22,24-29], results consistent with our data. Poor con-
version rates in humans would account for these results
where the estimated fractional conversion of LA to AA
in adults was between 0.3% and 0.6% [30]. In rodents,
tracer kinetic analysis demonstrated greater efficiency of
C20 fatty acids in conversion to downstream end-pro-
ducts relative to C18 precursors [31]. This would imply
that feedback inhibition of Δ-6 desaturase, the rate lim-
iting step in the conversion of LA to AA, may be
responsible. Likewise, the present study reports no sig-
nificant alteration in plasma/serum or erythrocyte AA

phospholipids at the lowest supplemental dose of LA
(4% of energy) or the highest supplemental dose (14% of
energy). These results are supported by prior rodent
dietary studies supplementing LA at similar levels (6.8%
and 8.7% of energy) to a background diet already con-
taining LA (4.5% of energy) [32,33]. Hence, supplemen-
tation of HEDs of LA to a background rodent diet
consisting of all EFAs found in the human diet (includ-
ing LA and AA), results in changes in tissue AA content
that more accurately reflect those measured in humans
consuming similar levels [22,24-26,29].
Additionally, our data demonstrate the observable

inverse relationship of dietary AA and changes in tissue
LA within the rodent model. When AA was supplemen-
ted to rodents consuming a Western-like diet, tissue AA
content increased in a dose dependent manner, suggest-
ing the lack of changes with LA supplementation was
not due to saturation of AA in the phospholipid pools
analyzed. Likewise, when dietary AA was provided to
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rodents (mice, hamsters) at 1.5-4% of energy, AA con-
tent in hepatic phospholipids increased 21-80%;
[12,32-34]. Similar results were observed in intestines,
macrophages, lung, heart, spleen, kidneys, testes and
platelets [12,32,33]. These results are comparable to

humans [11]; however, the response in rodents is more
modest than that observed in humans supplemented
with AA at the highest dose (see Figure 6) [11]. The
estimated human intake for AA is <200 mg/day [4]. Our
highest supplemented dose of 1.35% of energy (or a
HED of 3 g/d) increased phospholipid AA levels in
plasma/serum by 40%, while providing a dose of 0.75-
1.5 g/d in humans increased tissue AA content by ~85%
[35,36] with a maximum change of 136% at a dose of 6
g/d [37]. Rodents, compared to humans, have higher
requirements for the more highly unsaturated fatty acid
DHA in their tissue phospholipids [38]. This may pre-
clude the need for higher levels of AA in tissues,
accounting for the more modest effects observed in
rodents following AA supplementation. Of importance,
these changes in AA content were always at the expense
of tissue LA, suggesting that dietary AA targets the
same phospholipid pool occupied by LA [12,32,33]. This
relationship between the changes in tissue levels of AA
and LA following AA supplementation is supported by
human clinical data [35]. The inverse is not always true.
While some studies suggest an inverse relationship
exists between tissue LA and AA levels when LA is sup-
plemented in the diet [11,25,28], these studies are in the
minority.

Conclusions
Currently there are no guidelines providing assistance
as to how to formulate a human equivalent diet for
rodents to improve translation of data to humans. The

Table 7 Allometric scaling of micronutrients in an
AIN93G rodent diet based on differences in daily caloric
consumption or body weight (kg) as compared to the
daily recommended intakes for humans (DRI)

Nutrient DRI Kcal BW

Thiamin 1.2 mg 15 mg 49 mg

Riboflavin 1.3 mg 2.7 mg 55 mg

B6 1.3 mg 3.0 mg 52 mg

Niacin 16 mg 15 mg 273 mg

Biotin 30 μg 101 μg 1820 μg

Folate 400 μg 1001 μg 18200 μg

Viatmin E 15 mg 38 mg 683 mg

Vitamin A 900 mg 605 mg 10,929 mg

Calcium 1000 mg 2601 mg 46,992 mg

Magnesium 400 mg 255 mg 4614 mg

Iron 8 mg 17 mg 315 mg

Manganese 2.3 mg 29 mg 533 mg

Selenium 55 μg 123 μg 2229 μg

Iodine 150 μg 105 μg 1893 μg

Zinc 11 mg 15 mg 266 mg

The data applies for a 25 g mouse consuming 15 Kcal/d and a 70 Kg human
consuming 2000 Kcal/d. The conversion factor is 134 for calories (Kcal) and
2800 for body weight (BW).

Table 8 Allometric scaling of linoleic acid and alpha-
linolenic acid in an AIN93G, AIN93M and AIN76A rodent
diet based on differences in daily caloric consumption
(Kcal) or body weight (BW) (in kg) as compared to the
Adequate Intakes (AI) from the daily recommended
intakes for humans (DRI)

Rodent Diet Fatty Acid AI (DRI) Kcal BW

AIN93Ga

Linoleic acid 12-17 g 20 g 423 g

Alpha-linolenic acid 1.1-1.6 g 2.6 g 55 g

AIN93Mb

Linoleic acid 12-17 g 12 g 242 g

Alpha-linolenic acid 1.1-1.6 g 1.6 g 31 g

AIN76Ac

Linoleic acid 2-17 g 15.6 g 336 g

Alpha-linolenic acid 1.1-1.6 g 0 g 0 mg

The data applies for a 25 g mouse consuming 15 kcal/d and a 70 Kg human
consuming 2000 Kcal/d.
aBased on a diet containing 7% (w/w) soybean oil that is 54% linoleic acid
and 7% a-linolenic acid.
bBased on a diet containing 4% (w/w) soybean oil that is 54% linoleic acid
and 7% a-linolenic acid.
cBased on a diet containing 5% (w/w) corn oil that is 60% linoleic acid.

Table 9 Allometric scaling of macronutrients in the US
diet and the background diet of the mice used in this
study based on caloric consumption

US Diet Rodent Diet

%en; (g/d) %en; (HED, g/d)

Macronutrients

Protein 16% 16%

Carbohydrate 50% 50%

Lipids 34% 34%

SFA 13% 13%

MUFA 14% 14%

PUFA 7% 7%

Polyunsaturated Fatty Acids

18:2 n-6 6.3% 6.3% (14 g)

18:3 n-3 0.6% 0.6% (1.3 g)

20:4 n-6 0.07% 0.07% (155 mg)

20:5 n-3 0.034% 0.034% (75 mg)

22:6 n-3 0.054% 0.054% (125 mg)

Abbreviations: HED, human equivalent dose.
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overall intent of this research was to test a theoretical
model for allometric scaling based on energy differ-
ences between species. We chose the relationship
between dietary LA and its effects on tissue AA con-
tent as a testable target. We wanted to determine the
extent to which supplementation with human equiva-
lent doses of LA and AA changed tissue AA content
within the context of a Western-type diet using a com-
mon experimental rodent model. We proposed that
providing animals a background diet that mimicked
the Western diet with regards to macro- and micronu-
trients and fatty acid profiles, and supplementing LA
at human equivalent doses, we could observe a human
equivalent response with regard to changes in AA
levels in plasma/serum and erythrocyte phospholipids.
Our results recapitulated those in humans and provide
support for the concept that allometric scaling between
species for dietary LA can be accomplished based on
energy and metabolic differences. It is important to
note that these results cannot be extrapolated to all
tissues.
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