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The intake of high fat diet with different trans
fatty acid levels differentially induces oxidative
stress and non alcoholic fatty liver disease
(NAFLD) in rats
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Abstract

Background: Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and
obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the
effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on
hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels
induce oxidative stress and liver dysfunction in rats.

Methods: Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow;
Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean
oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks.

Results: A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and
decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The
intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in
comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver
histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation,
hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation.

Conclusion: It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and
lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was
also different depending on the fat source suggesting that feeding margarine with higher TFA levels may
represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct
effect of TFA on NAFLD.
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Background
Various food processing techniques have been found to
leave deleterious effects on the processed foods and fats
and oils are no exception [1-3]. In the developing nations,
the intermittent use of reprocessed thermoxidised oil is

widespread [4]. Due to their long shelf life, their suitabil-
ity during deep-frying and their semisolidity, partially
hydrogenated vegetable oils are used by the food indus-
tries to enhance the palatability of baked goods and
sweets. In the process of hydrogenation, unsaturated
vegetable oils undergo the introduction of hydrogen gas
under certain conditions of pressure and temperature
using a catalyst metal (nickel, palladium, platinum, and
ruthenium). The hydrogenation process involves the
transformation of certain unsaturated fatty acids from cis
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to trans configuration. In their natural form, most fatty
acids present only cis-isomerism [5]. Trans fatty acids
(TFAs) are produced through the industrial hardening of
the vegetable oils to make the products more stable and
robust, and thus easier to handle or store [6]. Most TFA
have physical properties similar to saturated fatty acids
(SFA) [7]. More specifically, monounsaturated TFA iso-
mers with 18-carbon chain length (trans-18:1) are some
of the predominant TFAs present in the human diet
[8,9]. TFAs are known as a risk factor for coronary vascu-
lar diseases (CVD), insulin resistance and obesity accom-
panied by systemic inflammation, the features of
metabolic syndrome [10,11]. Recent studies suggest mul-
tiple possible mechanisms that might mediate the asso-
ciation of TFAs with CVD [12]. For example, TFAs
influence prostaglandins balance, which in turn promotes
thrombogenesis [13] and inhibits the conversion of lino-
leic acid to arachidonic acid and to other n-6 PUFA, per-
turbing essential fatty acid metabolism and causing
changes in the phospholipid fatty acid composition in the
aorta [14]. TFAs have been associated with the activation
of systemic inflammatory responses, including substan-
tially increased levels of IL-6, TNF-a, TNF receptors and
monocyte chemoattractant protein-1 [15]. Furthermore,
TFAs have been associated with increased levels of sev-
eral markers of endothelial activation, including soluble
intercellular adhesion molecule 1, soluble vascular-cell
adhesion molecule 1 and E-selectin [10]. TFAs are postu-
lated to be involved in promoting vascular dysfunction,
as reflected by a reduction in brachial artery flow [16].
These observations suggest that TFAs are linked to the
development of CVD, probably via a vascular pro-inflam-
matory response [17]. Oxidative damage is a major con-
tributor to the development of CVD. Nevertheless, little
is known about the effects on the liver induced by lipids
[6] and few studies are focused on the effect of foods rich
in TFAs on hepatic functions and oxidative stress. Oxida-
tive stress results from an imbalance between oxidant
production and antioxidant defenses [18]. Oxidative
stress induced by free radicals has been linked to the
development of several diseases such as cardiovascular,
cancer, and neurodegenerative diseases [19]. When cellu-
lar antioxidant mechanisms are overwhelmed, a long-
term decline in their antioxidant capacity causes the oxi-
dative stress [20,21]. Oxidative stress is now believed to
be an important factor in the development of non alco-
holic fatty liver disease (NAFLD) [20,22]. NAFLD is the
most common liver disorder in the world, and in obesity,
type 2 diabetes and related metabolic diseases, its inci-
dence reaches 70-90% [23]. The disease is characterized
by the accumulation of triacylglycerols inside liver cells,
and the condition can progress into more serious liver
disease, such as non alcoholic steatohepatitis, liver fibro-
sis, cirrhosis, and more rarely, liver carcinoma [23].

Previous works have shown that feeding rats a high fat
diet (57% of energy from fat) induces hepatic steatosis
and liver damage, which are characteristic of NAFLD and
thus provides a suitable model for the early stages of the
disease [24,25]. But, in these studies TFAs in the fat diet
were not investigated and neglected. Therefore, it is
necessary to examine the relationship between the liver
functions and TFAs consumption in dietary lipids.
We investigated whether high-fat diet (fresh soybean

oil, oxidized soybean oil and margarine) with different
TFA levels induces oxidative stress and NAFLD in rats.

Materials and methods
Analytical determinations of supplemented dietary fat
Soybean oil and margarine were purchased in a local
supermarket. The thermoxidized oil was prepared by
heating soybean oil in an oven set for 24 hours at 200°
C. The extent of lipid peroxidation was determined by
assaying the peroxide value and UV absorbance at 232
and 270 nm (k232 and k270) and p-anisidine value
according to the European Official Methods (EEC 2568/
91) [26]. the oxidative stability index (OSI) was evalu-
ated by the Rancimat apparatus (Mod. 743, Metrohm Ω,
Switzerland) using an oil of 3 g warmed to 120°C and
an air flow of 20 L/h [27]. Results were expressed as
induction time in hours of hydroperoxides
decomposition.

Determination of fatty acid profile
Fatty acid methyl esters (FAMEs) from the oil samples
were prepared as described by Issaoui et al. [28]. Indivi-
dual FAMEs were separated and quantified by gas chro-
matography using a Model 5890 Series II instrument
(Hewlett-Packard, Palo Alto, CA) equipped with a flame
ionisation detector, and a fused silica capillary column
DB-23 (60 m length, 0.32 mm i.d., and 0.25 μm film
thickness; HP-Agilent Technologies, Wilmington).

Determination of antiradical activity
The capacity to scavenge the “stable” free radical 2,2-
dipheny1-1-picrylhydrazyl (DPPH) was monitored
according to the method of Ramadan and Morsel [29].
The solution was incubated at room temperature for 60
min and the decrease in absorbance at 515 nm was
determined after 1, 30 and 60 min using a UV-visible
spectrophotometer (Perkin Elmer Lambda 25).

Animal treatment
Male adult Wistar rats (Central Pharmacy, Tunisia),
weighing about 200 to 280 g, were housed at 22 ± 3°C,
with 12- hour light-dark periods, a 40% minimum rela-
tive humidity and free access to water and standard diet:
protein 17% (methionine and choline accounting 3000
and 2720 milligrams per kilogram, respectively),
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carbohydrate 62%, lipids 4%, ash 7%, and moisture 10%
(SICO, Sfax, Tunisia). All the breeding phases and
experiments were conformable to the rules of the Tuni-
sian Society for the Care and Use of Laboratory Ani-
mals. All experiments were conducted at the animal
facilities of the faculty of Medicine, Monastir; with the
approval of the Faculty of Medicine Ethics committee.
After acclimatization to the laboratory conditions for
one week, the animals were divided into 4 groups of 12
animals each. Group C included the control animals and
received standard chow. Experimental groups that were
fed high-fat diet included 20% fresh soybean oil diet
(FSO), 20% oxidized soybean oil diet (OSO) and 20%
margarine diet (MG). Each group was kept on the treat-
ment for 4 weeks. Water and food consumption and the
individual animal body-weight were recorded daily
throughout the experiment. At the end of the experi-
mental period, the rats were kept fasting overnight and
were sacrificed under diethyl ether anesthesia.

Biochemical analysis of liver functions
Serum Alkaline Phosphatase (ALP) Aspartate Transami-
nase (AST), Alanine Transaminase (ALT) and Lactate
Dehydrogenase (LDH) activities were determined spec-
trophotometrically using commercial diagnostics kits
supplied by Randox Laboratories (Ardmore, Northern
Ireland, UK).

Measurement of TBARS levels
According to Buege and Aust [30], lipid peroxidation
was estimated by measuring thiobarbituric acid reactive
substances (TBARS) and expressed in terms of malon-
dialdehyde (MDA) content. For the assay,125 μl of
supernatant (S1) were mixed with 50 μl of saline buffer
(PBS, PH 7.4),125 μl of 20% trichloroacetic acid contain-
ing1% butylhydroxytoluene and centrifuged (1000 g, 10
min,4°C). Then, 200 μl of supernatant (S2) was mixed
with 40 μl of HCl (0.6M) and 160 μl of Tris-thiobarbitu-
ric acid (120 mM) and the mixture was heated at 80°C
for 10 min. The absorbance was measured at 530 nm.
The amount of TBARS was calculated using an extinc-
tion coefficient of 1.56 × 10-5 M-1 cm-1 and expressed
in nmol of MDA/mg protein.

Measurement of conjugated dienes
Conjugated dienes were determined by the method of
Recknagel and Ghoshal [31]. A portion of tissue homo-
genate was transferred to a chloroform/methanol mix-
ture (2:1). The whole mixture was vortexed and
centrifuged at 2500 g. The upper layer was washed with
chloroform/methanol/H2O and centrifuged. The lower
layer was combined with the first lower layer and evapo-
rated under N2. The extract was redissolved in 1 ml
cyclohexane. Absorbance was determined at 233 nm. An

extinction coefficient of 2.52 × 104 mole-1 was used.
Results were expressed as mmoles mg-1 protein.

Liver antioxidant enzymes activities
Superoxide dismutase (SOD) activity in liver homoge-
nate was assayed spectrophotometrically as described by
Beyer and Fridovich [32]. This method is based on the
capacity of SOD to inhibit the oxidation of nitroblue tet-
razolium (NBT). One unit of SOD represents the
amount of enzymes required to inhibit the rate of NBT
oxidation by 50% at 25°C. The activity was expressed as
units/mg protein.
Catalase (CAT) activity was measured at 20°C by a

slightly modified version of Aebi’s method [33]. Hydro-
gen peroxide (H2O2) decomposition by CAT enzyme
was monitored kinetically at 240 nm. The molar extinc-
tion coefficient of 0.043 mM-1cm-1 was used to deter-
mine CAT activity. One unit of activity is equal to the
micromole of H2O2 degraded per minute per milligram
of protein.
Glutathione peroxidase activity (GPx) was assayed

according to the method of Flohe and Gunzler [34]. The
activity was expressed as mmol of GSH oxidized/min/
mg of protein at 25°C.

Protein assay
Protein concentrations in the liver were determined
according to the method of Bradford [35] using bovine
serum albumin as a standard.

Statistical analysis
The data were analyzed using the Statistical Package for
Social Sciences (SPSS) program, release 11.0 for Win-
dows (SPSS, Chicago, IL, USA). In each assay, the
experimental data represent the mean of 12 independent
assays ± standard deviations. Duncan’s test was used to
determine any significant differences between different
groups. The statistical significance was set at p < 0.05.
The results were analyzed using the Student t test for
comparison between the dietary fat parameters. To
point out the correlation between the analyzed para-
meters, Pearson’s test was carried out.

Results and discussion
Analytical parameters of the dietary fat
The analytical parameters of the dietary fat employed
are shown in Table 1. It is very important to assess the
oxidative degradation of fats and oils, because free-radi-
cal initiated oxidation is one of the main causes of ran-
cidity in fats and oils, which results in the alteration of
major quality control variables such as color, flavor,
aroma and nutritional value [36]. The thermally oxidized
soybean oil (OSO) samples composition were different
from the fresh soybean oil (FSO) with a high peroxide,
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Table 1 Mean values of fatty acid composition (%), lipid peroxidation parameters and antiradical properties of high-
fat diet (fresh soybean oil, FSO; oxidized soybean oil, OSO and margarine, MG)

Supplemented high-dietary fat

FSO OSO MG

Fatty acids (%)

8:0 nd nd 0.26 ± 0.00##

10:0 nd nd 0.26 ± 0.00##

12:0 nd nd 3.16 ± 0.01##

14:0 0.08 ± 0.002 0.08 ± 0.01 1.84 ± 0.03##

14:1 0.02 ± 0.00 0.02 ± 0.009 0.04 ± 0.00#

16:0 10.96 ± 0.06 12.08 ± 0.01** 30.33 ± 0.04##

trans- 16:1 n-7 0.02 ± 0.00 0.024 ± 0.006 0.03 ± 0.00#

cis-16:1 n-7 0.09 ± 0.00 0.11 ± 0.00** 0.13 ± 0.00#

17:0 0.29 ± 0.02 0.28 ± 0.01 0.20 ± 0.01##

17:1 0.08 ± 0.02 0.08 ± 0.00 0.05 ± 0.01##

18:0 4.82 ± 0.04 3.93 ± 0.01** 4.8 ± 0.01##

trans-18:1 n-9 nd 0.117 ± 0.01** 1.78 ± 0.13##

trans-18:1 n-7 nd nd nd

cis-18:1 n-9 21.96 ± 0.2 25.22 ± 0.02** 30.1 ± 0.13##

cis-18:1 n-7 1.29 ± 0.05 1.71 ± 0.01** 0.73 ± 0.00##

18:2 n-6 (t9. t12) 0.07 ± 0.00 0.138 ± 0.01** 0.096 ± 0.001#

18:2 n-6 (t9. c12) nd 0.054 ± 0.003** 0.052 ± 0.004

18:2 n-6 (c9. t12) 0.09 ± 0.01 0.288 ± 0.1** 0.2 ± 0.01##

18:2 n-6 (c9. c12) 50.75 ± 0.04 48.12 ± 0.01** 21.73 ± 0.3##

cis-18:3 n-6 0.19 ± 0.00 0.40 ± 0.05** 0.14 ± 0.00##

trans-18:3 n-3 0.02 ± 0.00 0.366 ± 0.01** 0.016 ± 0.011##

cis-18:3 n-3 7.65 ± 0.1 4.76 ± 0.02** 2.55 ± 0.02##

18:2 (c9. t11) 0.024 ± 0.001 0.099 ± 0.003** 0.068 ± 0.00##

18:2 (t10. c12) 0.013 ± 0.001 0.056 ± 0.004** 0.042 ± 0.00#

20:0 0.43 ± 0.01 0.43 ± 0.002 0.35 ± 0.00##

trans-20:1 n-9 0.026 ± 0.00 0.199 ± 0.006** 0.06 ± 0.00##

20:1 n-9 0.24 ± 0.01 0.2 ± 0.080* 0.18 ± 0.02#

20:2 n-9 0.08 ± 0.003 0.09 ± 0.002 0.02 ± 0.00##

20:3 n-6 0.03 ± 0.00 0.04 ± 0.02** 0.02 ± 0.00

20:4 n-6 0.03 ± 0.00 0.03 ± 0.00 0.01 ± 0.00#

22:0 0.06 ± 0.00 0.067 ± 0.00* 0.03 ± 0.00##

ΣSFA 16.22 ± 0.13 16.9 ± 0.03** 41.42 ± 0.1##

Σcis MUFA 23.6 ± 0.3 27.47 ± 0.1** 31.25 ± 0.13##

Σ cis PUFA 59.36 ± 0.12 54.21 ± 0.1** 24.81 ± 0.03##

Total TFAs 0.226 < 1 1 < 1.23 < 2 2.4 > 2

Lipid peroxidation

Oxidative stability index (h) 3.74 ± 0.01 0.67 ± 0.04** 4.27 ± 0.63##

Peroxide value (meq O2/kg) 2.66 ± 0.00 6 ± 0.00** 17.33 ± 0.94##

p-anisidine value 2.13 ± 0.7 7.5 ± 2.2** 2.61 ± .024##

k232 (conjugated dienes) 2.77 ± 0.10 4.26 ± 0.04** 3.9 ± 0.07

k270 1.11 ± 0.05 4.01 ± 0.05** 2.54 ± 0.15##

Antiradical ability: DPPH (%) 93.12 ± 0.06 50.16 ± 2.88** 77.91 ± 0.5##

nd: not detected.

Values are given as mean ± SD (n = 3). FSO: Fresh soybean oil, OSO: oxidized soybean oil,

MG: margarine.

*p < .05, OSO vs. FSO; **p < .01 OSO vs. FSO. #p < .05, MG vs. OSO; ##p < .05 MG vs. OSO. Comparison between supplemented-diet compositions was made using
unpaired Student t test.
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conjugated dienes and p-anisidine value (Table 1) and a
significant reduction of oxidative stability (3.74 vs. 0.67
h) and antiradical capacity (93.12 vs. 55.16%), respec-
tively (p < 0.01). Margarine (MG) samples also showed
higher antioxidant ability (77.9%) and oxidative stability
index (4.27 h) and a lower p-anisidine and extinction
coefficient value than OSO (Table 1).
Concerning the fatty acid (FA) composition, as shown

in Table 1, FSO and OSO were characterized by the
presence of high levels of polyunsaturated fatty acid
(PUFA) fraction with a significant (p < 0.01) difference
(59.36 vs. 54.21% respectively). Whereas, MG was distin-
guished by the presence of SFA (41.42%) and a signifi-
cant low level of PUFA (24.81%). For TFA isomers, FSO
contained about 0.22% of total FA (Table 1). Detection
of TFA isomers in FSO confirms the fact that the oil
retailed in the market even without thermal treatment
has already started deteriorating. This also could be due
to the refining process effect. MG samples contained
higher amounts of total TFAs accounting 10 and 1.23
times than FSO and OSO, respectively. As reported by
Assumpção et al. [37], during hydrogenation, the double
bonds of FA that form triacylglycerols change their posi-
tion and produce trans-geometric isomers. In MG sam-
ples, the trans 18:1 n-9 constituted the highest
proportion among the identified trans-isomers, whereas
polyunsaturated trans-isomers appeared only in small
quantities. However, for OSO, trans PUFA represent
about 60% of total TFA. This is in accordance with
Mayneris-Perxachs et al. [38] who reported that the pre-
dominant trans isomers in industrially processed

products is elaidic acid (trans-9 C18:1) and in agree-
ment with Lichtenstein [39] who reported that the
majority of TFAs in the diet are trans-18: 1, which is
derived from the partial hydrogenation of oils. However,
the process of heating vegetable oils during deodoriza-
tion and frying or baking food in vegetable oils results
in the generation of trans-18:2 [40].
Thus, Supplemented dietary fat contained different

levels of total TFAs ranged from proportions of total fat
<1%, <2% and > 2% in FSO, OSO and MG diets respec-
tively (Figure 1). In addition, the isomer type also differs
with predominance of trans-18:2 in oils and trans-18: 1
n-9 in MG. In observational studies utilizing biomarkers
of TFAs consumption, both 18:1 and 18:2 isomers
appear to contribute to risk of CVD [41].

Growth and nutritional status of rats
Most rats gained weight consistently during the four-
week dietary treatments. The average body weight gain at
the end of the four weeks was 16.4 g in the control ani-
mals, 24.55, 20.33 and 25.83 g in FSO-fed, OSO-fed and
MG-fed rats, respectively (Table 2). Following four weeks
of feeding, the body weight gained in high-fat fed rats
was statistically not significant (Table 2). The feeding effi-
ciency of rats fed with the OSO diet was lower than that
of the FSO-fed rats. This may be explained by the fact
that almost all amino acids react with primary and sec-
ondary products of oxidized lipids, thereby decreasing
the digestive utilization of protein, amino acids and fats,
which may affect a weight gain [42]. On the other hand,
results showed that FSO diet significantly increased the
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Figure 1 Fatty acid isomers in dietary fat diet. trans MUFA: trans monounsaturated fatty acid, trans PUFA: trans polyunsaturated fatty acid,
TFA: total trans fatty acid, CLA: conjugated linoleic acid. Data are expressed as means ± SD (n = 3). Comparison between groups was made
using Duncan’s test. Values followed by different subscript letters are significantly different. (p < 0.05).
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absolute liver weight compared with the control group.
However, no significant changes were observed for OSO
and MG groups (Table 2).

Biochemical indicators of liver function
The levels of plasma hepato-specific enzymes such as,
ALP and LDH were significantly increased (p < 0.05) in
high-fat fed rats compared to control (Table 3). Feeding
(OSO) led to significant higher levels of AST, ALP and
LDH in comparison to fresh oil fed group (p < 0.05).
Enhanced levels of plasma ALT and AST are indicative
of liver damage [43]. Plasma ALP is a sensitive detector
for intrahepatic and extrahepatic bile obstruction [44]. It
is well known that dietary fat sources strongly influence
several biochemical variables both in plasma and in bio-
logical membranes [45-47]. Consumption of OSO and
MG diets causes a significant increase of biochemical
indicators of liver damage. We noticed a close positive
correlation between TFA levels in dietary fat and AST,
ALAT, ALP and LDH (Table 4). These results revealed
hepatic damage in rats consumed TFA.

Liver’s Lipid peroxidation
When compared to control group, we found a clear evi-
dence of liver’s lipid peroxidation of FSO, OSO and
MG-fed rats, as judged by their significantly high con-
tent of conjugated dienes (CD) products, reflecting the
initial phase of lipid peroxidation.

On the other hand, when the degradative phase of
lipid peroxidation was examined, assaying thiobarbituric
acid reacting substances (TBARS), the MDA levels in
the FSO group, comparing to the C group, was
increased by 26.5% (Figure 2). The TBARS in the livers
of high-fat fed animals were found to be significantly
increased compared to control rats (p < 0.05). Elevated
levels of TBARS in liver are a clear manifestation of
excessive formation of free radical and activation of lipid
peroxidation.
Our findings revealed that the rates of hepatic lipid

peroxidation were markedly higher in margarine and
OSO-fed groups than in the fresh oil fed group. How-
ever, for OSO-fed group, the CD concentration was sig-
nificantly increased by 85% and 36% of that in C and
FSO group respectively. The results from lipid peroxida-
tion measurements confirm that the loss of antioxidant
capacity and the increase of TFAs in OSO affect the
liver function, suggesting that feeding oxidized oil may
represent a direct source of oxidative stress for the
organism. A positive correlation between the level of
total TFAs in the diet and the concentration of the
TBARS in the liver of high-fat fed animals (r = 0.84)
was observed. A highly significant positive correlation
was also noted between CD levels in rat’s liver and
trans PUFA in the rat diet (r = 1.0; p < 0.01) (Table 4).
The importance of FAs resides in the finding that biolo-
gical membranes adapt their composition according to

Table 3 Biochemical indicators of liver function in plasma in control (C) and high fat treated rats fed a diet with fresh
soybean oil (FSO), oxidized soybean oil (OSO) and margarine (MG)

Plasma hepato specific enzymes (U/L)

AST ALT ALP LDH

C 120.5 ± 36.06a 55.25 ± 4.03 a 167.85 ± 28.8a 410 ± 20 a

FSO 145.5 ± 2.38 ab 58.5 ± 8.3 a 217.71 ± 36.9 b 585.5 ± 87.1 b

OSO 162.8 ± 15.12 b 61 ± 9.02 a 269.33 ± 10.21 c* 860.5 ± 13.43c**

MG 207 ± 7.3 c++ 76.83 ± 9.23 b+ 248.5 ± 13.7 bc 981.5 ± 118.4 c

Data are expressed as means ± SD (n = 12 rats per group). C: controls group, FSO: Fresh soybean oil fed group, OSO: oxidized soybean oil fed group, MG:
margarine fed group. Alkaline Phosphatase: ALP; Aspartate Transaminase: AST; Alanine Transaminase: ALT; lactate dehydrogenase: LDH

Comparison between groups was made using Duncan’s test. Different parameters values followed by different subscript letters (a, b and c) are significantly
different between groups. (p < 0.05).

*p < .05, OSO vs. FSO group; **p < .01, OSO vs. FSO group. +p < .05, MG vs OSO group; ++p < .05, MG vs. OSO group. Comparison between groups was made
using unpaired Student test.

Table 2 Body weight gain, food intake, water intake and feed efficiency of rats fed with fresh soybean oil (FSO)
oxidized soybean oil (OSO) and margarine (MG).

Growth and nutritional status of rats

Body weight gain (g) Liver weight (g) Food intake (g/day) Water intake (ml/day) Feed efficiency (B.W gain/food intake)

C 16.4 ± 6.67a 6.92 ± 1.42 a 16.03 ± 2.47a 9.33 ± 1.91 ab 1.02

FSO 24.55 ± 9.7 a 8.15 ± 0.83 b 14.94 ± 1.82 ab 10.04 ± 1.53 a 1.64

OSO 20.33 ± 7.81 a 7.54 ± 0.64 ab 13.74 ± 2.41c 9.82 ± 1.5 ab 1.47

MG 25.83 ± 6.64 a 7.27 ± 0.7 a 14.24 ± 2.17 bc 9.07 ± 1.22 b 1.81

Data are expressed as means ± SD (n = 12 rats per group). Control group: C; Fresh soybean-oil fed group: FSO; oxidized soybean oil-fed group: OSO; margarine-
fed group: MG. Comparison between groups was made using Duncan’s test. Different parameters values followed by different subscript letters (a, b and c) are
significantly different between groups. (p < 0.05).
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Figure 2 Malondialdehyde (MDA) and conjugated dienes (CD) in the liver of rats fed with high fat diet with different trans fatty acid
levels. C: controls group, FSO: Fresh soybean oil fed group, OSO: oxidized soybean oil-fed group, MG: margarine-fed group. Data are expressed
as means ± SD (n = 12 rats per group). Comparison between groups was made using Duncan’s test. Values followed by different subscript
letters are significantly different. (p < 0.05).

Table 4 Correlation between fatty acid isomers in the diet and oxidative stress parameters in rat’s liver and plasma
hepato-specific enzymes

SOD CAT GPx CD MDA AST ALT PAL LDH

trans MUFA -0.977 -0.952 -0.770 0.105 0.626 0.992 1.000* 0.258 0.829

trans PUFA -0.321 -0.409 -0.719 1.000** 0.844 0.235 0.087 0.989 0.649

total TFAs -0.994 -1.000* -0.934 0.418 0.843 0.980 0.939 0.554 0.964

*p < .05; **p < .01

MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid; TFAs: trans fatty acids; alkaline phosphatase: ALP; aspartate transaminase: AST; alanine
transaminase: ALT; lactate dehydrogenase: LDH; SOD: superoxide dismutase; GPx: glutathione peroxidase; CAT: catalase; CD: conjugated dienes; MDA:
malondialdehyde.
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that of dietary fat [48-50]. Dietary FAs can influence the
susceptibility of cells to oxidative stress, perhaps due to
changes in cell membrane FA composition [51]. As well
known, lipid peroxidation starts with abstraction of OH•
from a -CH2- group of PUFA, where the carbon radical
is usually stabilized by a molecular rearrangement form-
ing conjugated dienes, compounds containing two dou-
ble bonds separated by a single bond. Conjugated dienes
react with O2 forming peroxyl radicals that react with
OH• atoms from other lipids, producing lipid hydroper-
oxides or forming cyclic peroxides, and several products
are formed, including MDA [52]. Lipid peroxidation is
the process of oxidative degradation of PUFAs and its
occurrence in biological membranes causes impaired
membrane function, structural integrity, decrease in
membrane fluidity and inactivation of a several mem-
brane bound enzymes [53]. Niu et al. have reported that
phospholipids in biological membranes containing TFAs
are known to attract cholesterol [54]. This phenomenon
plausibly alters cell membrane structure, including rede-
fining lipid raft and non-raft regions in size, organiza-
tion and composition. Lipid rafts are important for
cellular signalling, as they provide docking sites for
receptors, co-receptors and mediators including adhe-
sion molecules [55]. Recent animal experiments indicate
that TFAs impair fat cell membrane fluidity. When
TFAs are incorporated into cell membranes, the mem-
brane fluidity is reduced and the cells do not function
as well. The resulting effect is then to promote further
production of reactive oxygen species which explain the
increase in lipid peroxidation in groups fed with TFAs
diet.

Liver’s activities of antioxidant enzymes
The removal of reactive oxygen substances is accom-
plished by enzymatic and non-enzymatic reactions in
biological systems. In enzymatic reactions, SOD converts
superoxide anions to hydrogen peroxide (H2O2), and
H2O2 can be rapidly degraded by CAT and GPx to H2O
[56]. The activities of SOD and CAT in the liver were
significantly (p < 0.05) lowered in rats fed with high-fat
diet than control group animals (Figure 3). Loss of CAT
activity results in oxygen intolerance and triggers a
number of deleterious reactions such as protein and
DNA oxidation, and cell death [52]. The GPx activity
was significantly decreased in liver of rats fed with OSO
and MG diet as compared to the control and FSO-fed
rats (p < 0.05) (Figure 3). High-fat diets can cause the
formation of toxic intermediates that can inhibit the
activity of antioxidant enzymes [57] and the accumula-
tion of O2

- radicals and H2O2 which in turn forms
hydroxyl radicals [58]. The activities of SOD and CAT
were significantly decreased in OSO group than FSO
group (p < 0.05) (Figure 3). A close negative correlation

was noted between TFA levels in the diet and SOD (r =
-0.99), CAT(r = -1.0) and GPx (r = -0.93) activities in
rat’s liver suggesting that increasing consumption of
TFAs is associated with the decrease of the efficiency of
the antioxidant-enzymatic system and therefore, with
the increase of oxidative stress in rat’s liver. TFAs may
impart their effect by enhancing intrinsic signaling
mechanisms leading to a chronic, pro-inflammatory
state. Consumption of diets high in TFAs may induce
long-term progressive changes in the antioxidant
enzyme’s activities.

Histopathological lesions
Histopathologically, liver sections from rats fed with the
standard diet had shown normal morphological appear-
ance (Figure 4a). Livers of the experimental groups
showed a clear difference from those of the control
group. In the group that fed FSO, the initial phase of
NALFD, during which fat accumulates in the liver (Fig-
ure 4b, thin arrow). and cytoplasm vacuolation of hepa-
tocytes were observed (Figure 4b, black triangle). As
previously reported by Samuhasaneeto et al. [59], one
hundred percent fat diet caused mobilizing of free fatty
acid from adipose tissue and transporting into hepato-
cytes. These results are in agreement with previous stu-
dies of the effects of high-fat diet in inducing the early
stage of NAFLD [59].
Feeding OSO for four weeks, rat’s liver showed

increased incidences of hepatocytes hypertrophy (Figure
4c, black triangle), fat deposition (Figure 4c, thin arrow)
and infiltration of a mixed population of inflammatory
cells in the liver, as well as ballooning degeneration of
hepatocytes characterized by cell swelling with empty
intracellular content, indicating cell necrosis (Figure 4d,
thick arrow). As known, dietary lipids in the form of
chylomicrons are transported from the gut via the lym-
phatic system to the liver where they are incorporated
after release from lipoproteins by hepatic lipoprotein
lipase [60]. Physiologically and during the postprandial
phase, dietary lipids are stored in the liver, where they
are processed and assembled with apolipoprotein B 100
(ApoB) to form very-low-density lipoprotein (VLDL).
These particles are secreted and distribute lipids to
lipid-storing adipose tissue [60]. When the hepatocyte is
injured, plasma membrane can be disrupted and the
leakage through extra-cellular fluid of the enzyme
occurs where they can be detected at abnormal levels in
the serum [61]. This is clearly evident by a substantial
increase in plasma levels of AST, ALP and LDH in OSO
group (Table 3). Previous studies have reported that
trans fats appear to affect lipid metabolism through sev-
eral pathways. In vitro, TFAs alter the secretion, lipid
composition, and size of apolipoprotein B-100 (apoB-
100) particles produced by hepatic cells [62,63]. The
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liver failed to synthesize apolipoprotein that was used
for packaging and exporting of fat from the liver. There-
fore, triglycerides accumulated in the liver [64]. As
reported by Mensink et al [65], trans fats increase the
blood levels of triglycerides as compared with the intake

of other fats. In this study, triglycerides levels were
found to be increased in the plasma of rats fed with MG
diet followed by OSO diet and FSO diet (data not pub-
lished). The higher inflammatory response in the liver
was induced by MG diet. Liver histopathology from MG
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Figure 3 Antioxidant enzyme activities in the liver of rats fed with high fat diet with different trans fatty acid levels. CAT, SOD and GPx
of rat’s liver exposed to different high-fat diets. C: controls group, FSO: Fresh soybean oil-fed group, OSO: oxidized soybean oil-fed group, MG:
margarine-fed group. Data are expressed as means ± SD (n = 12 rats per group). Comparison between groups was made using Duncan’s test.
Values followed by different subscript letters are significantly different. (p < 0.05).

Dhibi et al. Nutrition & Metabolism 2011, 8:65
http://www.nutritionandmetabolism.com/content/8/1/65

Page 9 of 12



group showed severe cytoplasm vacuolation, hepatocyte
hypertrophy (Figure 4e, black triangle) and a noticeable
hepatocyte ballooning demonstrating a large area of
necroinflammation (Figure 4f, thick arrow). The

histological and pathogenic features of NAFLD were
clearly developed in the MG group which is submitted
to margarine diet with TFA level reaching the 2% of
total fat. Previous studies proved that oxidative stress is
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Figure 4 Effect of high fat diet with different trans fatty acid levels on rat’s liver histology. Normal liver histological aspect from a control
(H&E 32 ×). Panel (a) it is composed of hexagonal or pentagonal lobules with central veins (CV) and peripheral hepatic triads (HT) embedded in
connective tissue. Hepatocytes are arranged in trabecules running radiantly from the central vein and are separated by sinusoids (S) containing
Kuppfer cells. Liver from experimental groups (H&E 100×): FSO Panel (b): moderate lipid accumulation is seen in many hepatocytes; OSO Panel
(b); abundance of cytoplasm vacuolization and ballooned hepatocytes and MG Panel (e); severe lipid accumulation in hepatocytes and high
number of ballooned hepatocytes. Cytoplasm vacuolization in parenchymatous cells of the liver (thin arrow), hypertrophied hepatocytes (black
triangle). Liver from OSO Panel (d) and MG Panel (f) groups (H&E 32×): photomicrograph of degenerated hepatocytes and necrosis (thick arrow).
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now believed to be an important factor in the develop-
ment of NALFD [66]. These alterations in the liver of
rats fed with OSO and MG diet containing respectively
more than 1% and 2% TFAs of total fat implicate TFAs
in triggering the development of NAFLD and/or acceler-
ating the progression of the disease.

Conclusion
In conclusion, oxidized edible oils fed to rats for four
weeks induced lipid peroxidation in liver compared with
the same non-oxidized oils. It seems that a strong rela-
tionship exists between the consumption of TFAs in the
oxidized oils and lipid peroxidation. The extent of the
peroxidative events in liver was also different depending
on the fat source suggesting that feeding margarine with
higher TFA level may represent a direct source of oxida-
tive stress for the organism. The present study provides
evidence for a direct effect of TFAs on liver dysfunction
causing the disturbances in liver lipid metabolism that
result in NAFLD which is a key component of the cardi-
ometabolic syndrome. This suggests that TFAs may
influence risk factors for CVD.
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