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Improvement in glycemia after glucose

or insulin overload in leptin-infused rats

is associated with insulin-related activation
of hepatic glucose metabolism
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Abstract

Background: Insulin regulates glucose homeostasis through direct effects on the liver, among other organs, with
leptin modulating insulin’s hepatic actions. Since central leptin may modify insulin signaling in the liver, we
hypothesized that leptin infusion activates hepatic glycogen synthesis following peripheral administration of
a bolus of glucose or insulin, thus regulating glycemia.

Findings: Oral glucose and intraperitoneal insulin tolerance tests were performed in control, intracerebroventricular

leptin-treated and pair-fed rats during 14 days. An improvement in glycemia and an increase in hepatic free glucose
and glycogen concentrations after glucose or insulin overload were observed in leptin-treated rats. In order

to analyze whether the liver was involved in these changes, we studied activation of insulin signaling by
Western blotting and multiplex bead immunoassay after leptin infusion. Our studies revealed an increase
in phosphorylation of insulin receptor substrate-1 and Akt in leptin-treated rats. Examination of parameters
related to glucose uptake and metabolism in the liver revealed an augment in glucose transporter 2 and a
decrease in phosphoenolpyruvate carboxylase protein levels in this group.

Conclusions: These results indicate that central leptin increases hepatic insulin signaling, associated with
increased glycogen concentrations after glucose or insulin overload, leading to an improvement in glycemia.
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Findings

Introduction

Leptin modulates hepatic insulin action [1] and is a key
regulator of carbohydrate homeostasis. Under physio-
logical conditions, insulin modulates glucose fluxes by
suppressing the expression of gluconeogenic genes and
stimulating those associated with glucose uptake. Leptin
is involved in these actions through stimulation of
phosphatidylinositol-3 kinase [2].
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Intravenous [3] and brain infusions of leptin [4]
alter hepatic glucose fluxes, improving glucose
homeostasis. These effects on insulin’s actions in per-
ipheral organs have been examined in models of
obesity and diabetes [5], however; there is little infor-
mation regarding the effects of an increase in central
leptin bioavailability on hepatic insulin sensitivity in
non-obese animals.

We have recently reported that central leptin infusion
increases the hepatic response to a rise in brain insulin
levels [6]. Central leptin actions affect hepatic metabol-
ism [7, 8]; however, its actions after a rise in peripheral
glucose or insulin remain only partially characterized.
Thus, we hypothesized that the improvement in
glycemia after oral glucose or peripheral insulin
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administration in chronic leptin-infused non-obese rats
could be explained by changes in glucose metabolism
due to leptin-related changes in hepatic insulin
sensitivity.

Methods

Animals

Thirty-six adult male Wistar rats (250 + 10 g) were caged
with a 12-h light/dark cycle and given standard chow
and water ad libitum. After an overnight fast, rats were
anesthetized and positioned in a stereotaxic apparatus. A
cannula attached to an osmotic minipump (Alzet,
Durect Corporation, Cupertino, CA) containing saline
(controls, C) or leptin (Preprotech, Rocky Hill, NJ, USA;
12 pg/day) was implanted and maintained during 14 days
(L), as reported [6]. To discriminate the inhibitory effect
of leptin on food intake, a pair-fed group (PF) was
included. On the last day, twelve rats were fasted for
12 h and then sacrificed, obtaining trunk blood for the
determination of glucose, leptin and insulin levels. The
liver was weighed and processed for measurement of acti-
vation of insulin signaling targets, protein levels of glucose
transporter (GLUT)2 and -4 and phosphoenolpyruvate
carboxykinase (PEPCK). The weight of the gastrocnemius
and subcutaneous and epididymal fat pads was also
recorded.

Twelve rats were fasted for 12 h, followed by an oral
glucose tolerance test (OGTT) (n =4 per group). A bolus
of glucose (2 g/kg body weight) was administered orally
[9]. Glycemia was determined (Accu-Check Sensor) in
blood samples extracted from the tail vein before glucose
administration and at 15, 30, 60 and 120 min, as well as
insulin levels. The liver was processed after OGTT for
measurement of free glucose and glycogen concentrations.

Insulin sensitivity was assessed after fasting by per-
forming an intraperitoneal insulin tolerance test (IPITT)
[10] in the remaining twelve rats. After the injection of 1
U/kg of insulin, blood samples were drawn at 30, 60, 90
and 120 min for glucose measurements. The liver was
extracted for determination of glucose and glycogen.
This study was approved by the Ethics Committee of the
Universidad de Alcalda de Henares.

ELISAs

Serum leptin and insulin levels were measured using
ELISA kits from Millipore Corporate Headquarters
(Billerica, MA, USA). The intra- and inter-assay varia-
tions were lower than 10 %.

Western blotting

Western blots were performed using antibodies against
GLUT?2, the beta chain of the insulin receptor (IRP) and
PEPCK from Santa Cruz Biotechnology (Santa Cruz,
CA, USA) and anti-GLUT4 from Millipore (Temecula,
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CA, USA). The proteins were detected by chemiluminis-
cence using an ECL system. Quantification of the bands
was carried-out by densitometry using a Kodak Gel
Logic 1500 Image Analysis system and Molecular Im-
aging software 4.0 (Rochester, NY, USA). Proteins were
normalized with B-actin (Thermo Scientific, Fremont,
CA, USA).

Multiplexed bead immunoassay

Phosphorylated and total protein levels of IR substrate
1 (IRS1), Akt and phosphatase and tensin homolog
on chromosome 10 (PTEN) were determined by a
multiplexed bead immunoassay (Millipore). A mini-
mum of 50 beads per parameter were analyzed in the
Bio-Plex suspension array system 200 (Bio-Rad). Raw
data (median fluorescence intensity, MEFI) were
analyzed with the Bio-Plex Manager Software 4.1
(Bio-Rad Laboratories).

Measurement of hepatic glucose and glycogen

Glucose was measured by an enzymatic method from
Sigma-Aldrich (GAGO-20), in homogenized samples
[11]. For quantification of glycogen, liver samples were
processed as previously reported [6] and the resulting
glucose concentrations determined by the same method.

Statistical analysis

Data are expressed as mean + SEM. Statistical analysis
was carried out by one-way ANOVA or repeated
measures for OGTT or IPITT followed by a Bonfer-
roni’s test. Values were considered significantly differ-
ent when the P value was less than 0.05. Analyses
were conducted with Prisma software 4.00 (GraphPad,
San Diego, CA, USA).

Table 1 General characteristics of the experimental groups.

Parameter Group

Control Pair-fed Leptin
Daily food intake (g) 1011 + 064 675 + 0.40* 6.67 + 039*
A body weight (g) 4182 £397 2250 +307% 312 + 0,18
Glucose (mg/dl) 7954 + 462 7670 = 2.03 83.78 + 3.20
Leptin (ng/ml) 408+ 146 293 +038 1062 + 2.93**
Insulin (ng/mi) 080+0.13 076 +009 083+ 032
Liver (g) 971+049 1012088 905+ 1.04
Gastrocnemius (q) 096 + 0.17 0.80 + 0.12 1.19 + 0.20"
Adipose tissue (g) 807 +030 592+ 071* 362+ 018

Values represent mean + SEM of 4 rats per group. Weight of adipose tissue is
the sum of subcutaneous and epididymal fat pads. *p<0.05, **p<0.01 vs.
control group; *p<0.05, #p<0.01 vs. pair-fed group.
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Results

General characteristics of the experimental groups
Average daily food intake was reduced in PF and L and
body weight gain was lower in these groups, with a more
pronounced reduction in L (Table 1). Basal values of
serum glucose, leptin and insulin levels, as well as the
weight of the liver, gastrocnemius and adipose tissue are
given in Table 1.

Leptin improves glycemia after glucose or insulin
administration

We found no differences in basal glycemia or insulin levels.
A drop in glycemia was observed throughout the IPITT in
all groups, being more pronounced in L at 60 and 90 min
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(Fig. 1a). Administration of glucose triggered a substantial
increase in glycemia (Fig. 1b) and serum insulin levels
(Fig. 1c) in all groups, with this increase being lower in PF
and L with respect to C and in L compared to PF.

The effect of glucose or insulin overload on hepatic

glucose and glycogen levels is potentiated by leptin

Hepatic glucose content was higher in L after IPITT
(Fig. 1d) and lower in PF compared to both C and L rats
and higher in L compared to C and PF rats after OGTT
(Fig. 1e). Glycogen levels were higher in L after IPITT
(Fig. 1f) and lower in PF compared to both Cand L rats
and higher in L compared to C and PF rats after OGTT

(Fig. 1g).
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Fig. 1 Serum parameters during OGTT or IPITT and hepatic glucose and glycogen levels after these tests. a. Serum glucose levels before (0 min)
and during (30, 60, 90 and 120 min) an intraperitoneal (IP) insulin tolerance test (IPITT). C + 1, control rats that received an IP insulin bolus; PF +1,
pair-fed rats that received an IP insulin bolus; L + 1, rats treated with chronic icv leptin infusion that received an IP insulin bolus. b. Serum glucose
levels before (0 min) and during (15, 30, 60 and 120 min) an oral glucose tolerance test (OGTT). C + G, control rats that received oral glucose; PF
+ G, pair-fed rats that received oral glucose; L + G, rats treated with chronic icv leptin infusion that received oral glucose. c. Serum insulin levels
before and during an OGTT. d. Hepatic glucose levels after an IPITT. e. Hepatic glucose levels after an OGTT. f. Hepatic glycogen concentrations
after an IPITT. g. Hepatic glycogen concentrations after an OGTT. *p < 0.05 vs. C, 5 <0.05 vs PF, & < 0.05 vs. previous time-point in Fig. 1a-c or
*p < 0.05, **p < 0.01 vs. C or PF in Fig. 1d-g
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Hepatic insulin signaling is activated by leptin infusion
Hepatic GLUT?2 protein levels were higher in L compared
to both C and PF rats (Fig. 2a), whereas GLUT4 levels
were unchanged (Fig. 2b). PEPCK protein levels were
lower in L compared to the other two groups (Fig. 2c).
Hepatic levels of IRp were not modified (Fig. 2d). The
phosphorylation of IRS1 was higher in L compared to C
and PF rats (Fig. 2e). Phosphorylation of Akt on the
Thr308 residue was increased in L with respect to C
(Fig. 2f) and on Ser473 phosphorylation was increased in
L compared to C and PF rats (Fig. 2g). Finally, PTEN
phosphorylation was reduced in PF and L (Fig. 2h).

Discussion
The goal of this study was to examine the effect of cen-
tral leptin infusion on glycemia after a peripheral
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increase in glucose or insulin and the possible relation-
ship with changes in glucose uptake and its metabolism
in the liver. We found that leptin-treated rats had higher
hepatic glucose and glycogen concentrations, probably
due to higher levels of GLUT2 [12], thus regulating
glycemia. Several differences between pair-fed and
leptin-treated rats were observed, in particular, higher
leptin concentrations in the leptin- infused group. In
fact, leptin infusion causes hyperleptinemia [13] as intra-
cerebroventricular leptin goes to the periphery, as previ-
ously reported [14]. In addition, the gastrocnemius of
these rats weighs more than in the pair-fed group, as
previously reported [15], probably related to the leptin-
induced increase in carbohydrate disposal [16]. Likewise,
the reduction in fat pads is most likely due to leptin’s
suppression of glucose utilization [17].
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Fig. 2 Leptin infusion modifies insulin signaling and parameters related to glucose metabolism in the liver. a. Relative glucose transporter
(GLUT)2 protein levels. C, control rats; PF, pair-fed rats and L, rats treated with chronic icv leptin infusion. b. Relative GLUT4 protein levels.
c. Relative phosphoenolpyruvate carboxykinase (PEPCK) protein levels. d. Relative insulin receptor beta chain (IRB) protein levels. e. Relative
phosphorylated (p) insulin receptor substrate (IRS)1 protein levels. f. Relative pAkt on threonine 308 (pThr308Akt) protein levels. g. Relative pAkt on
serine 473 (pSer473Akt) protein levels. h. Relative p-phosphatase and tensin homolog on chromosome 10 (PTEN) on serine 380 (pSer380PTEN) protein
levels. DU, densitometry units; MFI, median fluorescent intensity; NS, non-significant; *p < 0.05, **p < 0.01, **p < 0.001
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Consistent with these findings, central leptin adminis-
tration modifies glucose fluxes and production [18, 19]
and these changes are partially mediated by increasing
hepatic insulin sensitivity, as we report here. In fact, ex-
ogenous leptin has been shown to exert positive effects
on peripheral insulin signaling that involve leptin-insulin
cross-talk [1]. Indeed, an increase in central leptin is re-
ported to reverse hepatic insulin resistance [7] and to
correct peripheral glucose usage [20]. The insulin and
leptin signaling pathways share several targets, such as
Janus kinase-2, IRSs and Akt [21], and we have reported
that interaction of these pathways potentiates insulin sig-
naling [6]. While muscle most likely participates in the
regulation of serum glucose levels, as leptin increases
insulin sensitivity in this tissue [22], our results clearly
indicate a key role of the liver in leptin’s effects on
serum glucose improvement.

Tolerance tests give more accurate information than
homeostasis model assessment of insulin resistance to
determine insulin sensitivity [23, 24]. Here, tolerance
tests reveal that the higher concentrations of glucose
and glycogen in the liver of leptin-infused rats may be
related with its increased insulin sensitivity. These
changes seem to be due to the higher degree of phos-
phorylation on both the Thr308 and Ser473 residues of
Akt, which is necessary to achieve full activation of the
insulin signaling cascade [25].

In conclusion, our results suggest that improvement in
glycemia after peripheral glucose or insulin administra-
tion in central leptin-infused rats is due, at least in part,
to the previous activation of hepatic insulin signaling
that may increase glucose uptake and glycogen storage,
thus contributing to lower serum glucose levels.
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