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candidate plasma biomarkers of T2DM
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Abstract

Background: Early diagnosis of type 2 diabetes mellitus (T2DM) is still difficult. Screening of plasma biomarkers has
great significance of optimizing diagnosis and predicting the complications of T2DM.

Methods: We used a special diet, Purina #5008, to induce diabetes in Zucker leptin receptor gene-deficient rats (fa/
fa) to establish Zucker diabetic fatty (ZDF) rats, simulating the early stage of T2DM. The differentially expressed
proteins (DEP) and lipids (DEL), as potential biomarkers, were screened to compare the plasma expression levels in
ZDF rats and their basic diet-fed wild-type controls (fa/+) by Tandem Mass Tags (TMT) and liquid chromatography-
tandem mass spectrometry.

Results: These two groups had different plasma proteins and lipids profiles consisting of 84 DEPs and, 179 DELs
identified in the positive ion mode and 178 DELs in the negative ion mode, respectively. Enrichment analysis of these
different indicators showed that oxidative stress, insulin resistance and metabolic disorders of glycan and lipid played
an important role in generating the difference. Some markers can be used as candidate biomarkers in prediction and
treatments of T2DM, such as ceruloplasmin, apolipoprotein C-I, apolipoprotein C-II and apolipoprotein C-IV.

Conclusion: These plasma differences help to optimize the diagnosis and predict the complications of T2DM,
although this remains to be verified in the crowd. Trace elements related-metalloproteins, such as ceruloplasmin, and
lipid metabolism and transport-related apolipoprotein C are expected to be candidate biomarkers of T2DM and should
be given more attention.
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Background
Diabetes, one of the leading causes of death in the world, is
a chronic, metabolic disease characterized by elevated levels
of blood glucose. Based on the investigation from the Inter-
national Diabetes Federation (IDF) Atlas, about 425 million
adults worldwide aged 20–79 years are affected by diabetes
in 2017 [1]. Most of the diabetics (90–95%) suffering from
type 2 diabetes mellitus (T2DM) could benefit directly from
early diagnosis and treatments [2]. However, unfortunately,
half of the patients may be undiagnosed due to the lack of
early detection [1]. The conventional methods based on
blood glucose testing need to be improved or supplemented
with other diagnostic methods. Moreover, with the obese
population and the prevalence of T2DM growing rapidly
[3–6], the necessity for prompt diagnosis or prediction of
T2DM becomes more urgent.
The development of diseases is accompanied by meta-

bolic changes, and existing studies have shown that bio-
markers in plasma and urine can predict the occurrence
of some chronic diseases [7–9]. This helps to optimize
the diagnostic method and to predict related complica-
tions. The biomarkers research regarding diabetes ne-
phropathy, a serious complication of diabetes, has made
great progress [10, 11], however, study of early diagnosis
of T2DM is still limited [12]. To a certain extent, this is
due to that the presence of severe metabolic disorders
and signs of microvascular damage in the stage of dia-
betic complications help in the selection of markers;
while slight changes in blood glucose and other metabo-
lites in the early stages of diabetes are not likely to be
discovered by epidemiological studies. Therefore, screen
potential biomarkers in diabetes animal models is an in-
dispensable step for improving early diagnosis of T2DM.
Zucker diabetic fatty (ZDF) rats are commonly used as

spontaneous T2DM animal models and are highly recog-
nized in the development of diabetes drugs [13–16]. Due
to the defection of leptin receptor-gene, they show char-
acteristics such as obesity, hyperglycemia, insulin disor-
ders and dyslipidemia in the case of special diet
induction, which closely match the pathological charac-
teristics of T2DM patients. This diet-only modeling
method is similar to natural development of T2DM in
human and does not change the physiological state of
rats which may change in experimental diabetes animal
models due to drug or surgery. This is of great signifi-
cance to the screening of candidate biomarkers of
T2DM and provides feasibility for our study. The liquid
chromatography-tandem mass spectrometry (LC-MS/
MS) technology also provides a reliable mean for plasma
proteomics and lipidomics. In preliminaries screening of
plasma differentially expressed proteins (DEP) and lipids
(DEL) in ZDF rats, this study provides an important ref-
erence for screening and verification of T2DM plasma
biomarkers in the crowd.

Methods
Animals and groups
Zucker leptin receptor gene-deficient rats (fa/fa) and
their littermate wild-type rats (fa/+) (male, 8 weeks of
age, SPF VAF/Elite) were supplied by Charles River in
Beijing, China. All animals were kept in a barrier system.
The animal room was maintained at approximately
22 °C and 50% humidity with a 12 h light/dark cycle.
Food and drinking water were available. Purina #5008
(protein 23.5%, fat (ether extract) 6.5%, fat (acid hydroly-
sis) 7.5%, fiber (crude) 3.8%, nitrogen-free extract (by
difference) 49.4%, ash 6.8%; gross energy 4.15 kcal/gm.
Calories provided by the calorigenic nutrients: protein
26.849%, fat (ether extract) 16.710%, carbohydrates
56.441%.) was utilized to induce obesity and diabetes in
Zucker leptin receptor gene-deficient rats (fa/fa). Simply,
they were fed by Purina #5008, starting at 8 weeks of
age, for 3 weeks. Blood glucose > 11.1 mmol/L was used
as the standard of successfully modeling of ZDF rats
[17]. In order to avoid the diet effects on plasma, the
ZDF rats were maintained on a basic diet (crude protein
≥18%, crude fat ≥4%; gross energy 3.40 kcal/gm. Calories
provided by the calorigenic nutrients: protein 23.07%, fat
(ether extract) 11.85%, carbohydrates 65.08%.) for 1
week, that was the 12th weeks. The wild-type rats (fa/+)
were kept on a basic diet all along. By the end of the
12th week, all animals were fasted for 12 h, anesthetized
and blooded from the abdominal aorta using EDTA-K2

anticoagulation tubes. Plasma was collected after stand-
ing and centrifugation, and then stored at − 80 °C until
detection. Three samples from each of the ZDF group
and their basic diet-fed littermate wild-type group were
labeled with TMT to analyze the proteins in plasma by
LC-MS/MS. And six from each were used to analyze the
lipids by LC-MS/MS. All animals were treated according
to the NIH Guide for Care and Use of Laboratory Ani-
mals. All protocols were approved by the Institutional
Animal Care and Use Committee of Shandong
University.

Proteomic TMT labeling and LC-MS/MS analysis
Proteomic TMT labeling technology used isotopically la-
beled peptides to analyze the protein levels in groups by
high-precision mass spectrometer [18]. The experimen-
tal procedures in our study included: extraction, quanti-
fication, detection, removal of peak protein, enzyme
digestion and desalting [19], labeling, fraction separation
and mass spectrometry [20], etc. Reagents and proce-
dures were described in the Additional file 1.

Proteins identification and screening of differentially
expressed proteins (DEP)
The mass data was directly imported into Proteome Dis-
coverer 2.2 for database search. The database we used

Wang et al. Nutrition & Metabolism           (2020) 17:66 Page 2 of 10



was the Uniport (Accessed 18 January 2019, Rattus nor-
vegicus, 36,090 sequences). Analysis parameters were de-
scribed carefully in the Additional file 1. Peptides with a
confidence of more than 95% were peptides spectrum
matches (PSMs). Proteins containing at least one unique
peptide were trusted proteins. We screened the results
and retained only the PSMs and trusted proteins. FDR
validation was also performed to remove peptides and
proteins with P-value above 5%. Relative protein quanti-
fication was performed based on the peak area. The ratio
of the mean quantization of the ZDF group to their basic
diet-fed littermate wild-type group was the fold change
(FC). We considered FC > 1.2 and P < 0.05 as DEPs.

DEPs enrichment analysis
Gene Ontology (GO), Cluster of Orthologous Groups of
proteins (COG), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) annotations, and Inter Pro (IPR) annota-
tions [21–25] were performed to fully understand the
functional properties of DEPs.
GO function enrichment analysis was carried out to

identify the functional process of the DEPs in biological
processes (BP), cell composition (CC) and molecular func-
tion (MF) by hypergeometric verification. KEGG pathway
enrichment analysis was also conducted for exploring the
causes of DEPs and the mechanisms of T2DM. P < 0.05
was identified as the significant difference.

Protein-protein interaction (PPI) network analysis of DEPs
PPI network analysis of the DEPs was constructed from
the STRING (https://string-db.org) and visualized by
Cytoscape (version 3.7.1). The Molecular Complex De-
tection (MCODE, version 1.31) app in Cytoscape was
used to analyze the modules in the network.

Lipidomic LC-MS/MS analysis
The LC-MS/MS technique was used for lipidomics re-
search. The experimental procedures included: lipid ex-
traction, LC-MS/MS detection [26–30], etc. The reagents
and procedures were detailed in the Additional file 1.

Lipids identification and screening of differentially
expressed lipids (DEL)
Progenesis QI (Waters) was used to identify lipids and
multivariate statistical analysis. Lipidmaps (http://www.
lipidmaps.org), HMDB (http://www.hmdb.ca), NIST
(https://chemdata.nist.gov) and an in-house lipid database
of Novogene Bioinformatics Technology Co. Ltd. were used
for identification. Reagents and procedures are also de-
scribed in the Additional file 1. The multivariate statistical
analyses used to reveal the differences included principal
component analysis (PCA) and partial least squares dis-
criminant analysis (PLS-DA). The variable importance in
the projection (VIP) of the first principal component of the

PLS-DA model was combined with P of T-test to screen
DELs. We considered VIP > 1.0, FC > 2.0 and P < 0.05 as
DELs.

Correlation analysis of proteomics and lipidomics
According to the order of FC, we selected the top 50
DEPs and the top 20 DELs for statistical correlation ana-
lysis of expression levels to explore the consistency of
the proteomic and lipidomic data. We also conducted
KEGG pathway enrichment analysis on DELs, reviewed
and compared the results of DEPs and DELs. The path-
ways in which both proteins and lipids were enriched
had received particular attention.

Results
Purina #5008 diet-induced irreversible diabetes in Zucker
leptin receptor gene-deficient rats
After fed by Purina #5008 for 3 weeks, up to 11 weeks
old, Zucker leptin receptor gene-deficient rats (fa/fa) de-
veloped obesity and elevated blood glucose (Fig. 1). And
this early diabetic state was not corrected by 1 week’s
basic diet, that was when they were 12 weeks old (n = 10,
paired T-test in 11W and 12W, P = 0.259).

Screening of DEPs and their enrichment analysis
We identified a total of 697 proteins (Fig. 2a). Quantita-
tive data and annotation results of these proteins were
detailed in the Additional file 2. Among all the identified
proteins, 25 were significantly up-regulated (FC > 1.2
and P < 0.05) and 59 were markedly down-regulated (FC
< 0.83 and P < 0.05) (Fig. 2b). The criteria used in our
study was appropriate, which was confirmed by the hier-
archical clustering of DEPs (Fig. 2c).
GO function enrichment analysis gave significant

enriched GO function entries in the DEPs compared to
all identified proteins (Fig. 2d), defining the biological
function of the DEPs. GO biological process (BP) ana-
lysis found that the DEPs were mainly enriched in multi-
cellular organism development, system development,
regulation of bone mineralization, cell adhesion, homo-
philic cell adhesion via plasma membrane adhesion mol-
ecules, negative regulation of cellular process, regulation
of biological process, and oxidation-reduction process.
In the cell composition (CC) part, the DEPs were in-
volved in the extracellular matrix and extracellular re-
gion. In the molecular function (MF) section, the DEPs
joined in the calcium ion binding, metal ion binding,
lyase activity, hydro-lyase activity, magnesium ion bind-
ing, enzyme activator activity.
KEGG pathway enrichment analysis demonstrated that

the DEPs were enriched in proteoglycans in cancer,
ECM-receptor interaction, HIF-1 signaling pathway,
endocrine resistance, RNA degradation, which indicated
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that those above and T2DM share the same molecular
pathways.

PPI analysis of DEPs raised the need for lipidome
There were 69 common proteins and 89 interactions
when we matched the 84 DEPs with proteins in the STRI
NG database (Rattus norvegicus). The results were de-
scribed in detail in the permalink: STRING (https://ver-
sion-11-0.string-db.org/cgi/network.pl?networkId=
fOIDKdXKqgFI. Accessed 28 May 2019). A network con-
taining 15 up-regulated proteins and 33 down-regulated
proteins was performed after removing unconnected
nodes (Fig. 2e). Four significant modules were constructed
by MCODE, one of which was associated with lipid me-
tabolism and transport. Preliminary analysis of these pro-
teins in this module suggested there were some changes
in the plasma lipids. So, we conducted plasma lipidomics.

The screening of DELs
We identified 1000 lipids in the positive ion mode, of
which 153 were substantially up-regulated (VIP > 1.0, FC
> 2.0 and P < 0.05) and 26 were significantly down-
regulated (VIP > 1.0, FC < 0.5 and P < 0.05). In the nega-
tive ion mode, we identified 1291 lipids, of which 139 were
substantially up-regulated and 39 were significantly down-
regulated. The quantitative data and statistical analysis re-
sults of these lipids were detailed in the Additional file 3.
We obtained lipid classification by matching the screened
DELs with the Lipidmaps database (http://www.lipidmaps.
org), removed unmatched entries and counted the num-
ber of DELs accompanied by each classification. The top
categories are Glycerolipids (GL), Glycerophospholipids

(GP), Fatty Acyls (FA) and Sphingolipids (SP) in the posi-
tive ion mode. And in the negative ion mode, they are GP,
FA, SP and GL (Fig. 3a). The plasma lipid profile of ZDF
rats was different from their basic diet-fed littermate wild-
type control (Fig. 3b), and like the plasma protein profile,
it could distinguish the state of T2DM.

Correlation analysis suggested the main reasons for the
differences
The expressions of the top 50 DEPs and the top 20 DELs
are strongly correlated. A simple statistical display of the
absolute value of the Pearson correlation coefficient is as
follows: Mean ± SD and Median [IQR], 0.90 ± 0.05 and
0.91 [0.07] in the positive ion mode and 0.86 ± 0.09 and
0.88 [0.11] in the negative ion mode. Correlation analysis
showed a high consistency between DEPs and DELs (Fig.
3c). Please refer to the Additional file 4 for the correlation
analysis heatmap with detailed DEPs/DELs annotations.
Based on this, we conducted KEGG pathway enrich-

ment analysis on DELs as did on DEPs aiming to find the
main reasons for the differences. The analysis prompted
that DELs were enriched in purine metabolism, biosyn-
thesis of alkaloids derived from histidine and purine in the
positive ion mode, and in synthesis and degradation of ke-
tone bodies in the negative ion mode. The original P-value
was then corrected by hypergeometric verification, and
the KEGG pathway enrichment results of both DEPs and
DELs were compared and reviewed (Fig. 4). We found
that metabolism disorder of glycan and lipid plays a sig-
nificant role in the pathogenesis of T2DM. Besides, the
enrichment results of DEPs also suggested oxidative stress
and insulin resistance were related to the changes. Table 1

Fig. 1 Purina #5008 diet-induced irreversible diabetes in Zucker leptin receptor gene-deficient rats. a Bodyweight of the rats. b Blood glucose of
the rats. The dotted line in the figure represents the standard for successful modeling of ZDF, the blood glucose > 11.1 mmol/L. (n = 10. #: P <
0.05, paired T-test in 11W and 12 W. *: P < 0.05, paired T-test in ZDF and their basic diet-fed littermate wild-type control at the same time point)
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displays the candidate biomarkers related to the mechan-
ism of these differences.

Discussion
Our study here showed that ZDF rats (fa/fa) and their
basic diet-fed littermate wild-type rats (fa/+) exhibited
different plasma proteins and lipids profiles which could

distinguish the diabetic status of rats clearly by the hier-
archical clustering of DEPs/DELs. GO function enrich-
ment analysis demonstrated that DEPs were in the
extracellular, which gave these proteins the potential to
become plasma biomarkers. Furtherly, KEGG pathway
enrichment analysis of DEPs and DELs revealed the re-
lated mechanisms of T2DM, such as oxidative stress,

Fig. 2 Visualization of differentially expressed proteins (DEP) and enrichment analysis. a Function annotations Venn graph of all the identified 697
proteins. b Volcano plot of DEPs. Gray in the Volcano plot indicates the proteins with insignificant differences, red indicates up-regulated and
blue indicates down-regulated. We use triangles and squares to highlight the lipid metabolism and transport-related DEPs and metalloproteins,
respectively. c Heatmap of DEPs. Each row is corrected for the Z value. Longitudinal is the clustering of samples and horizontal is the clustering
of proteins. The heatmap with annotations are provided in the Additional file 4. d Histogram of GO enrichment analyses results. The entries in
the histogram are arranged from left to right according to the degree of enrichment, and the curves show the change of enrichment degree. e
Protein-protein interaction network of DEPs. Each node represents a protein. The up-regulated protein is in red and down-regulated protein is
blue. The size of each node is proportional to the -log10 P-value. The edges represent protein-protein interactions. The width of the edge is
proportional to the combined-score in STRING. The module circled by the red line is associated with lipid metabolism and transport
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insulin resistance and metabolic disorders. This was con-
sistent with previous researches [31–33]. Some differen-
tially expressed indicators and their role in KEEG
pathways led us to believe that they had the potential to
be biomarkers, as follows: Down-regulated ceruloplas-
min, extracellular superoxide dismutase [Cu-Zn] and
glutathione peroxidase 6 indicated a decrease in antioxi-
dant level [34, 35]. Up-regulated glycogen phosphorylase
(liver form), 60 kDa heat shock protein (mitochondrial),

and down-regulated insulin-like growth factor 1 (isoform
CRA_b) proved a significant insulin resistance [36–38]. Up-
regulated glyceraldehyde-3-phosphate dehydrogenase and
4-trimethylaminobutyraldehyde dehydrogenase showed an
increasing degree of plasma glycolysis [39]. Up-regulated
apolipoprotein C-I and apolipoprotein C-II illustrated blood
low-density lipoproteins accumulated in the blood, thereby
increasing the risk of cardiovascular complications in dia-
betes [40, 41].

Fig. 3 Visualization of differentially expressed lipids (DEL) and their correlation with DEPs. a Volcano plot of DELs. Gray in the Volcano plot
represents a lipid with no differential expressions, red represents up-regulated and the blue represents down-regulated. We use different shapes
to highlight the lipid categories that changed significantly. The size represents the variable importance in the projection (VIP). b Heatmap of
DELs. Each row is corrected for the Z value. The heatmap with annotations are provided in the Additional file 4. c Correlation analysis heatmap of
the top 50 DEPs and the top 20 DELs according to the order of FC. The redder the color, the stronger the positive correlation; the bluer the
color, the stronger the negative correlation. The heatmap with annotations are provided in the Additional file 4
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Importantly, we found two interesting points in these
screened biomarkers.
Firstly, three oxidative stress-related markers that we

screened, ceruloplasmin, extracellular superoxide dis-
mutase [Cu-Zn] and glutathione peroxidase 6, are all
trace elements related-metalloproteins. Ceruloplasmin
stores approximately 95% of copper in the blood in a
non-diffused state [42] and is linked to iron metabolism
[43]. More than half of the patients with aceruloplasmi-
nemia (ACP), an autosomal recessive genetic disease
caused by mutations in the gene encoding ceruloplas-
min, have diabetes as their earliest symptom [44]. And
some epidemiological studies use ceruloplasmin to indi-
cate diabetes nephropathy progresses [45–49]. Each sub-
unit of extracellular superoxide dismutase [Cu-Zn]
contains a copper ion and a zinc ion, and each of the
four subunits of glutathione peroxidase 6 contains a
single selenium ion. These metal trace elements play
a major part in maintaining the normal function of

these proteins [50–52]. So, our study provides evi-
dence for the association of T2DM with trace ele-
ments, such as copper, zinc, iron, selenium, through
metalloproteins.
The second point is a question of lipid metabolism

and transport. A significant module of the DEPs PPI net-
work, which contains three up-regulated proteins, apoli-
poprotein C-I, apolipoprotein C-II (Predicted) and
apolipoprotein C-IV, and two down-regulated proteins,
apolipoprotein M and very-low-density lipoprotein re-
ceptor, suggests metabolism and transport disorder of
lipid. Hierarchical clustering of DELs proves this. Since
plasma lipids are greatly influenced by diet, we use the
basic diet to feed ZDF rats for 1 week and all animals
are fasted for 12 h before collecting plasma samples.
And because of this, we don’t screen biomarkers in
DELs. It is noteworthy that our results show the associ-
ation between the apolipoprotein C and T2DM. Since
there are limited studies in this area [53, 54], we will pay

Fig. 4 Visualization of KEGG pathway enrichment analysis of DEPs and DELs. a Bubble chart of KEGG pathway enrichment analysis of DEPs.
Abscissa represents the enrichment degree, the ratio of differences to the number of backgrounds identified in the pathway. The color is
proportional to the -log10 P-value and the size represents the number. b Result of DELs in the positive ion mode. c Result of DELs in the negative
ion mode. (DEPs results show only a part, DELs results are comprehensive)

Table 1 Candidate biomarkers of T2DM suggested by KEGG pathway enrichment analysis

Pathogenesis
(suggested by KEGG pathways)

Candidate biomarkers of T2DM

Up-regulated proteins Down-regulated proteins

Oxidative Stress ceruloplasmin

extracellular superoxide dismutase [Cu-Zn]

glutathione peroxidase 6

Insulin Resistance glycogen phosphorylase, liver form insulin-like growth factor 1, isoform CRA_b

60 kDa heat shock protein, mitochondrial

Glycan Biosynthesis and Metabolism glyceraldehyde-3-phosphate dehydrogenase

4-trimethylaminobutyraldehyde dehydrogenase

Lipid Metabolism apolipoprotein C-I apolipoprotein M

apolipoprotein C-II (Predicted) very low-density lipoprotein receptor

apolipoprotein C-IV
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more attention to the changes in apolipoprotein C dur-
ing the progress of T2DM in the future.
The pathogenesis of T2DM is complicated. Multi-

omics study helps to profoundly understand the molecu-
lar mechanisms and explores the possible directions in
diagnosis and treatment of it. Screening of plasma bio-
markers has unparalleled advantages, as the plasma is
more stable and more readily available compared to
urine and tissues, respectively [55, 56]. We screened the
potential biomarkers of T2DM by comparing the plasma
proteins and lipids expression levels in ZDF rats (fa/fa)
and their basic diet-fed littermate wild-type controls
(fa/+). The comparison method we adopted fully consid-
ered the influence of genetics and environments. Al-
though this comparison will overestimate the role of the
genetic effects of the leptin receptor gene in T2DM and
increase the difficulty of comparison with other similar
studies [57, 58], we believe this is a simple and effective
comparison strategy when the population’s genetic back-
ground is not known clearly. So far, very limited studies
have been performed with regard to detection of plasma
proteins and lipids profiles in ZDF rats. Therefore, this
study may provide a novel strategy to characterize the
molecular mechanism of T2DM and search for potential
biomarkers [54, 59, 60], despite the fact that this is only
at the animal level. It is notable that the samples number
is small, although this is sufficient for LC-MS/MS ana-
lysis. Increasing samples and verifying the predictability
of these candidate biomarkers are the focus of our next
work.

Conclusions
Differentially expressed proteins and lipids in plasma are
helpful for early diagnosis and predict the complications
of T2DM. Trace elements related-metalloproteins, such
as ceruloplasmin, and lipid metabolism and transport-
related apolipoprotein C are important in the progres-
sion of diabetes and are expected to be candidate plasma
biomarkers of T2DM.
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Additional file 1 Materials and methods. Detailed description of
materials and methods. Figure S1. Quality control of proteomics. Figure
S2. Quality control of lipidomics. Figure S3. Visualization of screening of
differentially expressed lipids (DEL).

Additional file 2 Differentially expressed proteins (DEP). We considered
FC > 1.2 and P of FDR validation < 0.05 as DEPs. FC: Fold changes of the
mean quantitation (n = 3) of the ZDF group to their basic diet-fed litter-
mate wild-type group.

Additional file 3 Differentially expressed lipids (DEL). We considered VIP
of the PLS-DA model > 1.0, FC > 2.0 and P of T-test < 0.05 as DELs. FC:
Fold changes of the mean quantitation (n = 6) of the ZDF group to their
basic diet-fed littermate wild-type group; ROC: Subject operating

characteristic curve area; VIP: variable importance in the projection of the
first principal component of the PLS-DA model.

Additional file 4 Figure S4. Heatmap of DEPs. From the longitudinal
clustering, the expression pattern clustering of proteins content between
ZDF and their basic diet-fed littermate wild-type control could be seen
clearly. Figure S5. Heatmap of DELs. The hierarchical clustering of DELs
could distinguish ZDF and their basic diet-fed littermate wild-type con-
trol. Figure S6. Correlation analysis heatmap.
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