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Abstract

concentrations of investigated MV phenotypes.

MetSy at baseline (n=13) and those that did not (n=7).

had no impact on MV phenotypes.

Background: Bariatric surgery is a widely adopted treatment for obesity and its secondary complications. In the
past decade, microvesicles (MVs) and CD36 have increasingly been considered as possible biomarkers for obesity,
the metabolic syndrome (MetSy), type 2 diabetes mellitus (T2DM). Thus, the purpose of this study was to
investigate how weight loss resulting from bariatric surgery affects levels of specific MV phenotypes and their
expression of CD36 scavenger receptor. Additionally, we hypothesised that subjects with MetSy had higher baseline

Methods: Twenty individuals undergoing Roux-en-Y gastric bypass surgery were evaluated before and 3 months
after surgery. MVs were characterised by flow cytometry at both time points and defined as lactadherin-binding
particles within a 100-1000 nm size gate. MVs of monocyte (CD14) and endothelial (CD62E) origin were defined by
cell-specific markers, and their expression of CD36 was investigated.

Results: Following bariatric surgery, subjects incurred an average BMI reduction (delta) of =84+ 1.4 (p <0.0001).
Significant reductions were observed for the total MVs (—66.55%, p =0.0017) and MVs of monocyte (—36.11%,

p =0.0056) and endothelial (—40.10%, p = 0.0007) origins. Although the bulk of CD36-bearing MVs were unaltered,
significant reductions were observed for CD36-bearing MVs of monocyte (—60.04%, p =0.0192) and endothelial
(—54.93%, p =0.04) origin. No differences in levels of MVs were identified between subjects who presented with

Conclusion: Bariatric surgery resulted in significantly altered levels of CD36-bearing MVs of monocyte and
endothelial origin. This likely reflects improvements in ectopic fat distribution, plasma lipid profile, low-grade
inflammation, and oxidative stress following weight loss. Conversely, however, the presence of MetSy at baseline
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Background

Decades of research indicate that lifestyle interventions
and pharmacotherapy of obesity often fail to result in
sufficient and sustained reductions in weight to reduce
an individual’s risk of obesity-related morbidity and
mortality [1, 2]. However, a large body of evidence
suggests that bariatric surgery can result in sustained
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weight loss, reduce an individual’s risk of type 2 diabetes
mellitus (T2DM) recurrence, and decrease levels of
circulating inflammatory markers associated with obes-
ity, the metabolic syndrome, and T2DM [3-5]. There-
fore, bariatric surgery is adopted to an increasing extent
globally as a treatment for morbid obesity and its sec-
ondary complications [6-8].

In recent years, a growing number of studies have
begun to realise the potential of microvesicles (MVs) as
biomarkers for a number of diseases, including the
metabolic syndrome (MetSy) [9], T2DM [10], and
atherosclerosis [11]. MVs are a subset of extracellular
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vesicles (EVs) that can be distinguished by their biogen-
esis, namely outwards budding of the plasma membrane
and subsequent occlusion and shedding of the particle
[12]. Like all other extracellular vesicles, MVs are a
heterogeneous group of plasma membrane-enclosed
particles containing components from their cellular ori-
gin, which are shed by most cell types in latent, activated
and apoptotic states [13]. A soluble form of CD36
(sCD36) has previously been demonstrated to be present
in circulation, and increased levels have been associated
with abdominal fat distribution [14], insulin resistance
[15], and non-alcoholic fatty liver disease (NAFLD) [16].
Although the exact nature of sCD36 is unknown, studies
have previously revealed that, at least in part, sCD36 is
associated with circulating MVs [11, 17].

CD36 is a scavenger receptor that has been associated
with cellular uptake of lipids in a whole range of cells,
and its expression is increased in obesity, MetSy, and
diabetes [18-23]. In addition, a large body of evidence
suggests that CD36 is involved in pro-inflammatory po-
larisation of macrophages upon exposure to oxidised
LDL cholesterol and therefore contributes to the
low-grade inflammatory state observed in diet-induced
obesity and MetSy [22, 24]. Thus, measuring CD36 on
the surface of MVs might not only yield important infor-
mation about ectopic fat deposition but also the level of
low-grade inflammation.

Therefore, it was hypothesised that significant weight
loss and improvement in cardio-metabolic risk factors
resulting from bariatric surgery would result in de-
creased concentrations of circulating MVs, MVs positive
for the expression of CD36 on their surface, MVs of
monocyte (MMVs) or endothelial (EMV) origin, and
MMVs and EMVs positive for CD36. It was further
hypothesised that subjects suffering from MetSy at
inclusion had increased baseline concentrations of all of
the abovementioned MV phenotypes.

Methods

Study design

The study population and design have been described
elsewhere [14]. In brief, twenty individuals undergoing
bariatric surgery were recruited for the present study.
All participants met the Danish requirements for referral
to bariatric surgery: > 20 years of age and a body mass
index (BMI)>40 kg m-2 or BMI>35 with associated
co-morbidities. Participants were additionally required
to lose approximately 8% of their body weight prior to
surgery and inclusion in this study. Bariatric surgery was
performed by either one of two surgeons with expertise
in Roux-en-Y gastric bypass using a standard laparo-
scopic Roux-en-Y technique at the Aleris-Hamlet
Hospital, Copenhagen, Denmark [14]. All participants
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were dismissed within 24 h after surgery and no subjects
suffered from post-surgical complications.

All twenty subjects were evaluated prior to (baseline)
and three months after bariatric surgery. At each visit,
following an overnight fast, height and weight were re-
corded, fat mass and distribution was measured by full
body dual-energy x-ray absorptiometry, and venous
blood samples were collected for biochemical analyses
and flow cytometric measurement of MVs. Haemoglo-
bin, leukocytes, aspartate aminotransferase (AST), ala-
nine aminotransferase (ALT), glycosylated haemoglobin,
plasma glucose, C-peptide, serum insulin, total choles-
terol, high-density lipoprotein, low-density lipoprotein,
and triglycerides were determined with standardised
methods in a routine biochemical laboratory. Plasma
soluble CD36 (sCD36) was measured with an in-house
ELISA as previously described [15]. Serum YKL40 was
determined with a commercial ELISA (Quidel, San Diego,
CA, USA). High sensitivity C-reactive protein (hsCRP)
was measured with a commercial highly sensitive, latex
particle-enhanced immunoturbidimetric assay (DAKO,
Glostrup, Denmark). Furthermore, insulin sensitivity
was determined with the homeostasis model assess-
ment (HOMA-%S, http://www.dtu.ox.ac.uk/homacal-
culator/index.php), and liver fat percentage (LF%) was
predicted using an algorithm based on the presence
of MetSy and T2DM as well as fasting insulin and
ALT and AST [25].

Flow cytometric analysis of MVs

Blood samples for flow cytometric analysis of MVs were
collected into EDTA tubes and the first centrifugation
cycle was initiated within two hours after collection.
Samples were subjected to centrifugation at 2000 g for
10 min to yield blood plasma. Plasma was stored at —
80 °C until analysis. Flow cytometric analysis of plasma
MV content was performed as described previously [26]
and in supplementary materials on a BD FACSAria™ III
High Speed Cell Sorter (BD Biosciences, San Jose, CA,
USA) and data was analysed in FlowJo® version 10.4
(FlowJo LLC, Oregon, USA) as depicted in Fig. 1.

Statistical data analysis

All statistical data analyses and plotting was performed
in and R 3.2.5 (R Core Team, Vienna, Austria) with x/sx
[27], ggplot2 [28], and reshape2 [29] packages installed.
The assumption of normality was tested using
Shapiro-Wilk’s W-test and confirmed visually for each
parameter using QQ-plots and histograms. Paired
Student’s t-test or Wilcoxon signed rank test were used
to compare pre and post-surgical values for all parame-
ters where appropriate, whereas unpaired Student’s t-test
or Mann-Whitney U test were utilized to compare
baseline parameters with regards to the presence of
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Fig. 1 Gating strategy for flow cytometric characterisation of MVs. a) A 100-1000 nm MV size gate was established based on 200 nm and 900 nm
polystyrene beads (MegaMix) and transferred to all samples. b) Next, a gate was set on FITC-H at the 99th percentile of unlabelled samples.
c) MVs were defined as PS+ events based on binding of lactadherin-FITC. e & f) The double negative population was defined based on density
(magenta gate), and bi-variate gates were placed at the 99th percentile of the double negative population. Finally, the gates were applied to all
PS+ events in the corresponding sample to define MMVs (e), EMVs (f), and the expression of CD36 on these phenotypes (e & f). d) TruCount®
beads (magenta gate) were quantified and used to calculate absolute concentrations of MVs. g) Gating hierarchy utilised for defining the MV
phenotypes in the current study. PS: Phosphatidylserine; PFP: Platelet-free plasma; MMV: Monocyte microvesicles; EMV: Endothelial microvesicles

phenotypes with the exception of CD36+ MVs, which
remained unaltered (Fig. 2 and Additional file 1: Table S2).

Specifically, concentrations of phosphatidylserine
positive (PS+) MVs decreased by a median of 66.55%
from baseline to follow-up (p = 0.0017). This was equally
accompanied by altered concentrations of MMV
sub-phenotypes, where MMVs decreased by 36.11%
(p=0.0056) and CD36+ MMVs by 60.04% (p =0.0192).
Similar results were observed for EMV sub-phenotypes,
where EMV concentrations decreased by 40.10%
(p =0.0007) and CD36+ EMVs by 54.93% (p = 0.04).

MetSy on baseline data. All P-values are two-sided, and
statistical significance was defined as p < 0.05.

Results

Anthropometric and biochemical characteristics

This study population has previously been described by
Kngsgaard et al. [14] and data are presented in Table 1.
In summary, 18 female and 2 male subjects were
included into the current study, and subjects were 46.5
(range: 26; 63) years of age at inclusion. Subjects had a
median weight of 118 kg (IQR: 108.75; 127) and BMI of
421 kg m > (IQR: 40.4; 44.1). At the three-month
post-surgical follow-up visit, subjects had incurred
significant decreases in body weight (follow-up: 94 kg
(IQR: 84.7; 100); n =20; p <0.0001) and BMI (follow-up:
33.9 kg m~? (IQR: 32.0; 35.0); n = 20; p < 0.0001).

Microvesicles and metabolic syndrome

At baseline, thirteen subjects were defined as having
MetSy [30], while only two subjects were defined as
having MetSy at the three-month post-surgical
follow-up visit. In order to investigate the impact of
MetSy on MV phenotypes, subjects were initially strati-

Effect of bariatric surgery on microvesicle phenotypes

In the present study, plasma MV content and phenotypic
origin of EVs were determined by flow cytometry. At the
three-month post-surgical follow-up visit, significant
decreases were observed in all of the investigated MV

fied into metabolically healthy (MH; n =7) and metabol-
ically unhealthy (MuH; #=13) groups based on the
presence of MetSy prior to surgery (characteristics
presented in Additional file 1: Table S3), and baseline
concentrations of MV phenotypes compared between
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Table 1 Characteristics of the study population
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Baseline 3 monthFollow-up A P-value

(n=20) (n=20)
Age [Years] 465+ 11.2
Sex [M/F] 2/18
Metabolic Syndrome [n (%)] 13 (65%) 2 (10%)
NASH [n (9)] 13 (65%) 11 (55%)
Haemoglobin [mmol '] 85+05 84+06 —0.1+04 0.1405
Weight [kg] 118 (108.75; 127) 94 (84.7; 100) —2333+£421 0.0001
BMI [kg m~?] 42.1 (404; 44.1) 33.9 (32.0; 35.0) —84+14 <0.0001
Total Fat Mass [kg] 548+ 110 402 (32.9; 42.3) —156+35.6 <0.0001
Body Fat Percentage [%)] 453+49 394 +6.5 -56+24 <0.0001
Fat Mass/Fat Free Mass [AU] 0.84+0.16 067+0.17 —0.16 £ 0.06 <0.0001
Android Fat [kg] 482+82 319+96 -168+47 <0.0001
Android Fat Percentage [%] 46.8+4.0 395+60 -73+38 <0.0001
Truncal Fat [kg] 26.6 £40.3 179+49.2 -84+29 <0.0001
Truncal Fat Percentage [%] 445+37 375+64 —-66+39 <0.0001
Total Cholesterol [mmol I7'] 492 +1.00 449 +0.88 —044+0.82 0.0275
HDL Cholesterol [mmol I7"] 1.14+027 1124028 -002+0.15 0.659
LDL Cholesterol [mmol 1] 299+087 282+ 069 -0.18+£0.73 0.2992
Oxidized LDL Cholesterol 453+1.13 434+093 -0.19+£0.84 03203
Triglycerides [mmol I7] 1.72£062 1.15 (1.05; 1.45) -046£052 0.001
Triglyceride/HDL [AU] 1.38 (1.09; 1.89) 1.03 (0.86; 1.41) —041+054 0.0023
Glycated Haemoglobin [%)] 59+043 56 (5.5, 5.8) —0.14+040 0.0792
Fasting Glucose [mmol 17] 545 (5.18; 6.03) 5.1 (4.78; 5.33) —045 (- 08; = 0.15) 0.0157
Fasting C-Peptide [pmol I '] 1061 (921; 1422) 745 (566; 935) —360 (- 542; —=36.3) 0.0094
Fasting Insulin [pmol I b 131.7 (97.5; 201.5) 63.7 (53.7; 77.8) —69.7 (- 105.7; =40.8) 0.0014
HOMAIR 2.55(2.05;32) 1.6 (1.3; 2.05) —0.85 (- 1.43; = 0.075) 0.0149
HOMASE 427 £164 604 +20.7 17.7+£263 0.0072
YKL40 [ng mi~" 57.5 (47; 68.3) 58 (45;72.8) 1.1+148 1
Liver Fat Percentage [%] 6.7 (4.54; 9.99) 2.82(2.23;379) —2.78 (-6.23; —1.84) 0.0002
ALT U 309+£136 294+158 -145+£204 0.7537
AST U171 28 (25;32.3) 26 (22; 37) 065121 0.9826
AST/ALT [AU] 0.97 (0.88; 1.36) 0.97 (0.92; 1.24) 0.06 (-0.11; 0.30) 033
Leukocytes [mia (| 837+224 6.65 (5.73; 8.08) —134+1.15 0.0003
High-sensitivity CRP [mg = 4.67 (2.78; 9.99) 2.16 (1.28; 5.16) -391+£6.15 0.0073
Soluble CD36 [AU] 048+0.20 0.37 (0.24; 0.40) —-0.13 (-0.19; — 0.06) 0.0008

Data are depicted as mean + SD or median (Qas9; Q759)

p-values < 0.05 in bold text

the two groups. However, no significant differences
could be observed in baseline concentrations of any of
the investigated MV phenotypes between MH and MuH
groups (Additional file 1: Table S3).

Discussion
Previously, in the cohort of this study, where severely obese
subjects underwent bariatric surgery, we investigated how

weight loss secondary to bariatric surgery affects levels of
circulating sCD36 [14]. In the present study on the other
hand, we investigated how different MV phenotypes
specifically focussing on MMVs, EMVs and their respective
phenotypes positive for the expression of CD36 are af-
fected by weight loss following bariatric surgery. In this
study,, the results were two-fold. First, concentrations of
total MVs, MMVs, EMVs, CD36+ MMVs and CD36+



Botha et al. Nutrition & Metabolism (2018) 15:76 Page 5 of 9
P
Total MVs MMVs EMVs
250
_3| 6e+05 5' 40 | _3| 200
m 4e+05 B m 150
= 26405 > 200 = 100
= ; 1 ) = I _ = 50 $
0e+00 T T 0 . . 0 . .
Baseline 3 month Baseline 3 month Baseline 3 month
Follow—up Follow—-up Follow-up
CD36+ MVs CD36+ MMVs CD36+ EMVs
3000 25
- | — 20 75
= 2000 3 S
2 = 2. 2
1000 10 25
S | S . . —— S —
0 T T T : T ! 0.0 T T
Baseline 3 month Baseline 3 month Baseline 3 month
Follow—up Follow—up Follow—up
Fig. 2 Baseline (n =20) and three-month follow-up (n = 20) concentrations of MV phenotypes in 20 individuals. Significant decreases from
baseline to follow-up were observed for PS+ MVs, MMVs, EMVs, and CD36+ MMVs and CD36+ EMVs, however no differences were observed in
CD36+ MV concentration. Outliers are not depicted due to their extreme nature

EMVs decreased significantly following bariatric surgery.
Second, and somewhat conversely, there were no differ-
ences in baseline concentrations of any of the investigated
MV phenotypes between MH and MuH subjects.

In the present study, the concentration of PS+ MVs was
found to decrease significantly following bariatric surgery. In
contrast to the present study, Witczak et al. described that
the total number of extracellular vesicles were unaltered fol-
lowing bariatric surgery [31]. However, this discrepancy
could be due to different pre-analytical methodology and
different methods for characterising EVs, which might result
in a different subset of EVs being analysed. It has previously
been established that platelet MVs are the most abundant
phenotype of MVs present in plasma [32], and that platelet
MVs are up-regulated in obese subjects [33, 34]. Levels of
platelet MVs seem to correlate with body composition [33],
plasma lipids [35], and hyperglycaemia [36], all attributing
to oxidative stress [37]. These parameters also seem to affect
several other MV phenotypes including leukocyte MVs [38,
39], EMVs [33], and MMVs [35]. Thus, it can be inferred
that the improvements observed in body composition,
plasma lipid profile, and insulin sensitivity result in de-
creased activation of platelets, leukocytes, vascular endothe-
lial cells, and monocytes/macrophages, which in turn could
explain the significant reduction in PS+ MVs.

An interesting observation in the present study was
that CD36+ MVs did not differ significantly from
baseline to the three-month follow-up. This result is in
contrast to a study conducted by Campello et al., in
which CD36+ MVs decreased significantly from baseline

to three and twelve-months follow-up visits [39]. Inter-
estingly, although CD36+ MVs were unaltered, a signifi-
cant decrease was seen in sCD36 in the present cohort.
Levels of sCD36 have previously been suggested to
reflect those of tissue expression [15] and further
associated with unhealthy fat distribution [14], insulin
resistance [15], and hepatic fat accumulation [16], all com-
plications of obesity. It can thus be argued that sCD36
might be a more sensitive marker for cardio-metabolic
complications than MV-associated CD36.

Bariatric surgery led to reductions of MMVs and
CD36+ MMVs in the present study. In addition to dem-
onstrating that bariatric surgery reduces MMVs, Cheng
et al. also demonstrated that MMVs were associated
with BMI and HbAlc [40]. CD36+ MMVs were further
demonstrated to correlate with BMI, waist circumfer-
ence, total fat mass, triglycerides, and fasting levels of
C-peptide and insulin in another study [35]. A growing
body of evidence is starting to recognise that macro-
phages play a central role in the development of insulin
resistance and T2DM (reviewed in [41]). In obese
individuals, steatotic cells secrete chemokines that
promote migration of monocytes into tissues and their
subsequent polarisation into a more pro-inflammatory
phenotype [42, 43]. Apart from this, a growing body of
evidence has implicated CD36 on the surface of macro-
phages and its ability to interact with oxidised LDL
cholesterol in the pro-inflammatory polarisation of
macrophages [22]. Moreover, the expression of CD36 on
the surface of macrophages is increased in obese
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individuals [44]. Thus, it is possible that the significant
weight loss observed following bariatric surgery and the
concurrent improvements in cardio-metabolic health
leads to decreased recruitment of monocytes to steatotic
tissues, increased proportion of anti-inflammatory mac-
rophages, and overall decreased activity in macrophages.
This could in turn lead to a reduction in the release of
MMVs and CD36+ MMVs.

EMVs and CD36+ EMVs were found to be signifi-
cantly reduced following bariatric surgery in the current
study. Studies that have previously examined the impact
of bariatric surgery on EMV concentrations have yielded
conflicting results. In line with the present study, both
Campello et al. [39] and Cheng et al. [40] reported that
levels of various phenotypes of MVs including platelet
MVs, EMVs and MMVs decreased significantly in obese
subjects after bariatric surgery. Conversely, Stepanian et
al. [34] reported no differences in platelet MVs and
EMVs one year after subjects had undergone bariatric
surgery, which was later supported by a study conducted
by Witczak et al. [31]. However, a growing body of evi-
dence is in support of there being a relationship between
EMVs and obesity, MetSy, and T2DM [33, 45-48].
Ectopic fat deposition and hyperglycaemia have long
been known to contribute to endothelial dysfunction
and subsequent atherosclerosis by means of dysregula-
tion of circulating lipids [49]. A common feature of
endothelial dysfunction is the production of ROS result-
ing from altered intracellular metabolism [50], which in
turn leads to mitochondrial fragmentation, increased
endothelial permeability, and up-regulation of adhesion
molecules and pro-inflammatory cytokines [51]. In turn,
this promote the attachment, migration and polarisation
of monocytes into underlying tissues and a subsequent
inflammatory response. Some doubt has to be cast on
the concentrations of EMV sub-phenotypes due to simi-
lar binding patterns of the EMV antibody and its isotype
control utilised in the current assay (Additional file 2:
Figure S1). It can therefore not be ruled out that the
current results could have arisen from non-specific bind-
ing of the antibody and subsequent inclusion of false
positive events. However, the stark differences between
baseline and the three-month follow-up visit are striking
nonetheless.

Somewhat controversially, baseline concentrations of
MV phenotypes did not differ between subjects with and
without MetSy. This result is in support of observations
by Stepanian et al. [34], who also observed no differ-
ences in levels of platelet MVs and EMVs between meta-
bolically healthy subjects and subjects with MetSy. On
the other hand, Chironi et al. [38] reported that
leukocyte MVs were higher in individuals with MetSy in
a non-obese cohort, however EMVs did not differ be-
tween groups in their study. Conversely, Amabile et al.
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[47] and Arteaga et al. [52] demonstrated that several
phenotypes of EMVs were associated with the MetSy
and correlated with number of components of MetSy.
Although it was hypothesised that MuH subjects had in-
creased levels of the investigated MV phenotypes, the
authors recognise that several confounding factors might
have influenced the results of the present study includ-
ing BMI and body composition. To a certain extent ex-
plain, this might also differences observed between
studies, as mean BMI differs greatly between studies.

A significant strength of the current study is that it
employs flow cytometry to quantify and characterise
MVs from subjects undergoing bariatric surgery. Al-
though conventional flow cytometry lacks the sensitivity
to measure the smallest of extracellular vesicles [53], it
remains a preferred method of characterising MVs and
holds great advantages over a multitude of other
methods for characterising and quantifying MVs includ-
ing nano-particle tacking analysis, Western blot, and
ELISA. This is due to its ability to simultaneously
quantify MVs and characterise their expression of
multiple surface markers in a high-throughput manner,
thus allowing for discrimination between large numbers
of MVs with different phenotypic origins [26, 54—56].
Several limitations should, however, also be addressed in
the present study. First, the authors recognise that the
sample size in the present study is a limitation, which
could give the study insignificant power to discover sig-
nificant differences in baseline concentrations of MVs
between MH and MuH subjects. In addition, this could
explain the lack of correlations between changes of MV
phenotypes on the one hand and body composition,
plasma lipids, insulin sensitivity, and inflammatory
markers on the other (data not shown). Second, the
follow-up in this study is relatively short, and it is there-
fore impossible to make inferences about the long-term
effects of bariatric surgery on levels of circulating MVs.
Third, due to constraints, isotype controls were prepared
for baseline samples only, thus limiting the interpretabil-
ity of flow cytometric characterisation of MVs in samples
from follow-up visits, as the extent of non-specific bind-
ing of antibodies to MVs cannot be examined. Nonethe-
less, the magnitude of decrease in MV concentrations
from baseline to follow-up would arguably imply that
the importance of this is minimal if not insignificant.

Conclusion

In conclusion, this study reports that concentrations of
MVs and specifically those of monocyte and endothelial
origin decrease significantly in the follow-up period
following bariatric surgery. Moreover, the concentration
of the bulk of CD36+ MVs remained unaltered, while
significant decreases are seen in sCD36, CD36+ MMYVs,
and CD36+ EMVs. These changes likely reflect the
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significant weight loss incurred by the subjects following
bariatric surgery, which in turn leads to reduction in
ectopic deposition of fat, improved plasma lipid profile,
decreased low-grade inflammation, and oxidative stress.
At the cellular level, decreased amount of lipids in the
extracellular space reduce CD36-specific uptake of lipids
by endothelial cells and macrophages, which in turn
reduces cell stress and CD36 expression on the cell
membrane, thereby resulting in decreased shedding of
MVs. However, baseline levels of MV phenotypes did
not differ between subjects with MetSy and those
without MetSy.

Finally, in order to further investigate the potential of
MMVs, EMVs and their respective phenotypes positive
for the expression of CD36, larger studies have to be
conducted in which associations between their concen-
tration and components of the metabolic syndrome and
type 2 diabetes are thoroughly investigated.

Additional files

Additional file 1: Supplementary methodological information on MV
characterisation by flow cytometry and antibody panels used in this
study. Table S1. Antibodies and concentrations used for flow cytometric
characterisation of MVs. Table S2. Baseline and three-month follow-up
concentrations of MV phenotypes in study participants. Table S3.
Characteristics of the metabolically healthy and metabolically unhealthy
participants. (DOCX 25 kb)

Additional file 2: Figure S1. Typical scatter plots for the two different
antibody panels used to characterise MV phenotypes. (EPS 1189 kb)
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