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Abstract

Background: Inhibition of Hsp90 has been shown to improve glucose tolerance and insulin sensitivity in mouse
models of diabetes. In the present report, the specific isoform Hsp90ab1, was identified as playing a major role in
regulating insulin signaling and glucose metabolism.

Methods: In a diet-induced obese (DIO) mouse model of diabetes, expression of various Hsp90 isoforms in skeletal
tissue was examined. Subsequent experiments characterized the role of Hsp90ab1 isoform in glucose metabolism
and insulin signaling in primary human skeletal muscle myoblasts (HSMM) and a DIO mouse model.

Results: In DIO mice Hsp90ab1 mRNA was upregulated in skeletal muscle compared to lean mice and knockdown
using anti-sense oligonucleotide (ASO) resulted in reduced expression in skeletal muscle that was associated with
improved glucose tolerance, reduced fed glucose and fed insulin levels compared to DIO mice that were treated
with a negative control oligonucleotide. In addition, knockdown of HSP90ab1 in DIO mice was associated with
reduced pyruvate dehydrogenase kinase-4 mRNA and phosphorylation of the muscle pyruvate dehydrogenase
complex (at serine 232, 293 and 300), but increased phosphofructokinase 1, glycogen synthase 1 and long-chain
specific acyl-CoA dehydrogenase mRNA. In HSMM, siRNA knockdown of Hsp90ab1 induced an increase in substrate
metabolism, mitochondrial respiration capacity, and insulin sensitivity, providing further evidence for the role of
Hsp90ab1 in metabolism.

Conclusions: The data support a novel role for Hsp90ab1 in arbitrating skeletal muscle plasticity via modulation of
substrate utilization including glucose and fatty acids in normal and disease conditions. Hsp90ab1 represents a
novel target for potential treatment of metabolic disease including diabetes.
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Background
The heat shock proteins (HSPs) constitute a group of
stress proteins typically induced to counteract the dele-
terious effects of heat on intracellular structure and
function [1, 2]. Interestingly, heat shock response can be
activated by a temperature increase of a just a few
degrees; a generally rapid and transient gene-expression
response and the kinetics of this response might vary

depending on the HSPs involved [3]. However, it is now
recognized that HSPs respond to a multitude of stress
signals ranging from that induced by chemical, environ-
mental, and physical to that of physiological origin.
Their chaperone function linked to protection of protein
structure and function [1, 4] positions HSPs as a central
participant in nearly all physiological processes ranging
from cell cycle to intracellular signaling and regulation
of metabolism.
Prior studies implicate that Hsp90 plays a critical role

in metabolism. Specifically, treatment with a pan-Hsp90
inhibitor was shown to improve glucose homeostasis
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and insulin sensitivity in db/db and diet-induced obese
(DIO) mouse models of diabetes, respectively [5]. How-
ever, the Hsp90 family consists of multiple isoforms in-
cluding Hsp90aa1, Hsp90ab1, Hsp90B1, and TRAP1 that
are ATP dependent chaperone proteins [6–8]. The more
extensively studied Hsp90 isoform, Hsp90aa1, is a major
cancer target that has been shown to be upregulated and
involved in chaperoning multiple proteins including
important proliferative signaling and mitochondrial
membrane proteins [9, 10]. In contrast, less is known
about Hsp90ab1, but it has been reported to be constitu-
tively expressed at low levels [9, 11]. Thus, given that
isoform specific differences in expression and function
exist [9, 10], the present study sought to determine if the
regulation of Hsp90 on metabolism is isoform specific.
The findings presented in this study show that the
HSP90ab1 isoform is upregulated in skeletal muscle of
DIO mice. Furthermore, isoform specific knockdown of
HSP90ab1 by treatment with antisense oligonucleotide
(ASO) improved glucose tolerance and was associated
with alterations in expression and activity of key meta-
bolic pathway molecules in skeletal muscle of DIO mice.
Furthermore, in in vitro studies using primary human
skeletal muscle myotubes (HSMM) siRNA knockdown
of HSP90ab1 was associated with significant improve-
ment in substrate metabolism, insulin sensitivity and
glucose homeostasis. In addition, knockdown of
Hsp90ab1 does not affect the expression of proteins
within the canonical Hsp90 pathway that includes HSF-
1, Hsp47, TRAF1 and Hsp70. Together, these data dem-
onstrate that Hsp90ab1 is a key regulator of skeletal
muscle metabolism and represents a viable therapeutic
target for management of insulin resistance and meta-
bolic disease.

Methods
Animals
Male C57BL/6 J mice were obtained from Jackson
Laboratories (Bar Harbor, ME) and housed 4-5 per
cage at 22 °C on a 12:12 h day-night cycle. At 6 weeks
of age mice were fed a high-fat diet (Research Diets
Cat #: D12492; 60% kcal fat, 20% kcal protein, and
20% kcal carbohydrate). At 8 weeks of age animals re-
ceived and continued a high fat diet during the entire
study period. Lean control mice were also obtained
and fed a standard diet (10% kcal fat). Mice were
acclimated to the local facility for 1 week before
treatment. Antisense oligonucleotides (ASOs) were
administered at 10 μg/kg intraperitoneally (i.p.) twice
a week for 4 weeks. The procedures for the care and
use of experimental animals followed the protocols
and regulations set forth by the Animal Care and Use
Committee of the University of Miami.

Cell culture
Primary human skeletal muscle myoblasts (HSMM)
were purchased from Promocell and maintained in ready
to use Promocell Growth Media (Promocell, c-23,060) at
37 °C in a 5% CO2 incubator. Myoblasts were differenti-
ated on petri dishes with differentiation media contain-
ing 2% horse serum (Invitrogen, Carlsbad, CA) and
grown for 6 days before experiments. Differentiated
HSMM were transiently transfected with scrambled con-
trol and siRNA targeting human Hsp90ab1 for 48 h
using Transit TKO siRNA transfection reagent (Mirus
Bio, Madison, WI) according to manufacturer’s recom-
mendations. Knockdown was confirmed using quantita-
tive real time PCR and Western blot.

Quantitative real time polymerase chain reaction (qRT-PCR)
RNA was extracted using RNeasy (QIAGEN). The
cDNA was synthesized using 1 μg total RNA using the
All Advantage RT-PCR kit. Five microliters of cDNA
was used for quantitative PCR using Sybrgreen master
mix (Applied Biosystems) on a Biorad thermal cycler.
DeltaCt (dCt) values determined after normalization
against either 18S ribosomal RNA or cyclophilin A. The
dCt values were calculated using absolute Ct values of
the normalizer subtracted by Ct values of target genes.
Final values were calculated using 2 exponential to the
−dCt. Each condition was performed in triplicate.

SDS-PAGE and western blot
Cell lysates were fractionated by 10% SDS-PAGE then
transferred to PVDF membranes (Invitrogen). After block-
ing for 1 h at room temperature, the membranes were
incubated overnight at 4 °C in primary antibody. The mem-
branes were incubated with 1:2000–1:10,000 secondary
antibodies conjugated with HRP for 1 h at room
temperature after washing 3 times for 10 min each. Signals
were detected using the Pierce ECL (ThermoFisher) chemi-
luminescence system and visualized by autoradiography.

Enzyme-linked Immunosorbent assay (ELISA)
Following knockdown of Hsp90ab1, cells were serum-
starved for 3 h in serum-free basal media (Promocell,
Germany) containing 0.2% BSA prior to stimulation with
insulin for 5 min, washed with cold PBS, then lysed with
cell lysis buffer provided in the Instant One ELISA kit
(eBioscience). Protein concentration was determined using
a BCA assay (Thermo Fisher). ELISA for p-Akt and Akt
was performed using Instant One ELISA kit. Results are
expressed as p-Akt:Akt ratio for each condition.

Fatty acid oxidation (FAO) assay, bioenergetics profiling
and glycostress assays
Cellular oxygen consumption rate (OCR) was measured
using a Seahorse Bioscience XF96 flux analyzer. Myoblasts
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seeded at 10,000 cells/well were grown up to 80% conflu-
ence before being differentiated with 2% Horse media for
4 days. The cells were then transfected with either scram-
bled control or Hsp90AB1 siRNA in differentiation media
for 48 h prior to analysis. Replicates (3-6) were performed
for each experimental condition. For OCR experiments
that used palmitate, KHB buffer containing L-carnitine
(final concentration 500 μmol/L) (pH 7.4) was added to
each well and measurements were performed every 3 min
with 2 min inter-measurement mixing. BSA-conjugated
palmitate (final concentration 400 μmol/L), CCCP (final
concentration 1 μmol/L) and etomoxir (final concen-
tration 50 μmol/L) were injected sequentially. For gly-
costress experiments, glucose was used as a substrate
with sodium carbonate and glucose/pyruvate-free
DMEM. Glucose, Oligomycin and 2-DG were injected
sequentially at final concentrations of (25 mmol/L,
2 μmol/L and 50 mmol/L respectively) extracellular
acidification rate (ECAR) was recorded.

Intraperitoneal glucose tolerance test (IPGTT)
Glucose tolerance test was performed after a 6 h fast in
the morning. Initial fasting blood glucose levels were de-
termined followed by intraperitoneal (i.p.) injection of
20% dextrose solution (1.5 g/kg body weight). Blood glu-
cose levels were measured from the tail vein at 15, 30,
60, 90, and 120 min after glucose injection. During the
IPGTT experiments, different groups were performed in
parallel in the same assay.

Measurements of glucose, insulin and glycogen
Blood glucose levels were measured using an Accu-chek
Advantage glucometer (Roche Diagnostics, Indianapolis,
IN). Insulin was measured weekly using serum obtained
from the tail vein using an insulin ELISA assay kit (Rat/
mouse insulin assay kit, Mercordia, Winston-Salem,
NC). Body weight and fed blood glucose levels were
measured twice weekly, and fed insulin was measured
weekly. Glycogen levels were assessed using an ELISA
kit (BioVision, San Francisco, CA).

Data analysis
GraphPad Prism was used for calculations of area under
the curve (AUC) and for statistical analysis. For compar-
isons between two groups Student’s t-test were per-
formed. For time-course IPGTT studies repeated
measures ANOVA were performed. A p-value < 0.05
was deemed significant.

Results
Diet-induced obesity induces Hsp isoform specific
alterations in skeletal muscle
The expression of various isoforms of Hsp90 was exam-
ined to determine if Hsp regulation of metabolism is

isoform specific. In these studies mRNA expression of
Hsp90ab1, Hsp90aa1, Hsp90b1, and TRAP1 were assessed
from skeletal muscles of mice fed a high fat diet (diet-in-
duced obesity, DIO) and compared to lean counterparts.
In DIO mice Hsp90ab1 was significantly upregulated,
while Hsp90aa1 was downregulated (Fig. 1a–p< 0.05).
There were no significant changes in Hsp90b1 and TRAP1
mRNA expression in DIO compared to lean mice (Fig. 1c
and d). Hsp90aa1 (HSP90α) is known to be inducible,
while HSP90ab1 (HSP90β) is traditionally thought to be
constitutive [8, 12]. Therefore, it is of interest to further
examine whether the nutrition-mediated alteration in
HSP90β could be uniquely involved in skeletal muscle
metabolism.

HSP90ab1 isoform influences glycolytic and
mitochondrial metabolism in vitro
Next, knockdown of Hsp90ab1 expression in HSMM by
siRNA was used to establish a working model system to
validate its role in metabolic regulation (Fig. 2). Treat-
ment of HSMM with siRNA specific for the Hsp90ab1
isoform (siHsp90ab1) resulted in ~ 80% knockdown of
Hsp90ab1 mRNA without affecting other Hsp90 iso-
forms including Hsp90aa1, Hsp90B1, and TRAP1 com-
pared to treatment with a negative control (NC) siRNA
(p < 0.01). Hsp90ab1 siRNA knockdown was then uti-
lized to assess the effect of Hsp90ab1 on cellular sub-
strate metabolism, with metabolic profiling assays
(glycostress assay, palmitate oxidation assay and bioener-
getics profiling assays). In the glycostress test, compared
to NC, Hsp90ab1 knockdown was associated with an
increase in the extracellular acidification rate (ECAR)
after the addition of glucose (~ 26% increase, p = 0.004,
Fig. 3a), indicating an increase in glucose stimulated gly-
colysis (Fig. 3a and b). The addition of glucose is reflect-
ive of the glucose driven glycolytic activity essential to
meet the energy needs of the cells. This increase in gly-
colysis was minimally affected by the presence of oligo-
mycin, an inhibitor of mitochondrial ATP synthesis
(Fig. 3a and b), indicative of similar glycolytic capacities
between the cell lines.
Oxygen consumption rate (OCR) in the presence of

palmitate (400μM) and the mitochondrial uncoupler
CCCP (1μM) was used to determine fatty acid oxidation
(FAO) capacity. Hsp90ab1 knockdown induced an in-
crease in OCR after successive injection of palmitate and
CCCP compared to control (Fig. 3c and d, 11% increase,
p = 0.025). The increased uncoupled OCR in the pres-
ence of palmitate as an oxidation substrate, suggests that
Hsp90ab1 knockdown enhances β-oxidation capacity
when mitochondrial respiration reaches maximal cap-
acity. Because glycolysis and lipid oxidation supply
essential energetic substrates to mitochondrial oxidative
phosphorylation for ATP production, electron transport
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chain activity was examined to determine mitochondrial
oxidative capacity in a non-substrate limiting condition
(in the presence of glucose, pyruvate and glutamine). As
shown in Fig. 3e and f, there was no significant differ-
ence in mitochondrial respiration between Hsp90ab1
knockdown and control in the basal state. Although
addition of oligomycin did not induce differences in
OCR between siHsp90ab1 and control (Fig. 3e), injection
of CCCP resulted in a significant increase in OCR in
cells with HSP90ab1 knockdown (Fig. 3e, and f, p <
0.05). This suggests that HSP90ab1 knockdown in skel-
etal muscle is associated with increase in the maximal
respiration capacity in skeletal muscle cells.
Along with substrate metabolism, insulin signaling plays

a role in regulating skeletal muscle metabolic activity.
Insulin stimulated Akt phosphorylation was greater with
siHsp90ab1 compared to control (Fig. 4, p < 0.0001).
Together, these results indicate that knockdown of
Hsp90ab1 in HSMM increases substrate utilization cap-
acity from glycolytic and fatty acid oxidation pathways.

Antisense oligonucleotide (ASO) mediated Hsp90ab1
knockdown is associated with improved glucose
tolerance in DIO mice
An HSP90ab1 specific ASO was used to demonstrate
proof-of-principle of the potential therapeutic efficacy of
HSP90ab1 knockdown in improving insulin sensitivity
and glucose homeostasis in DIO mice. Hsp90ab1 ASO
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Fig. 1 Isoform specific alterations in Hsp90 mRNA after diet-induced obesity (DIO). Male C57B/6 mice at 8 week old were fed with either a 10% kcal
fat (Lean) or a 60% kcal fat high fat diet (DIO) for 12 weeks. After an 18 h fast mice were sacrificed and skeletal muscle were analyzed by quantitative
real time PCR (qPCR) analysis for (a) Hsp90ab1, (b) Hsp90aa1, (c) Hsp90b1, and (b) TRAP1 mRNA. Data represents mean + standard error of the mean
(SEM) of n = 5 (Lean) and n = 6 (DIO) mice. *p < 0.05, Student’s t-test
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induced a decrease in Hsp90ab1 mRNA expression in
skeletal muscle by ~ 35% (Fig. 5a, p = 0.02), without af-
fecting mRNA expression of heat shock factor (HSF)-1
target genes Hspaa1, Hsp90b1 and TRAP1 (Fig. 5a). In
addition, there were no changes in body weight between
mice treated with Hsp90ab1 ASO and NC (Fig. 5b).
Hsp90ab1 ASO was associated with decreases in fed in-
sulin (Figure 5c) and a trending decrease in fed glucose

levels (10% decrease, p = 0.056, Fig. 5d). The ASO-
induced decrease in Hsp90ab1 was associated with
improvement in glucose tolerance compared to control
ASO (Fig. 5e and f, p = 0.04). Notably, significant
differences between NC and ASO was observed at
60 min and 90 min during the IPGTT, reflective of dif-
ferences in glucose clearance between treatment groups
(Fig. 5e). Interestingly, glycogen content was significantly
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increased in Hsp90ab1 ASO treated DIO mice (Fig. 5g,
p < 0.01). Thus, these data suggest that knockdown of
HSP90ab1 in skeletal muscle in DIO mice is associated
with improved glucose homeostasis along with overall
improvement in key indices underlying onset of insulin
resistance and diabetes.

ASO mediated Hsp90ab1 knockdown in DIO mice is
associated with altered expression of key genes
regulating metabolic substrate utilization
Next, the specific metabolic pathway(s) affected by knock-
down of Hsp90ab1 in skeletal muscle was investigated.
HSP90ab1 ASO treatment was associated with a signifi-
cant increase in mRNA expression of skeletal muscle spe-
cific forms of phosphofructokinase (PFKM, ~ 100%; p =
0.002), glycogen synthase 1 (GYS1, ~ 60%; p = 0.013) and
acyl-CoA dehydrogenase, long chain (ACADL, ~ 70%; p =
0.045) (Fig. 6a) compared to control ASO. Furthermore,
mRNA expression of acetyl-CoA carboxylase alpha
(ACCA) was decreased (Fig. 6a, p = 0.018), while expres-
sion of lipase hormone-sensitive (HSL) and carnitine pal-
mitoyltransferase 1B (CPT1B) were not affected. Notably,
a 10-fold increase in patatin-like phospholipase domain
containing 2 (PNPLA2, also known as adipocyte triglycer-
ide lipase: ATGL) (Fig. 6b) was observed in the Hsp90ab1
ASO treated group compared to control (p < 0.0001). In
contrast, HSP90ab1 ASO was associated with ~ 40%
decrease in expression of pyruvate dehydrogenase kinase
isozymes (PDK4) (Fig. 6c, p < 0.05). Together, the alter-
ations in expression of genes regulating glycolysis and
lipid oxidation suggest that HSP90ab1 knockdown in DIO

mice results in metabolic rewiring that appears to influ-
ence glucose and lipid homeostasis pathways.
Given the established role of PDK4 in influencing pyru-

vate dehydrogenase (PDH) activity [13], phosphorylation
of the PDH catalytic subunit PDH E1α, a substrate of
PDK4 was investigated. In the skeletal muscle of DIO
mice treated with Hsp90ab1 ASO levels of phosphorylated
PDH E1α at serine residues S232, S293 and S300 were
reduced by ~ 80%, p = 0.021; ~ 55%, p = 0.055; ~ 50%, p =
0.011, respectively (Fig. 6d and e). More importantly, these
changes were independent of total PDH E1α protein,
demonstrating a bona fide regulation of PDH E1α phos-
phorylation and activity as a consequence of decreased
PDK4 expression with Hsp90ab1 knockdown (Fig. 6d and
e). These results suggest that the enhanced pyruvate
dehydrogenase complex activity is associated with in-
creased glucose oxidation in skeletal muscles, which may
potentially be contributing to improved glucose homeosta-
sis. Furthermore, recapitulation of the effects of siHsp90ab1
on PDH E1α phosphorylation status in HSMM confirms
the underlying cell autonomous effects of Hsp90ab1 knock-
down in orchestrating substrate utilization in skeletal
muscle (Additional file 1: Figure S1). Taken together, the
data demonstrates that knock-down of HSP90ab1 in
skeletal muscle of DIO mice is associated with changes in
gene expression patterns with ability to influence substrate
utilization.

Discussion
Type 2 diabetes mellitus is a multifactorial disease caused
by genetic and environmental factors that is characterized
by insulin resistance and hyperglycemia [14]. Inhibition of
Hsp90 has been shown to improve insulin resistance in
mouse models of diabetes [5]. In this study, the data pre-
sented here demonstrate that Hsp90ab1 is a major iso-
form that plays a role in regulating metabolism. Most
notably, in these studies knockdown of Hsp90ab1 by ASO
improved glucose tolerance, altered expression of key
metabolic genes, and enhanced pyruvate dehydrogenase
complex activity in a DIO mouse model. Thus, HSP90ab1
represents an actionable target that could translate into
potential therapeutic benefit for diabetes.
Hsp90ab1 belongs to the family of Hsp90 proteins

including Hsp90aa1, Hsp90ab1, Hsp90B1, and TRAP-1.
Hsp90 proteins have been the focus of active research for
multiple diseases and studies indicate that Hsp90 plays a
role in biological and physiological processes [15]. It is
generally accepted that Hsp90aa1 is the inducible isoform
while Hsp90ab1 is constitutively expressed and typically
does not respond to stress stimuli [11]. This is the first
report to demonstrate that Hsp90ab1 could be induced by
an environmental factor such as diet.
Skeletal muscle is a major metabolically active tissue

that encompasses vital motor and metabolic functions
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including post-prandial glucose homeostasis and lipid
metabolism. Metabolic plasticity of skeletal muscle is an
essential characteristic for maintaining balance of
physiological functions based on the availability of
substrate within the system during the switch between

fed and fasting states to dictate optimized substrate
utilization [16]. Impaired skeletal muscle glucose
homeostasis and lipid oxidation capacity is associated
with insulin resistance, type 2 diabetes, and metabolic
disease [17], suggesting the molecular mediators of these
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Fig. 5 Anti-sense oligonucleotide (ASO) mediated Hsp90ab1 knockdown improves glucose tolerance and lowers levels of fed insulin and glucose
in DIO mice. a Male mice were fed a high fat diet (DIO) for 12 weeks prior to receiving either negative control (NC) ASO or Hsp90ab1 ASO 10μg/
kg/day two times a week for 4 weeks. Mice were then sacrificed, skeletal muscles were collected, and quantitative real time PCR was performed
for mRNA expression of Hsp90ab1, Hsp90aa1, Hsp90b1 and TRAP1 and normalized to 18 s. ASO treatment decreases Hsp90ab1 mRNA expression
(*p < 0.05). There is no effect upon the mRNA expression of Hsp90aa1, Hsp90b1 and TRAP1. Data represent mean + SEM of n = 10/group. b Body
weight of DIO mice treated with NC or Hsp90ab1 ASO. c Bar graph of fed insulin levels after 4 weeks of ASO treatment in DIO mice shows a
decrease in Hsp90ab1 treated mice. d Bar graph of fed glucose levels after 4 weeks of ASO treatment in DIO mice. DIO mice treated with Hsp90ab1
ASO show significant improvement in glucose tolerance. e Blood glucose levels measured over time during an intraperitoneal glucose tolerance test
(IPGTT) in lean control mice and DIO mice administered either NC ASO (n = 10) or Hsp90ab1 ASO (n = 10) after fasting for 6 h. Blood glucose was
measured periodically over a time course of 120 min. Hsp90ab1 knockdown decreased blood glucose at 60 and 90 min over untreated DIO mice (**p
< 0.01, n = 5). f Area under the curve (AUC) analysis of IPGTT results from data in (e) shows a significant overall decrease in blood glucose in Hsp90ab1-
knockdown mice (*p < 0.05). g Glycogen levels from skeletal muscles (gastrocnemius) of DIO mice after 4 weeks of ASO treatment. DIO mice treated
with Hsp90ab1 ASO show increased glycogen levels compared to mice treated with NC (**p < 0.01, n = 8 per group). (g)
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pathways may be viable therapeutic targets for metabolic
disease and type 2 diabetes. The observed induction in
Hsp90ab1 expression in response to a high fat diet in
skeletal muscle, but not liver (Additional file 2: Figure S2),
of DIO mice, suggests that HSP90ab1 could potentially in-
fluence pathways regulating insulin resistance and dysreg-
ulation of glucose homeostasis. In the present study, the
HSP90ab1 isoform was demonstrated to be a contributor
to the pathophysiology of metabolic disease. Knockdown
of HPS90ab1 in DIO mice improved glucose tolerance,
hyperinsulinemia, and was associated with significant
lowering of PDK4 expression. PDK4 is a muscle specific
serine kinase that phosphorylates the catalytic subunit of
the pyruvate dehydrogenase complex (PDC), PDH E1α,
resulting in the inactivation of the complex and

preventing the entry of pyruvate generated from glycolysis
into mitochondrial Krebs cycle [18]. PDK4 has been
reported to act as a cellular homeostat and its activation
by the high mitochondrial acetyl-CoA/CoA and NADH/
NAD(+) concentration ratios, reflected by high rates of
long chain fatty acid (LCFA) oxidation, has been proposed
to induce glucose oxidation inhibition by fatty acid oxida-
tion in skeletal muscle [19]. Furthermore, inhibition of
PDK4 has been shown to activate the PDC complex and
lower elevated blood glucose in insulin resistant animals
[20, 21]. Herein, knockdown of HSP90ab1 was associated
with a decrease in phosphorylation of three key serine
residues in PDH E1α indicative of activation of PDC com-
plex. Consistent with others, these data support that the
improved glucose tolerance with Hsp90ab1 knockdown is
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Fig. 6 Hsp90ab1 knockdown alters expression of metabolic genes and decreases PDH catalytic subunit phosphorylation. a Quantitative PCR
analysis of mRNA expression of metabolic enzymes for glucose and lipid metabolism in skeletal muscle of DIO mice after 4 weeks antisense
oligonucleotide (ASO) treatment at 10μg/kg/day shows that PFKM, GYS1 and ACADL are significantly increased over control (*p < 0.05, **p < 0.01,
n = 10 for NC and n = 9 for ASO). b Quantitative PCR analysis of adipose triglyceride lipase (ATGL) mRNA expression shows a significant increase in
response to Hsp90ab1 knockdown (n = 10 for NC and n = 9 for ASO, ****p < 0.0001). c Quantitative PCR analysis of PDK4 mRNA expression shows
a significant decrease in response to Hsp90ab1 knockdown (*p < 0.05, n = 10 for NC and n = 9 for ASO). d Representative Western blot analysis of
total and phosphorylated PDH E1α, the catalytic subunit of PDH complex, in muscles of DIO mice treated with NC ASO or Hsp90ab1 ASO (n = 5
per group). Phosphorylation of PDH E1α was examined at serine 232 (S232), serine 293 (S293), and serine 300 (S300). e Quantification of
immunoreactive bands relative to total protein loaded as indicated by Ponceau S stain shows S232 and S300 are reduced in response to
Hsp90ab1 over control (*p < 0.05, **p < 0.01, **** p < 0.0001 vs. NC, n = 5)
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most likely a consequence of decreased PDK4 expression
and concomitant activation of the PDC complex, supporting
glucose oxidation. In addition, knockdown of HSP90ab1
significantly reduced fed insulin and glucose and increased
skeletal muscle glycogen content, which suggests improve-
ment in skeletal muscle insulin sensitivity and glucose
homeostasis in DIO mice.
The data in this study suggests that HSP90ab1 is

potentially involved in influencing metabolic plasticity in
skeletal muscle by its ability to arbitrate substrate utilization
including glucose and fatty acid. In addition to its ability to
influence PDK4 expression and activity as described above,
knock-down of HSP90ab1 was associated with alterations
in expression several genes regulating fatty acid metabolism
including ACADL, ACCA and ATGL, supporting a role in
potentially influencing fatty acid utilization. This is further
substantiated by the observed increase in skeletal muscle
oxygen consumption rate in the presence of palmitate as a
metabolic substrate. In the present study knockdown of
Hsp90ab1 reduced expression in the skeletal muscle and
this was associated with improvement in metabolic flexibil-
ity, as systemic administration of ASO to Hsp90ab1 signifi-
cantly improved impaired glucose tolerance in DIO mice. It
must be noted that given the systemic administration of
ASO, we cannot exclude the possibility that alterations in
other tissues may contribute to the observed findings. In
addition, HSP90ab1 may have different functions in other
tissues. Future studies are needed to assess whether
HSP90ab1 expression in different tissues/organs is affected
and/or whether HSP90ab1 may function differently in other
tissues/organs.

Conclusions
The present study demonstrates that Hsp90ab1 is a
regulator of skeletal muscle metabolism and suppression
of Hsp90ab1 is a valid therapeutic clinically relevant
strategy in the management of dysregulated metabolic
disease and insulin resistance.

Additional files

Additional file 1: Figure S1. Knockdown of Hsp90ab1 decreases PDH
catalytic subunit phosphorylation. Skeletal muscle of DIO mice were
analyzed by Western blot after 4 weeks antisense oligonucleotide (ASO)
treatment at 10μg/kg/day. Phosphorylation of PDH E1α was examined at
serine 232 (S232) serine 293 (S293), and serine 300 (S300), quantification
of Western blot shows that only phosphorylation at S232 was decreased after
Hsp90 knockdown (*p< 0.05, n= 10 for NC and n= 9 for ASO). (PDF 35 kb)

Additional file 2: Figure S2. Hsp90ab1 ASO treatment does not
significantly affect protein expression in the liver. Male mice were fed a high
fat diet (DIO) for 12 weeks prior to receiving either negative control (NC)
ASO or Hsp90ab1 ASO 10μg/kg/day two times a week for 4 weeks. Mice
were then sacrificed, liver was collected, and protein expression of
Hsp90ab1 was assessed by Western blot. Top panel shows representative
Western blot and bottom bar graph represents mean densitometric
intensity relative to NC of n = 5 NC and n = 10 ASO Hsp90ab1. (PDF 481 kb)
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