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Abstract

Advanced glycation end products (AGEs), a group of compounds that are formed by non-enzymatic reactions
between carbonyl groups of reducing sugars and free amino groups of proteins, lipids or nucleic acids, can be
obtained exogenously from diet or formed endogenously within the body. AGEs accumulate intracellularly and
extracellularly in all tissues and body fluids and can cross-link with other proteins and thus affect their normal
functions. Furthermore, AGEs can interact with specific cell surface receptors and hence alter cell intracellular
signaling, gene expression, the production of reactive oxygen species and the activation of several inflammatory
pathways. High levels of AGEs in diet as well as in tissues and the circulation are pathogenic to a wide range of
diseases. With respect to mobility, AGEs accumulate in bones, joints and skeletal muscles, playing important roles in
the development of osteoporosis, osteoarthritis, and sarcopenia with aging. This report covered the related
pathological mechanisms and the potential pharmaceutical and dietary intervention strategies in reducing systemic
AGEs. More prospective studies are needed to determine whether elevated serum AGEs and/or skin
autofluorescence predict a decline in measures of mobility. In addition, human intervention studies are required to
investigate the beneficial effects of exogenous AGEs inhibitors on mobility outcomes.
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Background

Overview of advanced glycation end products (AGEs)
What are they?

Advanced glycation end products (AGEs) are a heteroge-
neous group of compounds that are formed by
non-enzymatic reactions between the carbonyl groups of
reducing sugars and the free amino groups of proteins,
lipids or nucleic acids. AGEs are produced in the Maillard
reaction, which can cause browning, fluorescence and
protein cross-linking, as well as the formation of flavour
and aroma compounds [1]. AGEs can be formed within
the body and can also originate from exogenous sources
such as diet and smoking. Increased levels of AGEs are
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generated during the heat processing of food and the
browning continues during storage. Various AGEs precur-
sors are present and are formed during the initial, inter-
mediate and final stages of the Maillard reaction and,
depending on their composition and their molecular size,
different AGEs compounds are created through a series of
reactions involving enolisation, dehydration, cyclisation,
fragmentation and oxidation. Such compounds include
pyrraline, N°-carboxymethyllysine (CML), N°-carbox-
yethyllysine (CEL), pentosidine, argpyrimidine, derivatives
of methylglyoxal (MG), hydroimidazolones derived from
MG, glyoxal (GO), 3-deoxyglucosone (3-DG), arginine-
derived N®-ornithine and bis(lysyl)imidazolium deriva-
tives, such as methylglyoxal-lysine dimer (MOLD) and
glyoxal-lysine-dimer (GOLD) [1, 2]. Among these, CML,
pentosidine, and furosine are considered as the common
AGE:s in foods and human plasma [3, 4], in which CML
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has been found as the most abundant AGEs in human
plasma [5].

AGEs can be divided into three categories according to
their ability to create cross-links on proteins and to show
fluorescence: (1) fluorescent cross-linking AGEs such as
pentosidine and crossline; (2) non-fluorescent cross-linking
AGEs such as imidazolium dilysine cross-links, alkyl formyl
glycosyl pyrrole (AFGP) cross-links and arginine-lysine
imidazole (ALI) cross-links; (3) non-cross-linking AGEs
such as pyrraline, CML and CEL [6]. Because of the
complexity and heterogeneity of AGEs formation in vivo,
the structures of cross-linked AGEs have not been
completely determined.

Some researchers also classify AGEs as being toxic or
non-toxic. Compounds such as CML, CEL and pyrraline
are considered to be non-toxic AGEs. Toxic AGEs are
usually derived from glyceraldehyde or glycolaldehyde.
However, the structural identity of toxic AGEs remains
unknown [7, 8]. In fact, recent studies have indicated the
pathogenic role of some non-cross-linking AGEs
(non-toxic) such as CML. For example, through an
AGEs receptor, CML may affect cell signalling, may
stress cells and may trigger cell injury, leading to
pathological endothelial cell dysfunction and apoptosis
of macrophages [9, 10].

Exogenous formation of AGEs

AGEs are naturally occurring chemicals in raw
animal-origin foods, and cooking propagates and accel-
erates the generation of more AGEs within them. Stud-
ies have shown that dry heating results in the formation
of more than ten to hundred times of new AGEs in
foods as compared to the uncooked state [1]. For the
food industry AGEs are greatly desirable owing to the
profound effect of AGEs on safety and convenience as
well as to enhance food flavour, colour and appearance,
and thus increase food consumption [11, 12]. Dry heat,
irradiation or ionization in modern food processing con-
siderably promotes the formation of new AGEs [12-14].
Contents of AGEs in food are mainly calculated from
measurements of a single marker (CML or MG deriva-
tives), which is regarded as a major limitation consider-
ing levels of individual AGEs significantly vary in
different foods [1, 4]. On the whole, AGEs contents in
foods analysed for MG derivatives are associated with
corresponding levels of CML. Animal-origin foods, as
well as foods with a high level of fat and protein, contain
relatively high contents of AGEs. On the other hand,
low values of AGEs were found in uncooked and even
cooked carbohydrate-rich foods such as fruits, vegeta-
bles, milk and whole grains [1]. The order of dietary
AGE:s levels in foods is found to be beef>cheeses>poul-
try>pork>fish>eggs [1].
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AGEs enter the circulation together with other nutrients
in food. Currently, there are limited data on absorption
and bioavailability of AGEs [15]. Both animal studies and
human studies confirmed that dietary AGEs are partially
absorbed in the intestine (10-30%) [15—17]. The absorp-
tion rate differs between low molecular weight (LMW)
AGEs and high molecular weight (HMW) AGEs. LMW
AGEs may be relatively quickly absorbed, biotransformed,
and excreted whereas HMW AGEs are absorbed more
slowly and less efficiently due to insufficient degradation
by gastrointestinal enzymes. About two thirds of the
absorbed AGEs remain in the body for 3 days [17-20],
resulting in increased oxidation stress, AGEs and poten-
tially organ damage. The bioavailability of AGEs is largely
influenced by factors such as diet, structures and gut en-
vironment etc. Global AGEs distribution in tissues were
observed in animal studies, which have shown that more
than half of the absorbed AGEs were bound in liver and
kidney after 72 h, the rest could be found in heart, lung
and spleen [15, 20].

Recent animal and human studies with an oral intake
of an AGE-rich meal, labelled AGEs or specific AGEs
have clearly demonstrated that dietary AGEs represent
an important source for circulating AGEs and contribute
to the in vivo AGEs pool under physiological conditions
(17, 20-24].

Studies on dietary AGEs intakes in the general popula-
tion are however scarce. The estimated average dietary
AGEs intake in adults has been shown to be 15,000
AGEs kU/day [1, 25], which is considered to be high and
inductive for inflammation. Diets rich in grilled or
roasted meats, fats, and highly processed foods could
achieve a level of AGEs higher than 20,000 kU/day [1].
The influence of dietary AGEs on the formation of en-
dogenous AGEs is discussed in Section “Factors that
Affect AGEs Formation in vivo” of this report.

Besides dietary AGEs, smoking is another source of ex-
ogenous AGEs. Scarce information, however, is found on
sources of AGEs in smokers [26]. Cerami et al. (1997) re-
ported that the water extracts of tobacco leaves contain
reactive glycation products (glycotoxins) and formation of
AGEs in vivo and in vitro was promoted by tobacco
smoke, the process of which was concentration and time
dependent [27]. The highly reactive glycotoxins can in-
duce the formation of AGEs formation in hours whereas
glucose or glucose-6- phosphate induced AGEs formation
takes days to weeks [27]. Glycotoxins from cigarette enter
the body via lung alveoli and then are transported to blood
stream or lung cells where the formation of AGEs occurs
by interacting with other glycation products [26, 28].

Endogenous formation of AGEs
The formation of AGEs endogenously is a part of the
normal consequence of metabolism. However, this can
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be pathogenic if high levels of AGEs accumulate in tis-
sues and the circulation. The formation of AGEs can be
accelerated under certain conditions, such as hypergly-
caemia, hyperlipidaemia and increased oxidative stress
(OS). In fact, with aging and different diseases, elevated
amounts of AGEs have been found in vivo [6, 29-32].

Generally, AGEs are formed physiologically in all tis-
sues and body fluids, both intracellularly and extracellu-
larly, when the carbonyl groups of reducing sugars react
non-enzymatically with the free amino groups on pro-
teins [33]. As this reaction occurs at a lower temperature
and is less complex, compared with food production,
there is less diversity of the AGEs compounds.

The research on AGEs in the human body has progressed
dramatically during the last 20 years. One of the early ex-
amples is the identification of haemoglobin Alc (HbAlc),
which is an Amadori rearrangement product, and results
from the combination of glucose with the N-terminal valine
residue of a haemoglobin B chain. It is measured clinically
as an index of hyperglycaemia [34, 35].

At least four types of process in the formation of
AGEs under physiological conditions have been identi-
fied (Fig. 1) [15, 36].

1) Monosaccharide autoxidation (auto-oxidative
glycosylation) or the degradation of saccharides
unattached to a protein. This is an auto-oxidative
pathway in which sugars give rise to reactive prod-
ucts by autoxidation.

2) Unstable Schiff base fragmentation, which is
typically followed by the generation of a stable
Amadori product.

3) Fructosamine (ketosamine) degradation.
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4) The direct reaction of a,p-dicarbonyl compounds
(oxoaldehydes) formed from the reducing
carbohydrates and lipid peroxidation.

During formation of AGEs, the important sites of gly-
cation are lysyl side chains, N-terminal amino groups
and arginyl guanidine groups of proteins, guanyl bases
of nucleotides and amino groups of phosphatidyletha-
nolamine and phosphatidylserine [15]. Under physio-
logical conditions, glucose is the most studied carbonyl
precursor because it is the most commonly seen redu-
cing sugar. The reaction between glucose and proteins
in vivo is relatively slow. During the early stages of the
Maillard reaction, Schiff bases are formed between react-
ive sugars and e-amino groups. These can lead to an ir-
reversible intramolecular rearrangement, which forms
more stable Amadori products. The Amadori products
undergo further structural changes through dehydration,
oxidation and degradation to form highly stable AGEs,
such as CML [37]. However, some highly reactive dicar-
bonyl compounds, such as GO, MG and 3-DG, are cap-
able of rapid AGEs formation. They are generated by
various pathways including glucose autoxidation, lipid
peroxidation and interruption of glycolysis by reactive
oxygen species (ROS). A large quantity of these dicarbo-
nyl compounds induces so-called “carbonyl stress”, be-
cause they are highly reactive with both intracellular and
extracellular proteins [7]. For example, 3-DG, which can
be formed by the non-oxidative rearrangement and hy-
drolysis of Amadori products, reacts rapidly with protein
amino groups to form AGEs such as imidazolone, pyrra-
line and CML [38, 39]. MG can be produced by the aut-
oxidation of carbohydrates and lipid peroxidation in

Glucose ————— Schiff base «————> Fructosamine
R-NH2
R-NH2 Or Arginine —
Or Arginine Or Arginine
Advanced Glycation
Endproducts
Carboxymethyl-lysine
Lipid peroxidation Pentosidine Glycolysis,
(glyoxal, methylglyoxal) Pyrraline Methylglyoxal,
Glucosepane 3-deoxyglycosone
Hydroimidazolones,
etc
Fig. 1 Formation of AGEs in vivo. Adapted from Gugliucci and Menini (2014) [104]
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most glucose-metabolising cells, and reacts with the ly-
sine residues on proteins to form CEL [40].

Factors that affect AGEs formation in vivo

As mentioned in Section “Exogenous Formation of
AGEs”,, the dietary AGEs load contributes to circulating
AGEs and the AGEs pool in vivo, and hence dietary
AGEs can affect endogenous AGEs formation through
their effects on AGEs metabolism. Generally, AGEs are
generated within the body in homeostasis. The rate of
AGEs formation in vivo depends on a number of factors,
including the nature and concentration of the substrate
groups, the glycating agents, the half-life of the proteins,
the availability of catalytic compounds, the OS or redox
balance and the presence of inhibitors such as amino-
guanidine and pyridoxamine.

The abilities of sugars to react with amino groups dif-
fer. The smaller sugar molecules with fewer carbon
atoms are more reactive. The reactivity increases when
there are more reactive open chains and furanose ring
structures. For example, fructose is about 10-fold more
reactive than glucose. The low reactivity of glucose,
which is the predominant sugar in vivo, works as a na-
tive protection mechanism against the intracellular accu-
mulation of AGEs and their precursors. As a result, the
Maillard reaction is slow under normal metabolism [41].
However, under some sub-clinical conditions, such as
hyperglycaemia and increased OS, elevated AGEs forma-
tion is triggered by increasing levels of reactive carbonyl
intermediates, such as GO, MG and 3-DG. In addition,
ROS are generated during the formation of AGEs, in-
cluding stages such as the autoxidation of glucose, Schiff
bases and Amadori adducts. When the level of ROS is
elevated under unbalanced OS, a vicious cycle of AGE/
ROS promotes more oxidation of lipids and glucose and
accelerates the formation of AGEs in vivo [42].

The antioxidant systems in the body, including redu-
cing agents, antioxidant enzymes and the detoxification
system, can limit the level of AGEs precursors and re-
duce the generation of ROS. For example, the enzymes
in the glyoxalase system, which carry out detoxification,
can prevent the MG-mediated glycation and can convert
most of the MG into harmless molecules such as lactate
[43]. In the blood and body fluids, some early detoxifica-
tion proteins, such as defensins, lactoferrin and lyso-
zyme, are able to bind AGEs before their cellular uptake
or cross-linking to other molecules [44, 45].

The most important mechanisms involved in the
degradation of endogenous AGEs are extracellular pro-
teolysis and the AGEs-receptor 1 (AGER1)-mediated
intracellular uptake and degradation within cells [46].
For example, the degradation of AGEs by certain cells
such as macrophages generates soluble AGEs, which
can be excreted by the kidney [47].
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In addition, as renal clearance works as an important
factor for the level of circulating AGEs, it affects the ac-
cumulation of AGEs and the formation of endogenous
AGEs. In fact, renal AGEs clearance can be affected by
aging and the accumulation of AGEs in the kidney with
renal impairment [48]. It can also be mediated by some
functional compounds such as lysozyme, which may ac-
celerate renal AGEs clearance [49]. In conclusion, AGEs
are metabolised by innate defence and/or intracellular
degradation after receptor-dependent uptake [45]. These
protecting systems balance the endogenous formation of
AGEs (Fig. 2) [40].

Direct impact of AGEs on plasma and extracellular proteins
The direct toxic effects of AGEs result from altering the
structure and function of plasma and extracellular pro-
teins by glycation and cross-linking. The glycation of
proteins affects their normal function by disrupting their
molecular conformation, interfering with their receptor
function and altering their enzymatic activity. In
addition, AGEs cross-link not only with proteins but also
with other intracellular and extracellular molecules such
as lipids and nucleic acids, which leads to structural and
functional changes [6]. The alterations to the enzymatic
proteolysis and degradation rate of some proteins such
as elastin and collagen could lead to their accumulation
in the extracellular matrix, which may result in changes
in cellular adhesion and cell growth [50, 51]. This may
decrease the elastic properties of both arterial and ven-
tricular walls, causing the reductions in vascular and
myocardial compliance that are characteristic of aging
and diabetes [40].

Some long-lived structural proteins are more prone to
AGEs accumulation because of their slow turnover. As
these proteins provide the framework for most of the
parenchymal organs, either in their fibrous form or in
their basement membrane, their glycation and accumu-
lation of AGEs could result directly in pathological out-
comes, including renal function impairment, diabetic
complications and affected bone health. For example,
AGEs change the properties of collagen such as decreas-
ing its solubility and changing its rigidity [52]. In the
extracellular matrix region of the kidney, in which AGEs
accumulate in collagen, these AGEs could cause changes
in elasticity, ionic charge, thickness and turnover of
basement membrane components, and hence could
affect renal function [48]. Furthermore, the accumula-
tion of AGEs in bone can affect bone strength and can
lead to skeletal fragility by decreasing bone toughness
and increasing stiffness [53, 54]. Non-enzymatic glyca-
tion of collagen may also exert a negative effect on bone
remodelling and interfere with osteoblast differentiation
[6, 55, 56].
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Fig. 2 The cycle of endogenous and exogenous AGEs. Adapted from Stirban et al.(2013) [47]

Modification of
extracellular
matrix
molecules

w2

Cell

Intracellular
Signalling
Intracellular
degradation

J

Impact of AGEs on inflammation, oxidative stress and
insulin resistance

Apart from the direct impact of AGEs on proteins and
the extracellular matrix, AGEs can also interact with
specific cell surface receptors and hence alter cell intra-
cellular signalling, gene expression, the production of
ROS and the activation of several inflammatory path-
ways, including the release of pro-inflammatory cyto-
kines, growth factors and adhesion molecules via
activation of the nuclear factor kappa B (NF-«B) path-
way (Table 1) [57].

The most well-studied AGEs receptor is the receptor
of advanced glycation end products (RAGE), which is
the main up-regulator of cell activation in response to
the AGEs load. RAGE is a multi-ligand receptor, belongs
to the immunoglobulin superfamily and has a highly
charged, cytoplasmic domain. It recognises a range of li-
gands including AGEs, leukocyte integrin Mac-1, modi-
fied low density lipoprotein (LDL), DNA, RNA and S100
calcium-binding protein B (S100B) [58]. AGE-RAGE
interaction triggers various intracellular signalling cas-
cades, followed by the transcription of a range of genes
involved in different biological systems, which perpetu-
ates the inflammatory/pro-inflammatory signals [59].
Specifically, this axis stimulates Janus kinase/signal
transducers and activators of transcription (JAK/STAT),
p38 mitogen-activated protein kinase (p38 MAPK),
extracellular signal-regulated protein kinases 1 and 2
(ERK 1/2) and c-Jun N-terminal kinase (JNK), which
leads to the activation of transcription factors NF-kB
and interferon-stimulated response elements (ISRE).
This causes increased expression of cytokines, growth

factors and adhesion molecules. Furthermore, AGE-
RAGE interaction also stimulates the generation of ROS
via the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase pathway [47, 57, 59, 60].

In contrast, there are a number of AGEs receptors,
such as the advanced glycation end product receptor
(AGER) family and the scavenger receptor (SR) family,
that mediate endocytosis, leading to the intracellular up-
take and degradation of AGEs by their fusion with lyso-
somes [61-64]. Furthermore, AGEs peptides can be
transferred to the renal system, whereas the receptors
are recycled and available for further endocytosis pro-
cesses [57, 65].

The expression level and the activation of AGEs recep-
tors depend on the cell or tissue type (Table 1) and are
regulated in response to the AGEs load, other metabolic
changes, conditions such as hyperlipidaemia, aging and
diabetes mellitus [66]. For example, in Fig. 3a, in re-
sponse to conditions with a low AGEs burden, the ex-
pression of RAGE is down-regulated whereas the
expression of AGERI is up-regulated. As the RAGE sig-
nalling pathway leads to the activation of transcription
factors NF-kB, activator protein 1 (AP-1) and forkhead
box protein O subclass (FOXO), the down-regulated
RAGE reduces the transcription of genes related to OS
and inflammation. The up-regulation of AGER1 also in-
hibits these transcription factors through the sirtuin-1
(SIRT1) pathway. In addition, the increased expression
of AGERI may accelerate the intracellular degradation
of AGEs, which results in an overall lower degree of OS
and inflammation caused by AGEs. In Fig. 3b, when
there is an AGEs burden, RAGE is up-regulated, leading
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Table 1 Receptors for AGEs

AGE Cell Types Function
Receptors
RAGE Monocytes/Macrophages, - Endocytosis, signalling (cell
lymphocytes, endothelial activation), generation of ROS,
cells, mesangial cells, fibro-  inflammatory response
blasts, smooth muscle cells,
neuronal cells
AGER1 Monocytes/Macrophages, - Endocytic uptake and
lymphocytes, endothelial degradation of AGEs/AGE-
cells, mesangial cells, fibro- modified proteins, protective
blasts, smooth muscle cells,  against oxidative stress
neuronal cells
AGER2 Monocytes/Macrophages, T-  Signalling (cell activation),
lymphocytes, endothelial regulatory subunit of
cells, mesangial cells, fibro- glucosidase Il
blasts, smooth muscle cells,
neuronal cells
AGER3 Monocytes/Macrophages, T-  Signalling (cell activation)
lymphocytes, endothelial
cells, mesangial cells, fibro-
blasts, smooth muscle cells,
neuronal cells
SR-A Monocytes/Macrophages, Endocytic uptake and
dendritic cells, endothelial degradation of AGEs/AGE-
cells modified proteins and
modified LDL
SR-B Platelets, endothelial cells, Endocytic uptake and
epithelial cells, adipocytes, degradation of AGEs/AGE-
lymphocytes modified proteins, cell
adhesion, regulator of fatty
acid transport
SR-BI Tissues that are active in Selective uptake of HDL,
selective uptake of high endocytic uptake and
density lipoprotein (HDL) degradation of AGEs
SR-E Macrophages, endothelial Signalling, endocytic uptake
cells, smooth muscle cells and degradation of OxLDL
FEEL-1/ Monocytes/Macrophages, Endocytic uptake and
FEEL-2 endothelial cells degradation of AGEs/AGE-

modified proteins, hyaluronic
acid and AcLDL

RAGE, receptor of advanced glycation end products; AGER1, AGER2 and
AGER3, advanced glycation end product receptor-1, —2 and — 3; SR-A,
scavenger receptor class A; SR-B, scavenger receptor class B; SR-BI, scavenger
receptor class B Type [; SR-E, scavenger receptor class E; FEEL-1 and FEEL-2,
link domain-containing scavenger receptor-1 and -2; OxLDL, oxidised LDL;
AcLDL, acetylated LDL

to increased OS and inflammation. The prolonged high
AGEs burden leads to down-regulation of AGERI,
which, therefore, cannot exert strong inhibitory effects
on RAGE signalling or reduce the levels of AGEs by
their degradation [15]. Recent studies demonstrate that
the interaction between AGEs and RAGE can cause cell
migration and adhesion. For example, the activation of
RAGE on monocytes can induce the migration of these
cells into the sub-endothelial space [67]. Via interaction
with integrin CD11b and their increased expression on
endothelial cells, RAGEs can work as receptors for
recruiting monocytes and neutrophils, and promoting
the adhesion of leukocytes to the vessel wall [68, 69].
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Oxidative Stress-induced cell signal transduction dis-
turbances results in increased OS and disrupted antioxi-
dant defense system, which is implicated in the
development and persistence of Insulin Resistance (IR)
[70]. Molecular mechanisms of IR involves an array of
pathways including cell-specific redox regulation of pro-
tein kinases C (PKCs) and changes in the insulin signal
pathways phosphatidylinositol 3-kinase (PI3K) and
MAPK, suppressing protective survival systems AGER1
and SIRT1 [70-77]. High AGEs in muscle, insulin sensi-
tive tissue, induce IR and activate NFkB by oxidative ac-
tivation of PKC that phosphorylates regulatory serine
residues on insulin receptor substrate-1 (IRS1) in the
PI3K pathway [70, 71].

Methods for measuring AGEs and cut-off values for
different populations

Several analytical methods are available for measurement
of circulating or tissue-bound AGEs, e.g., enzyme-linked
immunosorbent assays (ELISA) [22], fluorescence spec-
troscopy [78], and mass spectrometry (MS)-based
high-performance liquid chromatography (HPLC)/gas
chromatography (GC) [79]. MS-based methods are often
used in laboratories for the diagnosis and monitoring of
age-related chronic diseases due to high sensitivity, re-
producibility and accuracy. LC coupled with tandem
mass spectrometric (LC—-MS/MS) has been used to ac-
curately quantify glycation adducts in plasma, urine, and
dialysate samples in patients with uremia [80].

Tissue-bound AGEs are usually measured in the skin
due to easy accessibility by skin autofluorescence (SAF),
a simple and non-invasive technique [78], which has
been validated against the gold standard method skin bi-
opsies [81]. Validation studies indicated significant asso-
ciation of SAF with AGEs content in skin biopsies.
Meta-analysis of three validation studies has shown that
skin AGEs content attributed up to 76% of the variance
in the SAF levels, suggesting that SAF can act as a bio-
marker of cumulative skin AGEs [78, 82—84]. Koetsier et
al. (2010) conducted a cross-sectional study and pro-
vided reference values of SAF for healthy Caucasian con-
trol subjects over a broad age range [85].

SAF has been demonstrated to be potentially better
predictor for the development of chronic complications
and mortality in diabetes over time (5-10 years) than
glycated haemoglobin Alc which reflects short-term gly-
cemic status (3—6 months) [81, 82, 86, 87]. Smit et al.
(2013) suggested that decision tree method could be
used for early diabetes screening in risk groups [88]. Ac-
cording to previously published reference values, cut-off
values for SAF would be >80th age percentile for age
group <50 years or >70th age percentile for age group
>50 years [85, 88—90]. In addition, SAF values (> 2.0 AU
over 5 years) has been revealed to be a significant
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a) a low AGEs burden, and b) an

marker for the induction and development of vascular
complications that can predict CV risk and death
(82, 87].

Effects of AGEs on mobility

Effects of AGEs on chronic diseases

In healthy individuals, there are associations between
serum AGEs levels and the risk factors for developing
chronic diseases. Generally, the circulating AGEs levels
are positively correlated with age, oxidative stress and
insulin resistance [21, 25, 33]. Higher levels of AGEs
have been found in healthy individuals with high dietary

AGE:s intakes than in individuals who eat foods contain-
ing fewer AGEs [91]. In recent studies, the serum con-
centrations of AGEs have been positively associated with
a wide range of diseases, such as obesity, insulin resist-
ance, diabetes, metabolic dysfunction, renal diseases,
cardiovascular diseases (CVD), osteoporosis, rheumatoid
arthritis, cognitive impairments and cancer [9, 31, 48,
66, 92—-104]. There are direct pathological contributions
of AGEs because of their protein cross-linking and accu-
mulation. For instance, in kidney diseases, this could re-
duce the renal clearance of AGEs and could also
increase endogenous AGEs formation [17, 105]. The
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increased levels of AGEs in vivo can be seen not only as
an outcome of the development of these diseases and
their relevant complications, but also as a cause of the
pathogenesis of some diseases, such as diabetes [12].
This is generally related to the effects of AGEs on pro-
tein dysfunction, oxidative stress and inflammation.

Dietary AGEs have been shown to be correlated with
serum levels of AGEs, inflammation markers, metabolic
dysfunction and life expectancy [5, 21, 24, 25], suggest-
ing that dietary AGEs are pathogenic, and predisposing
the body to the development of CVD, diabetes and other
chronic diseases, possibly via inducing systemic oxidative
stress [21]. Animal studies demonstrated that AGEs sup-
plementation promotes oxidative stress [21, 45, 106].
Similar results were observed in humans, implicating a
correlation between dietary AGEs and oxidative stress,
and thus increased risk of CVD, renal diseases and dia-
betes [25, 45]. Modern diet contains high levels of AGEs,
resulting in excessive influx of AGEs into the circulation
system, and thus enhancing the basal oxidant stress and
inflammation [99, 107, 108]. As a result, p-cell functions
are prone to be compromised, leading to insulin dys-
function and other diabetic complications. Studies on
mice have demonstrated that reduction in dietary AGEs
decreased oxidative stress and thus prevents or amelio-
rates type 1 and type 2 diabetes [109-111].

AGEs and mobility

Mobility underlies the ability to perform the basic activ-
ities of daily living that are necessary for independence
and is a core indicator of health and function in aging
[112]. In recent years, there has been increasing evi-
dence that poor mobility outcomes are linked to in vivo
AGEs levels [53, 113-117].

AGEs and bone health Loss of bone mineral and/or
bone mass is considered to be the major cause of
age-related bone fractures. In fact, every year, more than
8.9 million fractures worldwide are caused by osteopor-
osis. As there is a lack of the initial symptoms of osteo-
porosis, many cases are diagnosed only after the first
clinical fracture has occurred [118].

Osteoporosis is a progressive skeletal disease, the aeti-
ology of which is attributed to various factors such as
endocrine, metabolic and mechanical factors. It is char-
acterised by a systemic impairment of bone mass, dens-
ity and strength and structural deterioration of the bone
microarchitecture, which leads to enhanced bone fragil-
ity and an increased risk of fractures. Osteoporosis can
occur at any age, but is predominantly found in certain
populations such as the elderly and with diseases such
as diabetes [119].

Bone is a permanently remodelling organ; it is con-
tinually renewed in a complex process of formation by
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osteoblasts and resorption by osteoclasts. AGEs accumu-
lated in the bone matrix may result in suppressed bone
formation as evidenced by an animal study, which
showed that significant reductions in mineral apposition
rate, mineralized surface per bone surface and bone for-
mation rate were observed in rats with an autograft im-
plant containing AGEs [120]. Bone matrix homeostasis
is heavily influenced by nutritional and hormonal fac-
tors. Recent studies have proposed non-enzymatic pro-
tein glycation as a new factor that affects bone
remodelling. The glycation pathway has been implicated
as a strong contributor to age-related diseases such as
osteoporosis [121]. In support of this concept, increased
serum levels of AGEs, such as pentosidine and CML, are
found in individuals with osteoporosis [114]. Recent
findings also provide important evidence that bone pro-
teins are affected by AGEs modification. Furthermore,
these AGEs can influence both osteoclasts and osteo-
blasts [55, 56, 115].

Type I collagen, contributing to 85% of the bone
matrix, is the most abundant protein of bone and has an
exceptionally long lifetime, making them susceptible to
modification by AGEs [122]. Adverse changes in the col-
lagen network of the bone matrix occur as people age
and such changes may lead to deterioration in bone
quality. For example, a significantly higher level of pen-
tosidine has been found in the collagen in both cortical
and trabecular bone for individuals aged over 65 years
[121]. When collagen is cross-linked with AGEs, it has
decreased solubility and becomes highly resistant to pro-
teolytic degradation, which consequently leads to stiff
collagen with disrupted function. The increased level of
AGEs cross-links between collagen molecules is one of
the dominant factors affecting the integrity of the colla-
gen network in bone. Furthermore, it has been demon-
strated that AGE-modified collagen boosts the
intracellular release of ROS, interferes with the adhesion
of osteoblastic cells to the matrix and inhibits osteo-
blastic differentiation and proliferation [123-125].

It is known that AGEs affect osteoblast differentiation
and proliferation by binding to their receptors [126].
Similarly (Fig. 3), in these cells, the binding of AGEs to
RAGE activates NF-kB, resulting in increased expression
of cytokines, growth factors and cell adhesion molecules.
This initiates inflammatory processes and elicits oxida-
tive stress, leading to abnormal osteoblast function and
bone remodelling disorder [115]. For example, there is
reduced synthesis of Type I collagen and osteocalcin by
human osteoblast-like cells after they have been treated
with AGE-modified bovine serum albumin (BSA) [127].
In human osteoblast primary cell culture, there is a
dose-dependent effect of the AGE pentosidine on osteo-
blast function [56]. In primary osteoblasts derived from
fetal rat, AGE-collagen suppressed mature bone nodule
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formation, one of the osteoblastic parameters [122].
These studies have shown that AGEs impaired both
bone matrix production and mineralization of
osteoblasts.

Although contribution of AGEs to osteoblasts differ-
entiation and function has been well documented in
vitro [125, 128-131], their roles in osteoclast activity
and differentiation remain mostly elusive. Different
AGEs receptors including RAGE were found expressed
in both osteoclast progenitors and mature osteoclasts.
AGEs might interact with specific cell-surface receptors
to interfere with the process of osteoclastic differenti-
ation and activity [131]. In vitro resorption assay on
AGE-modified mineralized matrices revealed that AGEs
impaired the structural integrity of bone matrix proteins
and the osteoclastic differentiation process, resulting in
decreased osteoclast-induced bone resorption. Osteo-
clastogenesis was inhibited in vitro in the presence of
AGEs, most likely by impairing the process of osteoclast
progenitors into pre-osteoclastic cells, possibly mainly
by a RAGE-dependent manner.

AGE-induced chronic inflammation in bone can be
seen as a pathogenetic factor in osteoporosis [116]. It
can significantly affect bone turnover, influencing the in-
trinsic balance of bone mineralisation and resorption
[132]. By stimulating the expression of pro-inflammatory
cytokines, such as interleukin (IL)-1, IL-6, tumour ne-
crosis factor (TNF)-a and leukaemia inhibitory factor
(LIF), AGEs may work as pro-osteoporotic mediators,
regulating both osteoblasts and osteoclasts [133, 134].
For example, IL-1, IL-6 and TNF-a work as stimulators
for bone resorption by promoting osteoclast activity and
inhibiting bone formation [116]. Some modulator-like
LIF has a dose—response role, with a high concentration
inducing bone resorption and a lower dose promoting
bone formation [135, 136]. However, although these
studies have demonstrated the pathophysiological effects
of these cytokines on bone cells, their exact roles (mech-
anistic pathways) in the development of osteoporosis
have not been elucidated. Furthermore, a growing num-
ber of clinical studies have demonstrated not only the
concomitance of regional osteoporosis with regional in-
flammation, but also the association between systemic
osteoporosis and events of systemic inflammation, which
exposes osteoporosis to the effects of general in vivo
AGEs [116].

The detrimental effects of AGEs on osteoblast func-
tion also include increased apoptosis signalling by the
activation of RAGE and other receptors such as growth
factor receptors [55]. Figure 4 shows that this involves
the regulation of various autocrines and paracrines, such
as insulin-like growth factor I (IGF-I), IL-6 and trans-
forming growth factor-p (TGF-p) [119, 123, 130, 137,
138]. For example, it has been reported that the
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Fig. 4 Effect of AGEs on apoptosis signalling. AP-1, activator protein
1; ERK, extracellular signal-regulated protein kinases; IGF-I, insulin-like
growth factor [; IL-6, interleukin-6; JAK, Janus kinase; JNK, c-Jun N-
terminal kinases; MEK, mitogen-activated protein kinase; NF-kB,
nuclear factor kappa B; p38 MAPK, p38 mitogen-activated protein
kinase; RAGE, receptor for AGEs; STAT3, signal transducers and
activators of transcription 3; TGF-B, transforming growth factor-3

physiological level of CML-cross-linked collagen can
stimulate apoptosis in various osteoblastic cell cultures
and that the signalling is mediated through RAGE by
stimulating both p38 MAPK and JNK [114, 126]). The en-
hanced osteoblast apoptosis by AGEs contributes to the
mechanisms of the development of osteoporosis [139].

AGEs and joint health Osteoarthritis (OA) is one of
the most frequent chronic diseases of the elderly. It is
characterised by the softening, ulceration and disintegra-
tion of articular cartilage, as well as by the formation of
outgrowths of bone and cartilage at the joint margins
[96]. It is a major source of pain, disability and socioeco-
nomic cost worldwide [140]. The exact pathophysio-
logical mechanisms of OA are not completely clear; they
can be complex and multifactorial, including genetic,
biological and biomechanical components. However, age
has been recognised as one of the main risk factors for
the development of OA [141]. In fact, the majority of
people older than 60 years have OA in at least one joint
[142] and the development of OA is strongly correlated
with chronological age [143]. Therefore, age-related
changes in articular cartilage are likely to play a role in
the aetiology of OA.

One of the major age-related changes in articular car-
tilage is increased levels of cross-linked AGEs. From age
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20 onward, AGEs accumulate in collagen and proteogly-
cans in articular cartilage. The prevalence of OA in-
creases with age and coincides with the accumulation of
AGEs in articular cartilage [144, 145]. Recent studies
have found that the increased AGEs levels can negatively
modify articular cartilage by increasing its stiffness, ele-
vating chondrocyte-mediated proteoglycan degradation,
decreasing proteoglycan synthesis and inducing the deg-
radation of the extracellular matrix (ECM) of cartilage
[141, 146, 147]).

The ECM of cartilage is degraded by matrix metallo-
proteinases (MMPs), which can be induced by cytokines.
The accumulation of AGEs in articular cartilage may in-
crease oxidative stress and stimulate the expression of
cytokines, which can affect the turnover of the ECM
[148]. A study in which mice were fed a high AGEs diet
showed the up-regulation of syndecan-4 and MMP-3;
this was proposed for the activation of aggrecanase II (a
disintegrin and metalloproteinase with thrombospondin
motifs 5, ADAMTS-5), which is a critical phenomenon
in the development of OA [149, 150]. In human C28/12
chondrocytes, the blocking of RAGE prevented the in-
crease in ADAMTS-5, syndecan-4, MMP-1 and MMP-3
in vitro after treatment with AGE-modified BSA [150].
As articular cartilage is one of the tissues containing the
greatest amounts of AGEs in the body, AGE-related
negative effects on the synthesis and degradation of pro-
teoglycan in articular cartilage and ECM turnover are
likely to be important contributors to the development
of OA [141, 151, 152]. However, the causative link be-
tween AGEs and OA, the pathophysiological mecha-
nisms and the pathways by which dietary AGEs affect
joint tissue such as cartilage are not yet completely clear.

AGEs and skeletal muscle Sarcopenia, as loss of
muscle mass, strength and endurance, is an important
factor causing mobility difficulties such as low strength,
decreased lower extremity performance, slow walking
speed and physical disability [113, 153]. It is estimated
that there could be an average of 5% loss of muscle mass
every 10 years after 40 years of age, with a decrease in
muscle cross-sectional area, loss of muscle fibre and
fibre atrophy, and that this may get worse after age 65
[154, 155]. In fact, sarcopenia occurs to some degree as
a consequence of aging in all individuals, but can be ac-
celerated by a variety of factors including inactivity, poor
nutrition, increased oxidative stress and chronic disease
conditions [155].

Recently, it has been hypothesised that AGEs could
play a role in the pathogenesis of sarcopenia through
cross-linking tissues in skeletal muscle, AGE-RAGE--
mediated inflammation and endothelial dysfunction in
the microcirculation of skeletal muscle [156, 157]. Both
animal studies and human studies have reported
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increased levels of AGEs in skeletal muscle with aging
[117, 157-159]. The accumulated AGEs may contribute
to increased stiffness in muscle tissue, similar to that in
articular cartilage, and may also reduce the viscoelastic
properties of muscle and hence impair muscle function.
The AGEs cross-linked with connective tissue surround-
ing muscle fibres may contribute to the decline in
muscle function with aging [157]. Furthermore, when
AGEs accumulate in endothelial cells, they up-regulate
inflammation through RAGE and contribute to endo-
thelial dysfunction, which leads to loss of muscle mass
and strength [156]. In fact, some studies have reported
that the elevated serum AGEs levels are associated with
sarcopenia-related outcomes, such as poor grip
strength, slow walking speed and increased muscle
weakness [153, 160].

To summarise, AGEs accumulate in bones, joints and
skeletal muscles. They may play important roles in the
development of osteoporosis, osteoarthritis and sarcope-
nia with aging. More prospective studies are needed to
determine whether elevated serum AGEs levels predict a
decline in mobility measures. In addition, intervention
studies are required to investigate the beneficial effects
of low endogenous AGEs levels and the effects of the ac-
cumulation of AGEs on mobility outcomes.

Current therapeutic and nutritional anti-AGEs approaches
Therapeutic approaches

As AGEs contribute to the development of chronic dis-
eases such as diabetes, cardiovascular disease and renal
impairment by their impacts on oxidative stress and in-
flammation, they are considered to be promising drug
targets for a potential therapeutic approach, which aims
to prevent diabetic or other pathogenic complications.
In fact, it has been reported that such pharmaceutical in-
terventions effectively prevent and treat diabetic and
other pathogenic complications [161-163]. A large num-
ber of compounds have been reported to play a potential
role against AGEs [164], e.g. aminoguanidine [163, 165,
166], vitamins (e.g. thiamine, pyridoxamine, citric acid)
[167-169], anti-inflammatory drugs with anti-glycation
properties (e.g. aspirin, tenilsetam) [170, 171], antidia-
betic drug (thiazolidinediones) [172], anti-hypertensive
drugs with AGEs inhibition activity (e.g. angiotensin
converting enzyme inhibitors) [173], HMA-CoA reduc-
tase inhibitors (Statins) [174], antioxidant agents (carno-
sine, flavonoids, curcumin) [175, 176], and chelators
with AGE inhibition properties (carnosine, pyridox-
amine) [177]. Results obtained from preclinical evalu-
ation studies demonstrated anti-AGEs activity of these
compounds but a clear mechanism of action has not
been elucidated [79, 164]. The effects of many of these
substances require further validation by clinical studies.
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We will discuss the most relevant compounds in this
section.

Both synthetic and natural compounds have been eval-
uated as inhibitors against the formation of AGEs and
their cross-linking to proteins. There are different inhibi-
tory mechanisms, including inhibiting AGEs formation,
accelerating the catabolism of existing AGEs or AGEs
cross-links and blocking the biological response of AGEs
[167]. Aminoguanidine, a synthetic compound, exhibited
AGE inhibitory effect in rats [163]. The possible mech-
anism is that a nucleophile hydrazine group in amino-
guanidine binds to carbonyl groups, leading to the
decrease of accumulation of AGE-mediated collagen
cross-linking [163]. Following a series of preclinical and
small clinical studies [161, 178—188], two large clinical
trials the ACTION trial and the ACTION-II trial [165,
166] were conducted to target at the anti-AGEs effects
of aminoguanidine in patients with diabetes. An ex-
pected significant beneficial effect of aminoguanidine in
preventing the progression of disease, however, failed to
be observed. In ACTION-II study, patients treated with
aminoguanidine frequently reported side effects, which
included flu-like symptoms, liver abnormalities, gastro-
intestinal disorders and anemia [166]. Considering the
toxic and potential side effects of synthetic molecules,
natural products are preferable.

With respect to the in vivo mechanisms of AGEs for-
mation, antioxidants can protect against the glycation of
proteins that is caused by the exposure of protein to glu-
cose under oxidative conditions. However, studies con-
firm the inhibitory function of antioxidants only on the
formation of glycoxidation products but not for the gly-
cation of proteins [176]. Conflicting results have been
obtained when antioxidants, such as a-tocopherol, ret-
inol and ascorbic acid, have been used for treating dia-
betic complications such as cataracts [189-191]. Only
flavonoids have shown promising evidence that demon-
strates their inhibitory effect on AGEs formation and the
prevention of some complications of diabetes [192-195].

Some metal chelators may also indirectly inhibit AGEs
formation by blocking ROS and free transition metal
ions, which have been recognised as key players in ad-
vanced glycation [167]. They are applied mainly as drugs
that are commonly used for the treatment of diabetic
complications. Some natural compounds, e.g. citric acid,
can be considered to be an AGE inhibitor because of its
non-specific metal-chelating activity. In addition, pyri-
doxamine (a natural derivative of vitamin B6), as a diet-
ary supplement, proved to be a potent inhibitor of AGEs
formation with a stronger effect than aminoguandine
[164]. Pyridoxamine can chelate metal ions that catalyse
Amadori reactions, reduce the generation of dicarbonyl
intermediates, and hence can inhibit the formation of
AGEs [196]. It was revealed in preclinical studies as an
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effective agent in prevention of kidney and cardiovascu-
lar disease, reducing cross-linking of collagen, decreasing
CML and CEL levels, and regulating oxidative stress
[197-199]. Clinical studies on pyridoxamine, however,
failed to demonstrate the anti-AGEs effects [200, 201].

Another vitamin derivative, bentotiamine, is a fat-soluble
derivative of thiamine, found to be able to prevent
diabetes-induced CML in rats [164, 202]. The plausible
mechanisms appear to be the activation of transketolase,
which targets the precursors of AGEs towards the activa-
tion of pentose-5-phosphate pathway, blocking other path-
ways involved in production of AGEs [203, 204]. However,
conflicting evidences have been obtained from human stud-
ies about anti-AGEs effect of benfotiamine. An RCT study
on patients with T2DM and nephropathy treated with ben-
fotiamine found no significant impact in levels of CML,
CEL, 5-hydro-5-methylimidazolone and other inflamma-
tory markers [205]. Similar results were also observed in
another RCT, in which inflammatory markers and AGEs
levels were found no difference between treated patients
and controls [206]. In contrast, a study revealed that benfo-
tiamine was able to significantly reduce serum markers of
endothelial dysfunction and AGEs levels [207].

Some AGEs inhibitors directly scavenge the reactive
carbonyls. These molecules have one or more nucleo-
philic centres that display the capacity to trap different
carbonyls [167]. In addition to pharmaceutical agents
such as aminoguaidine, natural compounds such as
thiamine (vitamin B1), benfotiamine, pyridoxamine and
some natural polyphenols, have demonstrated effective
inhibitory effects on the glycation of proteins by scaven-
ging carbonyl species both in vitro and in vivo [203,
208-210]. For example, theaflavins from black tea and
epicatechins from green tea effectively trapped MG in
vitro, and have been suggested as potential AGEs inhibi-
tors for in vivo studies [211].

Besides exogenous AGEs inhibitors, other inhibitors
that are involved in the catabolism of AGEs mainly serve
as physiological reducing agents, antioxidant enzymes
and agents in the detoxification system. As discussed in
Section “Endogenous Formation of AGEs”., they work as
a defense system, balancing the AGEs in vivo pool.

Furthermore, AGEs breakers, which aim to break the
AGEs cross-links, have been proposed. However, although
the mechanism is very promising, as the recovery of oxi-
dised proteins would be expected, the real effects of the
proposed AGEs breakers are unlikely to be the result of
the cleavage or the reversal of existing protein—AGE
cross-linking; instead, they will have more direct effects
on the formation of AGEs, such as their antioxidant and
chelating effects and their reaction mechanism with dicar-
bonyl intermediates in the Maillard reaction [167].

In addition, there are AGEs inhibitor pharmaceuticals
that target the RAGE-AGE axis. They work as either
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antagonists of RAGE or antagonists of circulating AGEs
[212-215]. Interestingly, some antibacterial proteins, in
particular lactoferrin and lysozyme, bind to AGEs with
high affinity, before cellular uptake or their cross-linking
to proteins [44, 45, 216]. Lysozyme also accelerates the
renal clearance of AGEs and suppresses intracellular
AGE-mediated signalling [49]. As lactoferrin is a milk pro-
tein and lysozyme has already been applied in infant for-
mula, these two proteins may be considered to be
functional ingredients that can be added to food as AGEs
inhibitors [217, 218]. In fact, a registered patent (US
5891341 A; Li et al,, 1999) uses the similar molecular do-
mains of lactoferrin and lysozyme to remove AGEs.

Dietary approaches

Cooking strategies such as brief heating time, low tem-
peratures, high moisture, and/or exposure to an acidic
solution are effective in suppressing generation of new
AGEs in food [1, 4]. Cooking methods involving high
temperature such as frying, grilling, roasting and broiling
propagate the production of dietary AGEs compared to
low temperature cooking methods such as boiling,
steaming, poaching and stewing. For example, AGEs de-
tected in roasted or broiled chicken increase about four

Table 2 Human intervention studies with low dietary AGE intakes
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times than the same piece meat cooked by poaching or
steaming [1, 4]. Preexposure to acidified environment
(marinades such as lemon juice and vinegar) can be en-
couraged to inhibit the new formation of dietary AGEs.
For example, unmarinated beef contains more than half
the amount of AGEs than marinated beef [1].

The dietary AGEs database indicated that cuisines in-
volving high consumption of fish, legumes, whole grains,
low-fat milk products, fruits and vegetables, such as
Mediterranean and Asian cuisines, are more favourable
in reducing dietary AGEs as compared to diets featured
with solid fats, fatty meats, full-fat dairy products and
highly processed foods. These recommendations are in
good agreement with dietary guidelines set by organiza-
tions such as the American Heart Association [219], the
American Institute for Cancer Research [220], and the
American Diabetes Association [221].

Dietary AGEs interventions can minimise the absorp-
tion of AGEs via the gastrointestinal tract and reduce
the levels of circulating AGEs. Therefore, long term
intervention with a low AGEs diet may also reduce the
pool of AGEs in vivo. Table 2 lists human intervention
studies in which a low dietary AGEs intake was com-
pared with a high AGEs load. The dietary AGEs levels

Population  Intervention Affected AGEs  Affected AGE Receptors and Other Markers AGE Country Reference
Measure (Year)
Method
Healthy CML 2.2 mg/day vs 1Serum CML 1 Vitamin C GC-MS/ France [99]
54 mg/day MS (2010)
Healthy CML 26 mg/meal vs 1Serum CML ELISA Germany  [108]
754 mg/meal (2006)
Healthy CML <5500 kU/day vs > |Serum CML, | VCAM-1, 8-isoprostanes, PBMCs, TNF-a, mRNA AGER1 ~ ELISA USA (2009) [91]
13,000 kU/day MG- and mRNA RAGE
derivatives
Obese CML 3302 kU/day vs 1Serum CML | Urine 8-isoprostanes ELISA Australia [225]
14,090 kU/day (2011)
Diabetic AGE intake decreased 1Serum CML, | PBMCs TNF-g, NF-kB acetylation, and mRNA RAGE; 1 ELISA USA (2011) [46]
by 50% vs usual diet MG- mRNA AGER1, mRNA SIRT1T and circulating adiponectin
derivatives
Diabetic CML 3670 kU/day vs 1Serum CML | AGE-modified LDL ELISA USA (2004) [226]
16,300 kU/day
Diabetic 7 U CML/mg protein vs [ Serum CML ELISA USA (1997) [17]
1617 U CML/mg protein
Diabetic CML 2750 kU/meal vs Serum CML  [VCAM-1 ELISA Germany  [227-230]
15,100 kU/meal (2007~
2008)
Renal CML 5500 kU/day vs 1Serum CML | AGE-modified LDL, VCAM-1 ELISA USA [23,101]
failure 17,000 kU/day (2003-
2004)
Chronic CML <5500 kU/day vs >  |Serum CML | VCAM-1, 8-isoprostanes, TNF-a ELISA USA (2009) [91]
kidney 13,000 kU/day
disease

AGER1, AGE receptor 1; CML, Ne-carboxymethyllysine; ELISA, enzyme-linked immunosorbent assay; GC-MS/MS, gas chromatography-tandem mass spectrometry;
MG, methylglyoxal; NF-kB, nuclear factor kappa B; PBMCs, peripheral blood mononuclear cells; RAGE, receptor of advanced glycation end products; SIRT1, sirtuin-1;

TNF-q, tumour necrosis factor alpha; VCAM-1, vascular cell adhesion molecule 1
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correlated with serum concentrations of AGEs in both
healthy individuals and people with different disease
conditions. Reduced serum AGEs levels were associated
with improvements in levels of inflammatory markers
and mediators, such as vascular cell adhesion molecule 1
(VCAM-1), NF-xB and TNF-a. These low AGEs diets
may provide an important adjunct to interventions dir-
ectly towards the inhibition of endogenous AGEs [40].

Conclusion

Further considerations

As discussed above, intervention studies with low dietary
AGEs intakes have been conducted in healthy individ-
uals and patients with different diseases, measuring
serum AGEs levels, inflammatory status and other AGEs
markers in PBMCs, such as mRNA RAGE, mRNA
AGER1, TNF-a and NF-«B. Furthermore, the effects of
AGEs inhibitors, as pharmaceutical applications, have also
been investigated in human studies that targeted diabetic
complications. However, only a limited number of studies
have focused on measuring the effects of low AGEs levels
or AGEs inhibitors on mobility, although many observa-
tional human studies and in vitro studies have reported the
correlation of AGEs with and the contribution of AGEs to
mobility, particular in diseases such as osteoporosis, cartil-
age degradation, osteoarthritis and sarcopenia [56, 96, 113,
114, 124, 125, 130, 146, 147, 150, 153, 157, 222].

It should be noted that there is insufficient information
from previous animal and human studies for use as a ref-
erence to determine the intervention period. Although
serum AGE:s levels can be easily affected by a lower AGEs
diet or AGEs inhibitors, it may take longer to see the
changes in certain organs or tissues, as a result of a reduc-
tion in AGEs accumulation. For example, the intervention
period for the use of anti-AGE drugs in rats varied from
10 to 32 weeks, when AGEs levels in the kidney were
measured [107, 223, 224]. Therefore, a long intervention
period in which to observe changed AGEs levels in skin,
bones, joints and muscles can be expected.

More prospective studies are needed to determine
whether changed serum AGEs and/or skin autofluores-
cence predict different mobility measures. In addition,
human intervention studies are required to investigate
the beneficial effects of exogenous AGEs inhibitors on
mobility outcomes.
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