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Abstract

Background: Increased amino acid availability stimulates muscle protein synthesis, however, aged muscle appears
less responsive to the anabolic effects of amino acids when compared to the young. We aimed to compare
changes in myofibrillar protein synthesis (MPS) in elderly men at rest and after resistance exercise following
ingestion of different doses of soy protein and compare the responses to those we previously observed with
ingestion of whey protein isolate.

Methods: Thirty elderly men (age 71 ± 5 y) completed a bout of unilateral knee-extensor resistance exercise prior to
ingesting no protein (0 g), or either 20 g or 40 g of soy protein isolate (0, S20, and S40 respectively). We compared
these responses to previous responses from similar aged men who had ingested 20 g and 40 g of whey protein
isolate (W20 and W40). A primed constant infusion of L-[1-13 C]leucine and L-[ring-13 C6]phenylalanine and skeletal
muscle biopsies were used to measure whole-body leucine oxidation and MPS over 4 h post-protein consumption
in both exercised and non-exercised legs.

Results: Whole-body leucine oxidation increased with protein ingestion and was significantly greater for S20 vs.
W20 (P= 0.003). Rates of MPS for S20 were less than W20 (P= 0.02) and not different from 0 g (P= 0.41) in both
exercised and non-exercised leg muscles. For S40, MPS was also reduced compared with W40 under both rested
and post-exercise conditions (both P< 0.005); however S40 increased MPS greater than 0 g under post-exercise
conditions (P= 0.04).

Conclusions: The relationship between protein intake and MPS is both dose and protein source-dependent, with
isolated soy showing a reduced ability, as compared to isolated whey protein, to stimulate MPS under both rested
and post-exercise conditions. These differences may relate to the lower postprandial leucinemia and greater rates of
amino acid oxidation following ingestion of soy versus whey protein.
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Introduction
Ageing is associated with sarcopenia [1] that ultimately
results from an imbalance between rates of muscle pro-
tein synthesis and breakdown. Both physical activity and
nutrient availability represent potent anabolic stimuli for
adult muscle, however, the ability of elderly muscle to
mount a robust increase in myofibrillar protein synthesis
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(MPS) in response to amino acids [2,3] and resistance
exercise [4] is attenuated compared to that seen in the
young; a phenomenon termed ‘anabolic resistance’ [2].
Previous studies have shown that both protein dose
[2,5,6] and source (i.e., plant vs. animal) [7-11] are im-
portant in determining the postprandial response of
MPS, which may be of particular relevance to the eld-
erly. For example, we have recently demonstrated
greater increases in post-exercise MPS in the elderly fol-
lowing bolus ingestion of 40 g vs. 20 g of whey protein
[6]; a finding in contrast to our data from young adults
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who show a maximal MPS response with 20 g protein
and no further increase with 40 g [5]. Thus, it appears
that higher doses of protein [6,12], and/or leucine
[13,14] to promote a greater aminoacidemia or leucine-
mia [7] are required by the elderly to maximize the re-
sponse of MPS to protein ingestion.
The mechanisms underpinning the differential capacity

of proteins from different sources to support increased
rates of protein synthesis are not fully understood [15].
Whey protein [7,9,10] and bovine milk [8] (~20% whey
protein) appear to stimulate greater rates of muscle pro-
tein synthesis than do proteins such as micellar casein or
soy both at rest and following resistance exercise. This is
somewhat counter-intuitive given that soy, whey, and ca-
sein are all defined as high quality proteins based on their
protein digestibility corrected amino acid scores
(PDCAAS; for review see [16]). However, the digestion
kinetics of these proteins is markedly different, and pro-
tein digestibility has been established as an important
factor regulating whole-body protein synthesis and
breakdown [17,18]. Both whey [18] and soy [19] are acid
soluble, a characteristic that facilitates rapid digestion
and results in a large but transient increase in aminoaci-
demia. These so-called ‘fast’ proteins induce a rapid ami-
noacidemia and appear to support greater increases in
MPS. On the other hand ‘slow’ proteins, such as micellar
casein (which clots in the acidic pH of the stomach) is
slowly digested and induces a more moderate but sus-
tained aminoacidemia than whey [7,10].
Knowledge of the capacity of proteins from different

sources to stimulate MPS in the elderly is warranted in
view of the importance of preserving skeletal muscle
mass in ageing. Therefore, the aim of the current study
was to examine the effects of different doses (20 g and
40 g) of soy protein isolate on MPS at rest and following
the potent anabolic condition of resistance exercise in
elderly men, and compare these findings to our previous
Table 1 Participant characteristics

Parameter 0 g (n = 10) W20 (n = 10)

Age (y) 71 ± 5 72 ± 5

Total body mass (kg) 78 ± 13 81 ± 9

Fat free mass (kg) 55 ± 9 57 ± 6

% Body fat 26 ± 5 26 ± 4

BMD (g�cm2) 1.19 ± 0.11 1.20 ± 0.11

Height (m) 1.73 ± 0.06 1.76 ± 0.06

BMI (kg�m2) 25.9 ± 3.4 26.2 ± 2.8

Systolic BP (mmHg) 136 ± 15 134± 19

Diastolic BP (mmHg) 80 ± 10 72 ± 8

Total SPBB score 11.7 ± 0.5 11.3 ± 0.7

Values are means ± SD. BP: Blood pressure, SPBB: Short Physical Performance Batter
tests.
work examining the effects of graded intakes of whey
protein isolate on MPS in the elderly [6].

Methods
Participants
Thirty elderly men (age 71 ± 5 y, BMI 26 ± 3 kg�m2) were
recruited to participate in the study and were ran-
domly assigned to one of three treatment groups that
were counterbalanced for body mass, age, and self-
reported physical activity levels. Participants were light-
to-moderately active, non-smokers, non-diabetic, and
considered generally healthy based on responses to a
routine health screening questionnaire. Participants tak-
ing medications controlling blood pressure were allowed
into the study. The characteristics of the whey protein
treatment groups (W20, W40) have been reported previ-
ously [6], but are shown again in Table 1 along with the
control (0 g) and soy protein treatment groups (S20,
S40) for reader comparison. Participants were informed
of the purpose of the study, the associated experimental
procedures, and any potential risks prior to providing
written consent. The study was approved by the local
Health Sciences Research Ethics Board at McMaster
University and conformed to standards for the use of
human participants in research as outlined in the 5th
Declaration of Helsinki and with current Canadian fund-
ing agency guidelines for use of human participants in
research [20].

General design
The different groups of older men ingested 20 g or 40 g
of soy protein isolate in beverage form after performing
an acute bout of unilateral knee-extensor resistance ex-
ercise. Employing a unilateral exercise model allowed us
to examine the effect of protein intake alone, and the
interaction of exercise and protein intake within the
same individual.
W40 (n = 10) S20 (n= 10) S40 (n =10)

70 ± 4 72 ± 6 70± 5

81± 12 78 ± 11 77 ± 9

56± 9 55 ± 6 53± 6

27± 8 25 ± 5 26± 6

1.23 ± 0.11 1.25 ± 0.08 1.28 ± 0.11

1.75 ± 0.09 1.71 ± 0.09 1.74 ± 0.06

26.0 ± 2.2 26.6 ± 3.7 25.5 ± 2.7

129± 14 124 ± 13 127 ± 12

78 ± 5 73 ± 9 72± 8

11.6 ± 0.7 11.8 ± 0.4 11.4 ± 1.0

y. Total SPBB score calculated as the sum of walk test, chair stand and balance
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Preliminary assessments
One week prior to the experimental infusion trial, body
mass and composition were assessed via a dual energy
X-ray absorptiometry (DXA) scan (Table 1). Physical
performance was assessed using the Short Physical Per-
formance Battery (SPPB) [21], consisting of a 3-4 m walk
test, chair stand, and balance test (Total SPPB score pre-
sented in Table 1). Health parameters were also assessed
and included systolic and diastolic blood pressure, rest-
ing heart rate, and the following blood parameters: fast-
ing glucose, triglycerides, total cholesterol, high density
lipoprotein (HDL), low density lipoprotein and ratio of
total cholesterol to HDL. At least one week prior to the
experimental infusion trial, participants underwent a
strength test to determine their unilateral 10 repetition
maximum (RM) on a standard knee extension machine
as previously described [9].

Dietary control
Participants were required to complete diet records prior
to initiating the study to provide an estimate of habitual
macronutrient intake as analyzed using a commercially
available software program (Nutritionist V, First Data
Bank, San Bruno, CA). Reference lists for portion size
estimates were provided to the study participants, who
were instructed to record all food or drink consumed in
a diet log during a 3-day period (i.e., 2 weekdays and 1
weekend day; see Additional file 1: Table S1). Two days
prior to the trial, participants were supplied with pre-
packaged diets that provided a moderate protein intake
(1.0 g�kg-1�d-1). Energy requirements for the controlled
diets were estimated via the Harris-Benedict equation
and were adjusted using an activity factor calculated for
each individual subject based on their self reported phys-
ical activity. Body mass was monitored over the course
of the controlled diet period to ensure participants were
in energy balance. Participants were instructed to abstain
from any strenuous exercise until after completion of
the trial.

Infusion protocol
Participants reported to the laboratory at ~0700 in a
10 h post-absorptive state. Upon arriving at the labora-
tory, a baseline breath sample was collected to measure
13CO2 enrichment via isotope ratio mass spectrometry
(BreathMat Plus; Finnigan MAT GmbH, Bremen, Ger-
many). A plastic catheter was then inserted into an ante-
cubital vein and a baseline blood sample was collected
before initiating a 0.9% saline drip to keep the catheter
patent for repeated blood sampling during the infusion
trial. After baseline breath and blood samples were
taken, a bout of unilateral knee-extensor resistance exer-
cise was performed on a guided-motion knee extension
machine. The exercise bout involved 3 sets, using a pre-
determined load based on each participant’s 10RM. Each
set was completed within ~25 s with an interest rest
interval of 2 min. Immediately following exercise, blood
and breath samples were obtained and a second catheter
was inserted into the contralateral antecubital vein to
prime the bicarbonate pool with NaH13CO2

(2.35 μmol�kg). Thereafter, priming doses of [1-13 C] leu-
cine (7.6 μmol�kg-1) and L-[ring-13 C6] phenylalanine
(2 μmol�kg-1; 99 atom percent; Cambridge Isotopes,
Andover, MA) were introduced, before a continuous in-
fusion of L-[1-13 C] leucine (7.6 μmol�kg-1�h-1) and L-
[ring-13 C6] phenylalanine was initiated (0.05 μmol�kg-1�
min-1). Arterialized blood samples were obtained by
wrapping the forearm in a heating blanket (45°C) for the
duration of the infusion; a procedure we have found
completely arterializes venous blood sampled from a
hand vein. Blood samples were processed as previously
described [5]. Immediately after post-exercise blood and
breath samples had been obtained, participants con-
sumed water (0 g) or a drink containing 20 g or 40 g of
either whey or soy protein isolate (W20, W40, S20, S40)
dissolved in 400 mL water. The whey protein was gener-
ously donated by PGP International (IWPI 9500, Califor-
nia, USA), while the soy protein was generously donated
by the Solae Company (SUPRO 660-IP, St Louis, MO).
The amino acid composition of both the whey and soy
protein drinks is provided in Additional file 2: Table S2.
On the basis of a leucine content of 10% in whey and
8% in soy, and a phenylalanine content of 3% in whey
and 5% in soy protein, drinks were enriched to 8% with
[1-13 C] leucine and 8% with [13 C6] phenylalanine to
minimize disturbances in isotopic steady state; an ap-
proach that we have validated [22]. Complete drink con-
sumption was considered t= 0 min and the isotopic
infusion was continued until t= 240 min. During the re-
mainder of the infusion, arterialized blood and breath
samples were obtained to confirm steady state and
measure leucine oxidation and MPS as previously
described [5,8]. At the end of the infusion (t= 240 min)
muscle biopsies were obtained (described below).

Muscle biopsy sampling
Muscle biopsy samples were obtained from the vastus
lateralis muscle from both exercise and non-exercised
legs using a 5-mm Bergstrm needle (modified for man-
ual suction), under 2% local anaesthesia by xylocaine.
Muscle biopsies were freed from any visible blood, fat,
and connective tissue and rapidly frozen in liquid nitro-
gen until further analysis.

Blood analyses
Plasma L-[ring-13C6] phenylalanine enrichments were
determined as previously described [23]. Blood amino acid
concentrations were analyzed by HPLC as previously
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Figure 1 Plasma insulin in the 0 g protein group, and in the
whey (W20, W40) and soy (S20, S40) groups. Means with
different letters are significantly different from time 0 and from each
other (P< 0.05). Data are means ± SD.
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described [24]. Plasma insulin was measured using a
commercially available immunoassay kit (ALPCO
Diagnostics, Salem, NH, USA) following the manufac-
turer instructions.

Muscle analyses
Myofibrillar enriched protein fractions were isolated
from ~30 mg of wet muscle as described previously [25].
Intracellular amino acids (IC) were isolated from a sep-
arate piece of wet muscle (~25 mg) as previously
described [26].

Calculations
The fractional synthetic rates (FSR) of myofibrillar pro-
teins were calculated using the standard precursor-
product method:

FSR %h� 1ð Þ ¼ Ep2 � Ep1=Eicx1=tx100

where Ep2 and Ep1 are the protein bound enrichments
from muscle biopsies at 240 min and baseline plasma
proteins, respectively. The difference represents the
change in bound protein enrichment between two time
points; Eic is the mean intracellular phenylalanine en-
richment from the biopsies; and t is the tracer incorpor-
ation time. The utilization of ‘tracer naive’ subjects
allowed us to use the pre-infusion blood sample (i.e.,
mixed plasma protein fraction) as a surrogate baseline
enrichment of muscle protein; an approach we have pre-
viously validated [26] and that has been validated by
others [27]. Previously, others have used a pre-infusion
muscle biopsy and found equivalent rates of muscle pro-
tein synthesis and shown such an approach [28] to be
valid. We have found baseline plasma enrichment to be
equivalent to that of pre-infused muscle (unpublished
results), indicating that there is little reason in using a
pre-infusion biopsy over a blood sample for baseline
enrichment.
Leucine oxidation was calculated as described in our

previous publications [5,8] from the appearance of the
13 C-label in expired CO2 using the reciprocal pool
model with fractional bicarbonate retention factors of
0.7 and 0.83 for fasted (0 g protein) and fed (S20 and
S40) states, respectively [29]. The area under the leucine
oxidation by time curve was calculated using GraphPad
Prism 5 (San Diego, CA) as an estimate of total leucine
oxidation [5,8].

Statistical analyses
A 3-way ANOVA with both between (protein dose and
protein source), and within (condition) subject factors
was used. When a 3-way interaction was found (i.e. be-
tween protein dose, protein source, and condition (rest
vs. exercise)) analyses of variance was used to examine
individual time and dose effects and isolate significant
pairwise differences by calculating critical differences
and by comparisons of means accounting for differences
in the means by time. Following observation of a signifi-
cant F ratio by ANOVA, a Tukey’s honestly significantly
different test, with adjustment for multiple comparisons,
was used for post hoc analyses. Significance was set at
P ≤ 0.05. All statistical analyses were performed using
SPSS 17 for Windows.

Results
Participant characteristics
There were no between-group differences in age, body
weight, body composition, SPBB or other subject charac-
teristics (Table 1). Dietary intake for the 2 day run-in
prior to the study was similar for all groups (Additional
file 1: Table S1).

Plasma insulin
Plasma insulin concentration was similar for all groups
at 0, 3 and 4 h post-drink. At 1 h post-drink, insulin
concentration had increased by ~2.6- and 4-fold for
W20 and W40, and ~2.2 fold for both S20 and S40
(Figure 1).

Plasma amino acids
Peak blood leucine concentration occurred between 1.0-
1.5 h post-drink for S20, W20, and W40, but occurred
at ~1.5-2.0 h for S40 (Figure 2). Higher peak amplitudes
in blood leucinemia were achieved following whey as
compared to soy protein regardless of dose (P< 0.05).
Area under the curve (AUC) for leucine increased in a
stepwise manner from 20 g to 40 g of protein with no
difference between protein sources (Figure 2 Inset).
Blood BCAA, EAA, and Total amino acids increased
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with protein ingestion (i.e., versus 0 g), however there
were no differences between protein sources (Figure 3).
While the AUC for leucine, BCAA, EAA, and Total
amino acids was greater for W40 vs. W20, there were no
significant differences in these amino acid concentra-
tions between S40 vs. S20.

Whole-body leucine oxidation
Whole-body leucine oxidation AUC increased with pro-
tein intake. When expressed relative to lean body mass,
the increase in whole body leucine oxidation for S20 was
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Figure 3 Area under the blood amino acid concentration time
curves (AUC) in the 0 g protein group, and in the whey (W20,
W40) and soy (S20, S40) groups for summed total of branched-
chain amino acids (BCAA), summed total of the essential amino
acids (EAA, including His) and summed total of all amino acids
(total AA, excluding Cys and Trp). Means with different letters are
significantly different (P< 0.05). Data are means ± SD.
significantly greater than W20 (P= 0.002). There were
no differences in leucine oxidation between S40 and
W40 (Figure 4).
Myofibrillar protein fractional synthetic rate (FSR)
Myofibrillar FSR in the non-exercise rested leg (fed only)
was unchanged in response to ingestion of soy protein in
both the S20 and S40 group, but increased in response
to whey in both the W20 and W40 group (Figure 5). As
such, MPS was significantly greater following whey vs.
soy protein with ingestion of both 20 g and 40 g protein
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(W20, W40) and soy (S20, S40) groups. Means with different
letters are significantly different (P< 0.05). Data are means ± SD.
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(both P< 0.005). In the exercised condition, myofibrillar
FSR was no different for S20, but increased for S40
when compared to the 0 g group. However, the response
of MPS to soy was less than that of whey at both protein
doses in the exercised condition (both P< 0.001;
Figure 5).
Discussion
In the present study, we show that ingestion of 20 g
(S20) and 40 g (S40) of soy protein isolate does not
stimulate increased rates of MPS under resting condi-
tions in the elderly. However, when combined with the
potent anabolic stimulus of resistance exercise, 40 g but
not 20 g, of soy protein isolate has a modest effect on in-
creasing post-exercise rates of MPS when compared to a
group who performed resistance exercise without subse-
quent protein intake (Figure 5). These data are in con-
trast to what was observed following equivalent doses of
whey protein, as 20 g (W20) effectively stimulated MPS
at rest, while both 20 g and 40 g (W40) increased post-
exercise MPS in a stepwise manner (i.e. 40 g> 20 g) [6].
Thus, when comparing our current findings on soy pro-
tein with our previous work examining graded doses of
whey protein [6], soy appears less effective than whey
protein at promoting increases in MPS in the elderly
(Figure 5). Further, our results confirm that the elderly
benefit from significantly greater doses of protein after
exercise [6,12] than do the young, who we have shown
mount a maximal MPS response with ingestion of ~20 g
protein [5] or ~10 g EAA [2].
We have previously reported that soy protein is less ef-

fective than whey [9] and bovine milk protein [8] at in-
creasing rates of post-exercise muscle protein synthesis
in young subjects. Whey protein appears superior in its
ability to stimulate muscle protein synthesis not only
when compared to soy, but also when compared to
other dairy protein sources such as intact [7,9,10] or
hydrolyzed [10] casein. The mechanism(s) underpinning
differences in the capacity of these proteins to support
increased rates of MPS has not been fully elucidated.
Previous research in rats reported greater increases in
the phosphorylation status of mTOR(Ser 2448) and
p70S6k (Thr 389), critical proteins involved in regulating
translation initiation of protein synthesis, following whey
compared with soy protein intake after endurance exer-
cise [30]. Other important factors may relate to import-
ant differences in the leucine content of the respective
proteins (~12% in whey and ~8% in soy) [16], and/or to
differences in their digestion/absorption kinetics and the
subsequent aminoacidemia [17,18,31]. For example, pro-
tein digestibility has been established as an important
factor regulating whole-body protein synthesis and
breakdown [17,18]; rapidly digested proteins have been
shown to elicit a large increase in whole-body protein
synthesis, whereas ‘slow’ proteins reduce rates of whole-
body proteolysis [17,18,32]. More recent work has
extended these findings at the whole-body level by
showing that a fast protein, such as whey, also stimulates
greater rates of skeletal muscle protein synthesis than
does a slow protein, such as casein, both in both young
and elderly subjects [7,9,10]. However, although whey
and soy are relatively rapidly digested dietary proteins
[19,33], previous studies have demonstrated that the
amino acids from soy are partitioned for use within the
body by more rapidly turning-over gut (i.e. splanchnic)
proteins, and are converted to urea to a greater extent
than amino acids from dairy based proteins which are
partitioned to the periphery for use by skeletal muscle
tissue [19,34].
In the present study, we observed protein source-

dependent differences in rates of leucine oxidation
(Figure 4). When expressed relative to lean body mass,
rates of leucine oxidation were significantly greater for
S20 than W20 (Figure 4). The higher rates of leucine oxi-
dation in S20 vs. W20 suggest that a greater proportion
of the amino acids from soy protein were diverted to-
wards oxidation, and were thus unavailable as substrate
for protein synthesis. Overall, although they are consid-
ered to be equivalent high quality proteins from the per-
spective of the truncated PDCAAS scoring system [16],
there are clearly important differences in the capacity of
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soy and whey protein to stimulate MPS and promote
anabolism. This point is of particular importance to the
elderly in whom preserving skeletal muscle mass is of
importance. Previous work showing that nitrogen balance
is attainable with long-term diets containing moderate
amounts of soy [35] would appear to be incongruent with
our data; however, these data [35] are confounded by
weight loss in a number of the subjects and due to the
age of subjects in this study not being entirely compar-
able. Our data would, in contrast to previous conclusions
regarding the adequacy of soy protein [35-37], suggest
that long-term consumption of soy protein may not
attenuate sarcopenic muscle loss.
The mechanisms underpinning the ‘anabolic resist-

ance’ of elderly muscle to nutrient provision are not en-
tirely clear. Given the results of the current study, and
previous studies demonstrating that MPS responds fa-
vorably to higher doses of protein in the elderly [6,12] as
compared to the young [5], it appears that the muscle of
older persons has a higher anabolic aminoacidemic
‘threshold’ [6,9,38] that can be surpassed by ingesting ei-
ther greater quantities of protein/amino acids or possibly
greater leucine [13]. The greater rates of MPS observed
with equivalent doses of whey as compared to soy protein
suggest that protein source is an important factor in
reaching and surpassing the anabolic threshold (Figure 5).
The branched chain amino acid leucine has been shown
to be a key activator of muscle protein synthesis through
its ability to regulate mRNA translation initiation through
the mTOR signaling pathway [39,40]. For example, Katsa-
nos and colleagues [13] reported that while 6.7 g of EAA
containing ~26% leucine failed to stimulate MPS in the
elderly, increasing the leucine content to ~41% increased
MPS in the elderly such that measured rates were not dif-
ferent from that seen in the young. Based on results from
the present study, there were no protein source dependent
differences in leucine area under the curve (AUC) at ei-
ther the 20 g or 40 g dose (Figure 3), however, the tem-
poral response of blood leucine was different following
whey and soy at both protein doses (Figure 2) with
the response of whey being greater in amplitude than
that observed following soy. To overcome the con-
founding influence of amino acid composition when
comparing different proteins, we recently manipulated
the pattern of postprandial aminoacidemia using a
bolus versus a pulsed feeding pattern with whey protein
[41]. Despite equivalent leucine and EAA AUC (i.e., net
exposure) the bolus feeding pattern and the associated
rapid aminoacidemia stimulated greater rates of post-
exercise MPS than pulse feeding, which elicited a moder-
ate but sustained rise in aminoacidemia [41]. Further, sup-
plementation of soy protein with the BCAA has been
shown to increase the anabolic effect of this protein in
both the elderly and clinical COPD patients [42]. Thus,
the higher leucine content and more rapid leucinemia
with whey as opposed to soy may in part explain the
observed differences in resting and post-exercise MPS be-
tween the two proteins.
In summary, we report that soy protein isolate is rela-

tively ineffective in its capacity to stimulate MPS in the
elderly when compared to whey protein. The mechan-
isms underpinning the reduced anabolic effect of soy as
compared to whey likely relate to its relatively lower leu-
cine content (~12% in whey and ~8% in soy) [16] and
reduced leucinemia as a result of subtle differences in di-
gestion/absorption between soy and whey protein. It is
unlikely these differences have a marked impact on pro-
tein nutrition in all but the elderly or clinical popula-
tions [42]. Differences in postprandial amino acid
oxidation rates may also be important as lower doses of
soy (S20) resulted in greater increases in leucine oxida-
tion than equivalent doses of whey protein. Our results
have implications for nutrient formulations designed to
support increased muscle protein anabolism in the eld-
erly and suggest that whey protein offers clear advan-
tages to soy protein in its capacity to support both
rested and post-exercise increases in MPS.
Additional files
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