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Abstract

Background: High dietary intake of vegetable products is beneficial against obesity and its related diseases such
as dyslipidemia, nonalcoholic fatty liver disease, and cancer. We previously developed a diet-induced obesity model
of zebrafish (DIO-zebrafish) that develops visceral adiposity, dyslipidemia, and liver steatosis. Zebrafish is a
polyphagous animal; thus we hypothesized that DIO-zebrafish could be used for transcriptome analysis of anti-
obesity effects of vegetables.

Results: Each vegetable exhibited different effects against obesity. We focused on “Campari” tomato, which
suppressed increase of body weight, plasma TG, and lipid droplets in livers of DIO-zebrafish. Campari tomato
decreased srebf1 mRNA by increase of foxo1 gene expression, which may depend on high contents of b-carotene
in this strain.

Conclusions: Campari tomato ameliorates diet-induced obesity, especially dyslipidemia and liver steatosis via
downregulation of gene expression related to lipogenesis. DIO-zebrafish can discriminate the anti-obesity effects of
different strains of vegetables, and will become a powerful tool to assess outcomes and find novel mechanisms of
anti-obesity effects of natural products.
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Background
Dramatic increases in the occurrence of obesity are a severe
problem in developed countries. The World Health Orga-
nization estimates that 310 million people worldwide are
obese [1]. Obesity is associated with several adverse health
consequences including type 2 diabetes mellitus, dyslipide-
mias, nonalcoholic fatty liver and gallstones, cardiovascular
disease (CVD), Alzheimer’s disease, and certain types of
cancer [2]. Recently, growing evidence from several epide-
miological and clinical studies has indicated health benefits
of certain kinds of vegetables against obesity and its related
diseases. For example, tomato and its components could
lower plasma cholesterol and triacylglyceride (TG) [3,4]

and may prevent obesity-related diseases including athero-
sclerosis and CVD [5-7], hypertension [8], and nonalcoholic
steatohepatitis-promoted liver cancer [9]. Since the compo-
nents of vegetables greatly vary depending on the strain,
production area, and agricultural method, it is very difficult
to evaluate how these parameters affect the clinical condi-
tion of obesity. To evaluate the anti-obesity effects of differ-
ent vegetable components rodent models of obesity such as
ob/ob mouse have been used in vivo. Although rodent
models have greatly contributed to our understanding of
human obesity [10], experiments using rodent models
require considerable time and infrastructural support and
are relatively expensive. Zebrafish, a small teleost, offers a
powerful vertebrate model for human diseases. The high
degree of genetic conservation in comparison with mam-
mals contributes to its emergence as a model for obtaining
insights into fundamental human physiology.
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We constructed diet-induced obesity model of zebrafish
(DIO-zebrafish) overfed with Artemia as high-fat diet [11].
Increases of body weight, plasma TG, and liver steatosis
seen in this model are highly consistent with obesity
observed in humans and rodent models of DIO. The his-
tological configuration of target organs of adiposity such
as liver and visceral fat is also similar [11,12]. Furthermore,
main gene expression profile of visceral fat is also in com-
mon with human [11]. There are several advantages in the
DIO-zebrafish model. The response of zebrafish to Arte-
mia is very good; almost all zebrafish overfed with these
organisms become obese, with more homogeneity than
rodent models. DIO-zebrafish is easy to create and takes
only 2 weeks to induce obesity. In addition, zebrafish is a
polyphagous animal allowing in vivo screening through
oral administration of test compounds. In our preliminary
study zebrafish could ingest many kinds of vegetables
including pumpkin, eggplant, cucumber, green pepper,
and broccoli, grains including rice, and beans as a mixture
of ordinary fish food, for example, Tetramin®. Thus zebra-
fish can become a suitable animal model in feeding experi-
ment to evaluate influences of food compositions against
human obesity.

Methods
Ethical approval
The investigation conformed to the ethical guidelines
established by the Institutional Animal Care and Use
Committee of Mie University.

Materials
Tomatoes (Delica strain), pumpkins (Ebisu and Kurimasaru
strains), and egg plants (Choshi and Senryo) were pur-
chased from Delica Foods (Tokyo, Japan). Since the Delica
strain is a red-type tomato that is widely available in Japa-
nese supermarkets, we defined it as the “regular” tomato.
Campari tomatoes were purchased from IDE Farm (also
called Shio-Tomato, Kumamoto, Japan). Pictures of these
vegetables are shown in Additional file 1, Figure S1. Lyco-
pene (L9879) was purchased from Sigma-Aldrich (St.
Louis, MO, USA)

Preparation of vegetable and lycopene-containing
fish foods
First, each vegetable was homogenized to a liquid phase
using a standard blender intended for at-home use (MX-
X37, National, Japan). The vegetable juice was stored
overnight at -80°C. The frozen juice was then lyophilized
(DC-400, YAMATO SCIENTIFIC, Japan). When drying
was complete, the same volume (weight) of water and
commercial flake food (Tetramin tropical flakes, Tetra,
Germany) were added to the vegetable powder and
blended together, resulting in a mixture containing 50%
freeze-dried vegetable powder. After that, the mixture

was stored at -80°C and then lyophilized again. To make
the lycopene-containing fish food, lycopene was sus-
pended in ethanol and mixed with Tetramin to a final
concentration of 0.74 μg/ml. After drying, it was carefully
ground to granules (not to powder) using a mortar and
pestle. To adjust the granule size to be suitable for con-
sumption by adult zebrafish, the grinding process was
repeated until all of the granules could pass through a
700 μm mesh sieve. Granules were purged with nitrogen
gas, protected from light, and stored in aliquots at 4°C
prior to use. Tetramin, homogenized once with water
and then lyophilized was used as the control fish food.

Feeding zebrafish and experimental design
Adult zebrafish (AB, ZIRC, Eugene, OR, USA) were kept
at 28°C under a 14-h light:10-h dark cycle, and water
conditions of environmental quality were maintained
according to the Zebrafish Book [13]. Zebrafish were
assigned into each dietary group for 2 or 4 weeks with 5
fish/1.7-L tank. Zebrafish in the overfeeding group were
fed three times/day with Artemia (60 mg cysts/fish/day;
Miyako Kagaku, Tokyo, Japan). Zebrafish in the control
group were fed once daily in the morning with Artemia
(5 mg cysts/fish/day) from 3.5 months postfertilization
(mpf). Zebrafish were fed vegetable-containing flake
food (2 mg/day) 3 times at 20 min before Artemia feed-
ing during experiments (Figure 1A).

Measurement of body weight, plasma TG and blood
glucose
Body weight and length of zebrafish were measured
weekly throughout the study. Length of zebrafish was
measured from tip to the end of the body. For the blood
chemistry analyses, zebrafish were deprived of food over-
night and blood was withdrawn from the dorsal artery by
heparinized glass capillary needle (GD-1; Narishige,
Tokyo, Japan) at the indicated times. Blood glucose was
determined using a hand-held blood glucose meter (Glut-
est Neo, Sanwa Kagaku Kenkyusho, Nagoya, Japan). For
determination of plasma TG, the blood samples were
centrifuged for 3 min at 3, 500 rpm at room temperature
and the plasma harvested; triglycerides were measured
using a Wako L-type TG kit (Wako Pure Chemical
Industries, Tokyo, Japan) according to the manufacturer’s
protocol.

Feeding volume assay
Feeding volume of Artemia was measured weekly
throughout the study. Hatched Artemia (5 or 60 mg
cysts/fish/day) was fed to zebrafish in 1.7-L fish tank as
described above. For blank (no fish) control, Artemia was
put in a blank 1.7-L tank without zebrafish (only breed-
ing water). After 2 h, remaining numbers of Artemia not
eaten by zebrafish were counted three times and
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Figure 1 Assessment of body weight, plasma TG, and hepatic steatosis in zebrafish overfed with Campari and regular tomatoes. (A)
Feeding condition of each group. Group 1, normal feeding; group 2, overfeeding of Artemia with Tetramin (vehicle); group 3, overfeeding with
regular tomato; group 4, overfeeding with Campari tomato. Feeding experiments were conducted over 2 and 4 weeks. (B) Average body weight
in each group during 4-week feeding experiments. Values are mean ± SD. Each group contained 20 samples. **P < 0.05; ***P < 0.01 vs. vehicle
with overfeeding, black circles. (C) Change of plasma TG levels in the each group. ***P < 0.01 vs. vehicle with overfeeding, black circles. (D)
Feeding behaviour assay counting Artemia numbers 90 min after feeding at 2 weeks. No significant difference was observed among vehicle,
regular tomato, and Campari tomato administration in overfeeding groups. (E) Oil red O staining of liver sections. Campari tomato reduced the
number and size of lipid droplets (red) compared with overfeeding and overfeeding regular tomato. (F and G) qPCR-assessed gene expression in
the livers of DIO and normally fed zebrafish. Expression of ppar-ab (F) and ppargc1-like (G), a zebrafish homolog of human PPAR-a and PPARGC1
(PGC-1a, was normalized to actb expression. Values are mean ± SE (n = 5/group). *P < 0.05 vs. vehicle with overfeeding (OF).
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subtracted from that in control fish tank to determine
feeding numbers of Artemia in each tank.

Carotenoids, sugar contents, ascorbic acid, and NO3
-

determination
Among anti-obesity and antidyslipidemic components of
tomatoes, antioxidant substances such as lycopene [14-16]
and b-carotene [17-19] are well known. Carotenoid extrac-
tion and analysis were performed as previously described
[20]. Samples were homogenized by mixer for home use.
For each sample, 3 g was placed in a 50-ml brown glass
centrifuge tube and homogenized in 35 ml of extraction
solvent including diethylether/methanol (7:3, v/v) (Wako)
by homogenizer (AM-7; Nihonseiki, Tokyo, Japan). After
residue settling, the extract was removed to a 100-ml
brown glass flask. After adding 15 ml of extraction solvent,
the residue was again homogenized. After settling, the
extract was removed to the brown flask. The extraction
step, consisting of 15-ml solvent additions, was repeated.
Extracts were combined and the final volume was adjusted
to 100 ml. Extracted samples were filtered by 0.2-μm GL
Chromatodisk 13N disposable filter (GL Science, Tokyo,
Japan) then stored in vials for HPLC at -20°C before analy-
sis. For HPLC analysis (Prominence; Shimadzu, Kyoto,
Japan) isocratic separation was achieved by C18-5B col-
umn (Showa Denko, Tokyo, Japan). The mobile phase was
100% methanol for HPLC (Wako) at a flow rate of 1.0 ml/
min. Sample injection volume was 10 μl and column tem-
perature 25°C; peaks were detected at 450 nm. All analyses
were performed in duplicate, and quantification of carote-
noid isomers was carried out by comparing retention
times to analytical standards of lycopene (Sigma-Aldrich)
and b-carotene (Wako). Total sugar content expressed as
brix was determined by refractometer (PAL-1; Atago,
Tokyo, Japan). Ascorbic acid (vitamin C) was quantified
by reflectometer (RQflex plus10; Merck, Darmstadt, Ger-
many). Two hundred grams of samples were homogenized
with metaphosphoric acid (Wako) to avoid ascorbic acid
oxidation using mixer for home use. The samples were fil-
tered by paper filter and used for measurements. NO3

-

was quantified by RQflex plus10. One hundred grams of
samples were homogenized with equal volume of deio-
nized water using mixer for home use. The samples were
filtered by paper filter and used for measurements.

Measurement of the DPPH radical scavenging activity of
tomato-containing fish foods
The 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical
scavenging activities of tomato-containing fish foods were
measured using a previously reported method [21]. In
brief, a portion of the crude material was dissolved in
200 μl EtOH, mixed with 800 μl of 100 mM Tris-HCl buf-
fer (pH 7.4)), and then added to 1 ml of 500 μM DPPH in
EtOH. The mixture was shaken vigorously and left for

20 min at room temperature in the dark. The DPPH radi-
cal scavenging activity of a 60 μl sample of the reaction
mixture was determined using reversed-phase HPLC ana-
lysis. Analyses were done in a TSKgel Octyl-80TsQA col-
umn (4.6 × 250 min, Tosoh, Tokyo, Japan) at ambient
temperature with a mobile phase of MeOH/H2O (7:3, v/v)
at a flow rate of 0.8 ml/min. The peaks were monitored
with a UV detector set at 517 nm. Percentage inhibition of
the discolouration of DPPH by the sample extract was
expressed as Trolox equivalents per 100 gram (μmol TE/
100 g) [22].

Oil Red O staining
Liver tissues were collected from zebrafish by surgical
manipulation under a stereoscopic microscope (MZ16F;
Leica Microsystems, Wetzlar, Germany). Livers were fixed
using 10% buffered formalin solution (Histo-Fresh;
Pharma, Tokyo, Japan). The fixed samples were placed in
sucrose solution (Wako) at 4°C for 3 h then rapidly frozen
in liquid nitrogen-cooled isopentane (Wako), embedded in
Tissue-Tek (Sakura Finetek, Tokyo, Japan), and dissected
by cryostat (Microm HM-550; Thermo Fisher Scientific,
Waltham, MA). The sections were immersed in a working
solution of Oil Red O (Wako) for 15 min and rinsed with
distilled water as described previously [23]. Sections were
also counterstained with Mayer’s hematoxylin (Wako) to
visualize the nuclei according to manufacturer’s protocol.

DNA microarray analysis
Liver tissues were collected from DIO-zebrafish after
Campari and regular tomato feeding. Livers were fixed in
RNA-later (Applied Biosystems, Foster City, CA, USA) at
4°C for 1 day. Then, the liver tissues were immersed in
1 ml of Isogen (NipponGene, Tokyo, Japan) and homoge-
nized by Mixer Mill MM 300 (Retsch, Haan, Germany)
with 5-mm zirconia beads (BioMedical Science, Tokyo,
Japan) at 25 Hz for 3 min. After homogenization, total
RNAs were extracted according to protocol of Isogen in
combination with cleanup protocol of RNeasy Mini Kit
(Qiagen, Hilden, Germany). The volumes of total RNA
were quantified by spectrophotometer (NanoDrop ND-
100; Wilmington, DE, USA). Three hundred nanograms of
total RNA were converted into labeled cRNA by Low
RNA input linear Amplification Kit PLUS Two-Color
(Agilent Technologies, Santa Clara, CA, USA). Reverse
transcription labeling with cyanine 3 (Cy3)- or cyanine 5
(Cy5)-dCTP and hybridization of the DNA microarray
(Agilent Zebrafish Whole Genome Microarrays; G2518A)
were carried out according to the manufacturer’s protocol.
To avoid a dye-specific hybridization preference for each
RNA sample, cyanine dye-swap hybridization was per-
formed. In detail, in the first series of experiments RNAs
from fish overfed with regular tomato and Campari tomato
fractions were labeled with Cy3 and Cy5, respectively, and
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hybridized to zebrafish DNA microarray. In the second ser-
ies of experiments RNAs from fish overfed with regular
tomato and Campari tomato fractions were labeled with
Cy5 and Cy3, respectively, and used for hybridization. The
microarrays were scanned by Agilent Microarray Scanner
G2565BA and analyzed using Feature Extraction software
(Agilent Technologies). The LOWESS (LOESS) method
was applied to filtering and normalization of the data. Fil-
tering was performed according to default algorithms of
Feature Extraction software. Microarray experiments were
carried out in triplicate to verify their reproducibility using
RNAs isolated from different animals. Identification of
gene sets differentially expressed in microarray analysis was
carried out by one-way ANOVA.

Quantitative RT-PCR
Total RNA of each sample was purified as described
above. First-strand cDNA was prepared with 500 ng of
total RNA using Super Script III First-strand System
(Invitrogen, Carlsbad, CA, USA) with random primer
(Invitrogen). Quantitative RT-PCR was performed with
Power SYBR Green Master Mix (Applied Biosystems) in
triplicate according to manufacturer’s protocol. The
sequences of the primers are shown in Additional file 2,
Table S1. Data were normalized by the quantity of actin
beta (actb, NM_131031); this allowed us to account for
any variability in the initial template concentration as
well as the conversion efficiency of reverse transcription
reaction.

Statistical analysis
All data are presented as mean ± SEM. Differences
between 2 groups were examined for statistical signifi-
cance by Student’s t-test. For multiple comparisons,
one-way ANOVA followed by Bonferroni-Dunn multi-
ple-comparison procedure was used. A P-value < 0.05
was considered to denote statistical significance.

Results and Discussion
Campari tomato exhibits high anti-obesity effects in DIO-
zebrafish
Compared with flake foods that have also been used to
feed zebrafish [13] the amounts of fat and protein in
Artemia are higher and lower, respectively, whereas the
amount of carbohydrate is comparable [24]. Zebrafish fed
5 or 60 mg of freshly hatched Artemia daily consumed
about 80% and 50% of the provided Artemia, respectively,

translating to 20 and 150 cal, respectively. Since mainte-
nance energy requirement for zebrafish is < 30 cal [25], it
seems reasonable to induce DIO-zebrafish by this over-
feeding protocol. After 2 weeks, increases of body weight
and plasma TG were noted (Additional file 3, Table S2).
In all experiments, overfed fish significantly increased
body weight and plasma TG in comparison with normal
feeding group (P < 0.01), indicating that DIO-zebrafish
was well constructed. Eggplant of the “Choshi” strain
showed a trend towards suppression of the diet-induced
body weight increase (P < 0.1) and significantly reduced
the increase in plasma TG (P < 0.05). The Choshi strain
is a darker eggplant, and contains more anthocyanins
than the Senryo strain (data not shown). Anthocyanins
have been reported to normalize the lipid parameters in a
high fat diet-induced mouse model of obesity [26], and
we hypothesize that the same mechanism may be occur-
ring in DIO-zebrafish fed Choshi eggplant-containing
food. Campari strain tomato, on the other hand, dramati-
cally suppressed increase of body weight and plasma TG
in overfed fish, to almost those of normal feeding fish, in
both 2- and 4-week feeding experiments (Additional file
3, Table S2, Figure 1B and 1C). However, the fasting
blood glucose did not significantly differ between the
Campari-fed group and the controls (Additional file 4,
Figure S2). There was no appetite suppression by Cam-
pari tomato during the feeding experiment (Figure 1D).
Campari tomato reduced lipid accumulation (numbers
and size of red spots) of liver tissues more than overfeed-
ing with regular tomato (Figure 1E), corresponding to the
results of plasma TG lowering. In addition, since the OF
fish that were fed Campari tomato-containing food ate
almost the same number of calories as those in the other
two OF groups, but gained less body weight, we hypothe-
sized that their energy expenditure must be increased. In
fact, genes involved in fatty acid oxidation such as peroxi-
some proliferator-activated receptor gamma coactivator
1a (ppargc1a-like, a zebrafish homolog of human
PPARGC1A, also called PGC-1a) and peroxisome prolif-
erator-activated receptor ab (ppar-ab), were also
increased in OF Campari tomato-fed fish in comparison
to OF controls (Figure 1F and 1G). Lycopene, the pigment
that gives tomatoes their red colour, may play a role in
preventing diseases related to obesity including dyslipide-
mia [14-16]. Campari tomatoes contain more lycopene
than regular tomatoes (Table 1). This results in their high
antioxidant activity, as measured by their DPPH radical

Table 1 Carotenoids, sugar contents, ascorbic acid, and NO3
- determination in Campari and regular tomato

Lycopene (mg/100 g) b-carotene (mg/100 g) Brix (%) Ascorbic acid (mg/100 g) NO3
- (mg/Kg)

Regular tomato 1.48 ± 0.28 0.48 ± 0.09 5.10 ± 0.61 17.28 ± 2.59 32.04 ± 18.45

Campari tomato 3.22 ± 0.85 * 1.06 ± 0.21 * 8.08 ± 0.15 * 20.90 ± 4.23 7.30 ± 2.93 **

* P < 0.05; ** P < 0.01
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Figure 2 Lycopene effects on body weight, plasma TG, and hepatic steatosis in DIO-zebrafish. (A) Average body weight in each group
during 4-week feeding experiments. Values are mean ± SD. Each group contained 20 samples. *P < 0.05; **P < 0.01 vs. vehicle with overfeeding,
black circles. (B) Change of plasma TG levels in each group. *P < 0.05 vs. vehicle with overfeeding. (C) Oil red O staining of liver sections.
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scavenging activity (Additional file 5, Figure S3). In a preli-
minary experiment 4-week administration of lycopene at a
volume based on the amount in Campari tomatoes (0.74
μg/mg diet) slightly and nonsignificantly decreased weight
gain (Figure 2A) and plasma TG (Figure 2B) and did
not improve hepatic steatosis and visceral fat deposition
(Figure 2C). Campari tomato was more protective than
lycopene alone in DIO-zebrafish, consistent with previous
reports that tomato powder administration is more effica-
cious than lycopene supplement against serum TG eleva-
tion and lipid peroxidation in oxidative stress model of rat
[27]. Lipid peroxidation is highly related to nonalcoholic
steatosis and steatohepatitis in human [28] and our model
of DIO-zebrafish probably contains the same mechanism.
Tomato contains vitamins A, C, and E and several carote-
noids such as a-, b-, and g-carotenes, luteins, phytoene,
and phytofluene [29-31]. Many of these nutrients have
antioxidant property and in combination with lycopene
may contribute to protect against lipid peroxidation. On
the other hand, Ali et al. [27] reported that when tomato
was fed to rats only lycopene and b-carotene were
detected their liver tissues.

Transcriptome analysis of liver of DIO-zebrafish with
tomatoes
To reveal the therapeutic mechanism of Campari tomato
against hepatic steatosis, we conducted DNA microarray
experiments using liver tissues from these zebrafish. In
DIO-zebrafish fed Campari tomato expression of 116 and
52 probes was increased (> 1.3) and decreased (< 0.7),
respectively, in comparison with regular tomato feeding
(Additional file 6, Table S3). These 168 probes were con-
verted to zebrafish genes by BLAST analysis [32], which
revealed the genes corresponded to 90 human orthologs.
For the validation of the results of DNA microarray experi-
ments, quantitative RT-PCR was conducted (Table 2). Ana-
lysis of the genes with altered expression by Gene Ontology
category using GOstat [33] revealed that 13.3% of their
human orthologs (12 in 90 orthologs) are involved in lipid
metabolism, including phospholipid binding (Table 3).
Next, we applied these 90 gene altered by Campari tomato
to construct functional networks by Ingenuity Pathway
Analysis (IPA, Ingenuity Systems, CA, USA), and thereby
identified three statistically significant networks each con-
taining ≥10 altered genes (Table 4 and Figure 3A-C).
In the biological network of lipid metabolism (Figure 3A),
sterol regulatory element-binding transcription factor 1
(srebf1) was downregulated. SREBF1 is the most impor-
tant transcriptional factor regulating de novo lipogenesis

Table 2 QPCR of genes from biological networks in
Campari tomato treatment compared with regular strain

gene QPCR Microarray data

aldoca 1.38 ± 0.46 * 2.23 **

foxo1 2.42 ± 0.59 ** n.d.

ldlr 1.53 ± 0.31 * 1.95 **

nr2f2 2.34 ± 0.53 ** 2.85 **

pde4ba 0.13 ± 0.35 ** 0.06 **

rarga 0.10 ± 0.22 ** 0.06 **

srebf1 0.49 ± 0.18 * n.d.

srebf2 1.31 ± 0.52 * 2.32 **

n = 4, * P < 0.05; ** P < 0.01

Table 3 Ontology analysis of genes with altered expression in the Campari tomato-fed fish relative to regular strain
tomato-fed fish

Group GO ID GO Terms Genes P-Value

Lipid GO:0006629 lipid metabolic process ldlr stat5b cel hadha mgll nr2f2 srebf2 0.0757

GO:0008289 lipid binding gas1 pebp1 ncf1 hadha rassf1 rtn4rl1 0.0468

GO:0008202 steroid metabolic process ldlr stat5b cel srebf2 0.0468

GO:0005543 phospholipid binding gas1 pebp1 ncf1 rtn4rl1 0.0795

GO:0016125 sterol metabplic process ldlr cel srebf2 0.0468

GO:0008203 choresterol metabolic process ldlr cel srebf2 0.0407

Carbohydrate GO:0008643 carbohydrate transport yes1 slc2a8 slc2a12 0.0468

GO:0015758 glucose transport yes1 slc2a8 0.0468

Other GO:0022892 substrate-specific transporter activity hbd tomm7 ankh slc2a8 slc2a12 ldlr accn4 hbz cacnb1 slc1a1 0.0774

GO:0031090 organelle membrane mtx1 oxa1l dhodh nup37 tomm7 slc2a8 hadha srebf2 nupl2 0.0809

GO:0007049 cell cycle gas1 stat5b btg3 chfr kifc1 mapre3 rassf1 0.0566

GO:0033036 macromolecule localization mtx1 oxa1l vangl2 nup37 ppp1r10 tomm7 nupl2 0.0865

Table 4 Top networks from pathway analysis of Campari
tomato vs. regular tomato

ID Associated Network Functions Score

1 Gene Expression, Lipid Metabolism, Small Molecule
Biochemistry

47

2 Endocrine System Disorders, Metabolic Disease, Gene
Expression

25

3 Cancer, Hematological System Development and Function,
Cell Cycle

19
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Figure 3 Pathway analysis of liver from Campari tomato treatment. Biological networks identified by IPA using 90 human orthologs altered
in Campari tomato treatment. Intensity of node color indicates magnitude of upregulation (red) and downregulation (green). (A) Network 1,
related to lipid metabolism. (B) Network 2, also related to lipid metabolism. (C) Network 3, related to cancer compromise. The scores of these
networks are described in Table 2. Solid arrow, induction and/or activation; solid line without arrow head, binding; dashed arrow, suppression
and/or inhibition.
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in the liver, and plays a considerable role in the patho-
genesis of nonalcoholic fatty liver disease [34,35]. Srebf1
is induced by heterodimerization of liver X receptor
(LXR) and retinoid X receptor (RXR) [36]. RXR signalling
mainly depends on retinoic acid and its precursor vita-
min A and its precursor, b-carotene. However, since
Campari tomato contains more b-carotene than regular
tomato, downregulation of srebf1 seems contradictory.
However, b-carotene inhibits atherogenesis and fatty
liver formation in LDL receptor knockout mice [18] and
reduces lipid storage capacity in adipocytes [17] through
decrease of peroxisome proliferator-activated receptor
(PPAR)-g activity. To solve this paradoxical problem of
srebf1 decrease by Campari tomato, we analyzed forkhead
box O1 (foxo1) expression (Table 4; only detected in
qPCR data). Resveratrol, a polyphenol present in peanuts
and grapes, was reported to alleviate alcoholic fatty liver
by inhibiting Srebf1 expression via Foxo1 signalling path-
way [37]. This seems very similar to our result of Cam-
pari tomato. Foxo1 also represses PPAR-g transactivation
in adipocytes [38], which might imply that resveratrol-
like phytoalexin, including resveratrol of tomato [39],
exerted lipid-lowering property further to b-carotene and
lycopene in Campari tomato. In contrast to srebf1, srebf2
was slightly increased. It is known that decreased intra-
cellular cholesterol by statin leads to increased gene
expression of srebf2 and active form of SREBF2 [40]. A
similar mechanism was inferred for Campari tomato in
DIO-zebrafish. Nuclear receptor subfamily 2, group F,
member 2 (nr2f2) was also upregulated by Campari
tomato. NR2F2 and RXR activate and bind the rat choles-
terol 7 alpha-hydroxylase (CYP7A1) gene, a rate-limiting
enzyme in the synthesis of bile acid from cholesterol via
the classic pathway [41]. This also indicates activation of
RXR signalling by b-carotene in Campari tomato.
The third network identified was related to cancer. It is

well known that fatty liver caused by obesity may develop
into nonalcoholic hepatitis then liver cancer, and dietary
administration of lycopene and tomato extracts inhibit
nonalcoholic hepatitis-promoted hepatocarcinogenesis in
rat models induced by low volume of hepatic carcinogen
diethylnitrosamine with high-fat diet [9]. The mechanism
of inhibition of carcinogenesis is thought dependent on
reduction of oxidative stress, mainly by NF-E2-related fac-
tor-2 and heme oxygenase-1. However, our observed
Campari tomato effects on DIO-zebrafish seem related to
retinoic acid receptor (RAR) signalling, especially RAR-g
in this network of cancer compromise. RAR-g is a ligand-
activated transcription factor for retinoic acid consisting of
heterodimers of RARs and RXR. RAR-g forms complexes
with RAR-b that directly activate HOXA5 [42] and may
consequently increase expression of TP53 [43], as seen in
this network. Whereas high-fat diet induces fatty liver and
Rar-g expression in mouse liver [44], Campari tomato

decreased rar-g expression versus regular strain in DIO-
zebrafish. RAR-g has oncogenic potential in hepatocellular
carcinoma according to cancer xenograft model [45].
RAR-b, contrariwise, is a tumor suppressor and transacti-
vated by b-carotene and beta-apo-14’-carotenoic acid pri-
marily via its conversion to retinoic acid [46]. Although
the mechanism of suppression of rar-g by Campari tomato
requires further elucidation, the prospective effects of can-
cer prevention seem similar to RAR-b induction by b-car-
otene. Previous studies reported protective effects of
tomatoes and their components against prostate, gastric,
breast, and lung cancers [47-50]. Further study is required
to investigate whether Campari tomato possesses higher
anticancer properties in comparison with regular tomato.

Conclusions
Our observations of transcriptome profiles demonstrate
powerful lipid-lowering property of Campari tomato in
DIO-zebrafish through downregulation of gene expres-
sion related to lipogenesis. DIO-zebrafish could discri-
minate different anti-obesity effects of vegetables and
may be used to identify action mechanisms against obe-
sity-related diseases, especially fatty liver disease. This is
the first study that used zebrafish for food evaluation.
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