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Abstract 

Background:  The purpose of this study was to explore the potential molecular targets of hyperlipidaemia and the 
related molecular mechanisms.

Methods:  The microarray dataset of GSE66676 obtained from patients with hyperlipidaemia was downloaded. 
Weighted gene co-expression network (WGCNA) analysis was used to analyse the gene expression profile, and the 
royal blue module was considered to have the highest correlation. Gene Ontology (GO) functional and Kyoto Encyclo‑
pedia of Genes and Genomes (KEGG) pathway enrichment analyses were implemented for the identification of genes 
in the royal blue module using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online 
tool (version 6.8; http://david​.abcc.ncifc​rf.gov). A protein–protein interaction (PPI) network was established by using 
the online STRING tool. Then, several hub genes were identified by the MCODE and cytoHubba plug-ins in Cytoscape 
software.

Results:  The significant module (royal blue) identified was associated with TC, TG and non-HDL-C. GO and KEGG 
enrichment analyses revealed that the genes in the royal blue module were associated with carbon metabolism, ster‑
oid biosynthesis, fatty acid metabolism and biosynthesis pathways of unsaturated fatty acids. SQLE (degree = 17) was 
revealed as a key molecule associated with hypercholesterolaemia (HCH), and SCD was revealed as a key molecule 
associated with hypertriglyceridaemia (HTG). RT-qPCR analysis also confirmed the above results based on our HCH/
HTG samples.

Conclusions:  SQLE and SCD are related to hyperlipidaemia, and SQLE/SCD may be new targets for cholesterol-lower‑
ing or triglyceride-lowering therapy, respectively.
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Background
With the development of markedly improved living 
standards throughout society, coronary artery disease 
(CAD) has emerged as a leading factor of mortality, func-
tional deterioration, skyrocketing healthcare expenditure, 
disability and morbidity. CAD contributes to roughly 
30% of all the deaths globally. It is estimated that its inci-
dence will continue to rise in the coming decades [1–3]. 
Prior research has proved that the occurrence of CAD 
was the result of numerous factors comprising of genetic 
background, blood lipid levels, lifestyle, environmental 
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exposures as well as the interactions between these fac-
tors [4, 5]. Coronary atherosclerosis is usually considered 
to be the initial step of CAD [6], which is due to the dys-
regulation of lipid metabolism and abnormal accumula-
tion of cholesterol in the subintima layer of the coronary 
arteries [7, 8]. Hyperlipidaemia (HLP) acts as a criti-
cal risk factor that gives rise to CAD and its complica-
tions. Several investigations have demonstrated that for 
every 2% decrease in high-density lipoprotein cholesterol 
(HDL-C) levels, there is a resultant increase in CAD risk 
by 1%. Similarly, every 1% decrease in low-density lipo-
protein cholesterol (LDL-C) levels results in reducing 
CAD risk by 1% [9, 10]. Several compelling studies have 
also demonstrated that combined effect in reducing the 
triglyceride (TG) [11], LDL-C [12] and total cholesterol 
(TC) [11] levels yielded higher decreases in cardiovas-
cular risk compared to reduction of LDL-C levels alone 
[13]. The “6 percent effect” of statins refers to the fact 
that doubling the dose of statins only decreases LDL-C 
levels by 6.4%, and PCSK9 inhibitors combined with 
statins are recommended for patients with acute coro-
nary syndrome (ACS) with a high risk of cardiovascular 
events [14]. Thus, the identification of novel therapeutic 
targets for HLP is expected to further reduce the risk of 
cardiovascular disease.

Microarray analysis might serve as a novel and practical 
approach to identify susceptibility genes associated with 
HLP [15]. However, the reproducibility and sensitivity 
of microarray analysis based on differentially expressed 
genes may be limited [16, 17]. Gene co-expression net-
work-based methods have been widely used in processing 
microarray data and have especially been used to identify 
meaningful functional modules [18, 19]. Weighted gene 
co-expression network analysis (WGCNA) is one of the 
most effective methods of gene co-expression network 
analysis. Instead of simply identifying the differentially 
expressed genes, a scale-free network of gene–gene inter-
actions is generated by WGCNA, and several significant 
modules composed of genes with similar functions could 
be identified by WGCNA; in addition, it can be used to 
further analyse the correlation between modules and 
phenotypes or clinical characteristics [20]. Therefore, 
WGCNA could be utilized to construct a co-expression 
network and identify significant modules in the network, 
which may help us to illuminate the intrinsic character-
istics of HLP and provide new insights into potential 
genetic biomarkers, signalling pathways and molecular 
mechanisms involved in HLP.

Materials and methods
Hyperlipidaemia microarray datasets
The microarray dataset obtained from patients with HLP 
(GSE66676) was downloaded from the National Center 

for Biotechnology Information (NCBI) Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) 
database, which is based on the platform of the GPL6244 
Affymetrix Human Gene 1.0 ST Array. Gene expression 
value matrices were obtained from the original files in 
CEL format after normalizing the expression values by 
using RMA methods in R software (version 4.0.0). [21]. 
Then, the Bioconductor package was used to transform 
the probe identification numbers (IDs) into gene sym-
bols [22]. When multiple probe IDs corresponded to the 
same gene, the average expression value was used as the 
expression value.

Construction of the weighted gene co‑expression network
WGCNA is a widely used systems biology method that 
is usually used to establish a scale-free network based on 
gene expression data profiles [18]. The co-expression net-
work was constructed by selecting the genes whose vari-
ance was greater than all the quartiles of variance. After 
the sample cluster tree was constructed, cut height = 35 
was used to screen the samples for subsequent stud-
ies. To ensure the reliability of the results of the network 
construction, the outlier samples were eliminated, and 
the samples in cluster 1 were selected to build the sam-
ple dendrogram and trait heatmap. The appropriate soft 
threshold power (soft power = 9) was selected according 
to the standard scale-free networks, and the adjacency 
values between all differentially expressed genes were cal-
culated using a power function. Then, the adjacency val-
ues were transformed into a topological overlap matrix 
(TOM), and the corresponding dissimilarity (1-TOM) 
values were calculated. Module identification was accom-
plished with the dynamic tree cut method by hierar-
chically clustering genes using 1-TOM as the distance 
measure with a minimum size cut-off of 30 and a deep 
split value of 2 for the resulting dendrogram. To verify 
the stability of the identified modules, a module preser-
vation function was used to calculate module preserva-
tion and quality statistics in the WGCNA package [23].

Identification of the module of interest and functional 
annotation
Pearson correlation analysis was used to assess the cor-
relations between modules and clinical characteristics 
to identify biologically meaningful modules. All genes 
associated with the significant module were subjected to 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses by using the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) online tool (version 6.8; http://david​
.abcc.ncifc​rf.gov). P < 0.05 was set as the cut-off criterion.

http://www.ncbi.nlm.nih.gov/geo/
http://david.abcc.ncifcrf.gov
http://david.abcc.ncifcrf.gov


Page 3 of 14Liao et al. Nutr Metab (Lond)           (2021) 18:24 	

Hub gene analysis
The degree of module membership (MM) was defined as 
the correlation between the gene expression profile and 
the module eigengenes (Mes). The degree of gene signifi-
cance (GS) was defined as the absolute value of the cor-
relation between the gene and external traits. In general, 
modules with increased MS and GS values among all the 
identified modules were selected for further analysis of 
their biological function [24]. The protein–protein inter-
action (PPI) network of genes in the selected module was 
constructed by the Search Tool for the Retrieval of Inter-
acting Genes database (version 11.0; http://www.strin​
g-db.org) [25] and then visualized using Cytoscape soft-
ware [26]. Molecular complex detection (MCODE) [27] 
was used to identify the most valuable clustering module. 
An MCODE score > 4 was the threshold for inclusion in 
further analysis. CytoHubba, a Cytoscape plugin, was 
used to identify hub genes in the PPI network; it provides 
11 methods to explore important nodes in biological net-
works, of which degree has a better performance [28].

Sample verification and diagnostic criteria
A total of 462 (229 males, 49.57%; 233 females, 50.43%) 
unrelated participants with normal lipid levels and 
485 (236 males, 48.66%; 249 females, 51.34%) unre-
lated subjects with hypercholesterolaemia (HCH, 
TC > 5.17  mmol/l) and 474 (232 males, 49.16%; 241 
females, 50.84%) unrelated participants with hypertri-
glyceridaemia (HTG, TG > 1.70  mmol/l) were randomly 
recruited from the Physical Examination Center of the 
Affiliated Hospital of Guizhou Medical University. The 
age ranged from 24 to 82 years. There was no difference 
in age distribution or sex ratio between the control and 
HCH or HTG groups. Patients suffering from HCH did 
not have a history of HTG, and patients suffering from 
HTG did not have a history of HCH. All participants 
were basically healthy and had no history of myocardial 
infarction, CAD, type 2 diabetes mellitus (T2DM) or 
ischaemic stroke. They were not taking any medicines 
that could alter serum lipid levels. All subjects had signed 
written informed consent. The research protocol was 
approved by the Ethics Committee of the Affiliated Hos-
pital of Guizhou Medical University.

Epidemiological analysis
Universally standardized methods and protocols were 
used to conduct the epidemiological survey [29]. 
Detailed lifestyle and demographic characteristics were 
collected with a standard set of questionnaires. Alcohol 
consumption (0 (non-drinker), < 25  g/day and ≥ 25  g/
day) and smoking status (0 (non-smoker), < 20 cigarettes/
day and ≥ 20 cigarettes/day) were divided into three 

different subgroups. Waist circumference, BMI, height, 
blood pressure and weight were measured as previously 
described [30].

Biochemical assays
Fasting venous blood samples of 5  ml were collected 
from each subject. A portion of the sample (2  ml) was 
placed in a tube and used to measure serum lipid levels. 
The remaining sample (3 ml) was collected in a glass tube 
containing anticoagulants (14.70  g/L glucose, 13.20  g/L 
trisodium citrate, 4.80  g/L citric acid) and utilized to 
extract deoxyribonucleic acid (DNA). The methods for 
performing serum ApoA1, HDL-C, ApoB, TG, LDL-C 
and TC measurements were described in a previous 
study [31]. All determinations were conducted using an 
autoanalyser (Type 7170A; Hitachi Ltd., Tokyo, Japan) in 
the Clinical Science Experiment Center of the Affiliated 
Hospital of Guizhou Medical University.

Quantitative real‑time PCR
Peripheral blood monocytes (PBMCs) were isolated 
from blood samples with TRIzol reagent, which was 
used to extract the total RNA that was then reverse-tran-
scribed into cDNA by using the PrimeScript RT reagent 
kit (Takara Bio, Japan). The obtained cDNA was used 
as a template for RT-qPCR. Table  1 shows that specific 
primer sequences, which were designed by Sangon Bio-
tech (Shanghai, China), were used to detect the 2 hub 
genes. Quantitative RT-PCR was performed using a Taq 
PCR Master Mix Kit (Takara) on an ABI Prism 7500 
sequence-detection system (Applied Biosystems, USA) 
using RT Reaction Mix in a total volume of 20 μL with 
the following reaction conditions: pre-denaturation at 
95 °C for 30 s, then 40 cycles of 95 °C for 30 s and 60 °C 
for 30 s.

Diagnostic criteria
The values of serum ApoB (0.80–1.05  g/L), HDL-C 
(1.16–1.42  mmol/L), ApoA1 (1.20–1.60  g/L), TC (3.10–
5.17 mmol/L), TG (0.56–1.70 mmol/L), the ApoA1/ApoB 
ratio (1.00–2.50) and LDL-C (2.70–3.10  mmol/L) were 
defined as normal at our Clinical Science Experiment 
Center. Subjects with TG > 1.70  mmol/L were defined 
as having hypertriglyceridaemia, and TC > 5.17  mmol/L 
was defined as having hypercholesterolaemia [32]. 

Table 1  PCR primers for quantitative real-time PCR

Gene Forward primer Reverse primer

SQLE TCT​GGG​GGT​TAA​GAG​CAG​TG GTG​TCT​ACA​CTT​ACC​ATC​TGT​GGC​

SCD CTT​GCG​ATA​TGC​TGT​GGT​GC GGC​TCC​TAG​CCT​AAT​CCC​CT

GAPDH GCA​ACT​AGG​ATG​GTG​TGG​CT TCC​CAT​TCC​CCA​GCT​CTC​ATA​

http://www.string-db.org
http://www.string-db.org
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Participants with a fasting plasma (blood) glucose 
value ≥ 7.0 mmol/L were defined as having diabetes [33]. 
The diagnostic criteria of hypertension [34], obesity, nor-
mal weight and overweight were described in our previ-
ous study [35].

Statistical analyses
SPSS (Version 22.0) was used to process the research 
data. The results are presented as the mean ± SD except 
for TG levels, which are presented as medians and inter-
quartile ranges. The differences in the general character-
istics except for TG between HCH/HTG patients and 
controls were analysed by independent-samples t tests. 
The Kruskal–Wallis and Mann–Whitney nonparamet-
ric tests were used to detect the difference in TG levels 
between patients with HCH/HTG and controls. The 
chi-square test was utilized to assess the differences in 
the proportion of smokers, age distribution and alcohol 
consumption between patients with HCH/HTG and con-
trols. Heat mapping of the correlation models and bioin-
formatic analysis were performed in R software (version 
4.0.0). A P value < 0.05 was considered to be statistically 
significant.

Results
Data pre‑processing
Gene expression profiles were obtained after normaliza-
tion of the data and removing the outliers, and a total of 
20,284 gene symbols were identified from 67 samples. 
Additional details about the gene expression profile and 
the sample phenotypes are presented in Additional file 1: 
Tables S1 and S2.

Weighted gene co‑expression networks
The sample cluster tree and sample dendrogram and trait 
heatmap are shown in Additional file  2: Figures  S1 and 
S2. The gene expression profiles of 42 samples in cluster 
1 were selected to build the weighted gene co-expression 
network. After the soft threshold (β = 9) was determined 
(Fig.  1), the weighted gene co-expression network was 
constructed by selecting the genes whose variance was 
greater than all the quartiles of variance. The adjacency 
matrix and correlation matrix of the gene expression pro-
file were calculated and then transformed into a topologi-
cal overlap matrix (TOM), and a clustering tree of genes 
based on the gene–gene non-ω similarity was obtained 
(Fig. 2). Combined with the TOM, the gene modules of 
each gene network were identified by the hierarchical 
average linkage clustering method, and twenty gene mod-
ules were identified by the dynamic tree cut algorithm 
(cut height = 0.25) (Fig. 3). The grey module contains all 
the genes that do not belong to the other modules and 
were excluded from subsequent analysis.

Identification of the modules of interest and functional 
annotation
The identification of modules that were significantly 
related to clinical phenotype was of high biological sig-
nificance. In this study, we noticed that the royal blue 
module was associated with TC (r 2 = 0.38, P = 0.01), 
TG (r 2 = 0.41, P = 0.007) and non-HDL-C (r 2 = 0.32, 
P = 0.04), and the genes in the royal blue module were 
studied in the subsequent analyses (Fig.  4). GO and 
KEGG pathway enrichment analyses were used to fur-
ther explore the biological functions of the genes in 
the royal blue module. Furthermore, we noticed that a 
total of 101 genes (Additional file  1: Tables S3) in the 
royal blue module were significantly correlated with 
the following pathways: hsa01100: metabolic path-
ways, hsa01130: biosynthesis of antibiotics, hsa00100: 
steroid biosynthesis, hsa01212: fatty acid metabolism, 
and hsa01040: biosynthesis of unsaturated fatty acids. 
The cell components, biological processes, molecu-
lar functions and KEGG pathway analysis of the royal 
blue module are also shown in Fig. 5, and more detailed 
information is presented in Additional file 1: Tables S4 
and S5.

PPI network construction and module analysis of DEGs
A PPI network including 93 notes and 333 edges was con-
structed by the STRING online tool. As shown in Fig. 6, 
the hub genes SQLE (degree = 17) and SCD (degree = 5) 
were identified by cytoHubba plug-ins in  Molecu-
lar-1  and Molecular-2, respectively. Thus, we speculate 
that the genes mentioned above may be significantly cor-
related with blood lipid metabolism.

Validation analysis by RT‑qPCR
As shown in Fig.  7a, the RT-qPCR results revealed that 
the expression of SQLE in the HCH group and SCD in the 
HTG group was higher than that in healthy subjects. At 
the same time, we also noticed that SQLE was positively 
correlated with TC (Fig. 7c) levels in the HCH group and 
that SCD was positively correlated with TG levels in the 
HTG group (Fig. 7d).

Common and biochemical characteristics
As mentioned in Table  2, the sex ratio, age and height 
were similar between the controls and patients with 
HCH/HTG. Serum HDL-C and ApoA1 levels and the 
ApoA1/ApoB ratio were significantly higher, and the 
proportion of smokers, proportion of drinkers, systolic 
blood pressure, waist circumference, weight, diastolic 
blood pressure, glucose level, pulse pressure, body mass 
index (BMI), and serum LDL-C, ApoB, TG and TC levels 
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were significantly lower in controls than in patients with 
hyperlipidaemia.

Discussion
Several recent studies have shown that hypertension, 
smoking, obesity, age, dyslipidaemia, lack of exercise, 
sex and diabetes mellitus are common risk factors 

for cardiovascular disease [36, 37]. A comprehensive 
understanding of the potential molecular mechanisms 
involved in the pathogenesis of HLP is helpful for 
its prevention and treatment. As a novel and practi-
cal approach to the identification of HLP susceptibil-
ity genes, a microarray analysis using WGCNA may 
be helpful for the diagnosis of hyperlipidaemia [20]. 

Fig. 1  Analysis of network topology for various soft-thresholding powers. The left panel shows the scale-free fit index (y-axis) as a function of the 
soft-thresholding power (x-axis). The right panel displays the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis)
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WGCNA could be used to build a scale-free co-expres-
sion network of lipid-associated genes by detecting 
gene-to-gene interactions rather than simply focus-
ing on the differentially expressed genes (DEGs). Co-
expressed genes were enriched in different modules by 
hierarchical average linkage cluster analysis. In the pre-
sent research, we analysed a dataset from HLP patients 
(GSE66676) by using WGCNA and identified that the 
royal blue module was significantly associated with TC, 
TG and non-HDL. Furthermore, KEGG enrichment 
analyses of the genes in the royal blue module indicated 

that the enriched genes in this module might have sig-
nificant potential biological functions that are closely 
related to metabolic pathways, steroid biosynthesis, 
fatty acid metabolism and biosynthesis of unsaturated 
fatty acids. Two hub genes (SQLE and SCD) were iden-
tified in the royal blue module that were detected by 
MCODE analysis. Moreover, the verification results 
were highly consistent with the above findings, and we 
found that the expression of the SQLE gene in patients 
with HCH and the SCD gene in patients with HTG 
was higher than that in healthy controls. Therefore, 

Fig. 2  Heatmap plot of the topological overlap in the gene network. In the heatmap, each row and column correspond to a gene, light colour 
denotes low topological overlap, and progressively darker red denotes higher topological overlap. Darker squares along the diagonal correspond to 
modules. The gene dendrogram and module assignment are shown along the left and top
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the identified SQLE gene was associated with the onset 
of HCH, the SCD gene was associated with the onset 
of HTG, and the underlying molecular mechanisms 
of these genes might be slightly different. In addition, 
SQLE and SCD were previously reported to be statin 

responsive, and they are known to be involved in sterol 
metabolism and transport; at the same time, there were 
significant changes in expression levels in the B-cells in 
response to statin treatment [38], and therefore, SQLE 
and SCD may be new targets for lipid-lowering therapy.

Fig. 3  Clustering dendrogram of genes. Gene clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity. The 
coloured row below the dendrogram indicates module membership identified by the dynamic tree cut method, together with assigned merged 
module colours and the original module colours
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Fatty acids and cholesterol are essential lipids involved 
in many crucial biological processes; however, exces-
sive free fatty acids and free cholesterol are major risk 
factors for type 2 diabetes and atherosclerosis [39]. Pre-
vious studies on intermediate metabolites in choles-
terol biosynthesis have shown that the first oxidative 
step in cholesterol biosynthesis is catalysed by squalene 

monooxygenase (SQLE), a crucial regulator downstream 
of HMG-CoA reductase (HMGCR​) in cholesterol syn-
thesis [40]. Meanwhile, SQLE is suggested as the second 
rate-limiting enzyme in cholesterol synthesis [41, 42]. 
Inhibition of SQLE expression could effectively reduce 
cholesterol synthesis [43, 44], and the cholesterol-lower-
ing effect is caused by the combination of multiple levels. 

Fig. 4  Module-feature associations. Each row corresponds to a module Eigengene, and the column corresponds to the clinical phenotype. Each 
cell contains the corresponding correlation in the first line and the P-value in the second line. The table is colour-coded by correlation according to 
the colour legend
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First, SQLE and HMGCR​ act as direct targets of the sterol 
regulatory element binding protein 2 (SREBP2) transcrip-
tion factor and play a crucial regulatory role in most cho-
lesterol biosensor genes [45, 46]. Second, the N-terminus 
of the SQLE protein may contain a cholesterol-sensitive 
region that mediates the protease degradation of SQLE 
in a cholesterol-dependent manner by relying on an E3 

ubiquitin ligase such as MARCH [47]. Interestingly, 
oleate acts as an unsaturated fatty acid and can stabilize 
SQLE by blocking MARCH6-mediated degradation [48]. 
In addition, Masanori Honsho et  al. also noticed that 
inhibition of SQLE expression through elevating plas-
malogen levels may be a novel and alternative potential 
method to reduce cholesterol synthesis [40]. Similarly, 

Fig. 5  GO functional and KEGG pathway enrichment analyses for genes in the object module. The x-axis shows the number of genes, and the 
y-axis shows the GO and KEGG pathway terms. The -log10 (P-value) of each term is coloured according to the legend. (A): GO functional enrichment 
analysis. (B): KEGG pathway enrichment analysis

Fig. 6  PPI network construction and identification of hub genes. (A) PPI network of genes in the  royal blue module. The edge shows the 
interaction between two genes. Significant modules identified from the PPI network using MCODE with a score > 4.0. (A-1) Molecular-1 with 
MCODE score = 17.29. (A-2) Molecular-2 with MCODE score = 4.4
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the KEGG analyses in the current study indicated that 
SQLE was mainly involved in metabolic pathways and 
steroid biosynthesis.

Metabolic risk factors such as insulin resistance, obe-
sity, hypertension and dyslipidaemia are correlated with 
each other, so their combination is generally referred to 
as “metabolic syndrome” (MetS). Abnormal  stearoyl-
coenzyme A desaturase (SCD)  expression/activity has 
been noticed in subjects with metabolic syndrome, indi-
cating that SCD may be related to the pathogenesis of 
metabolic syndrome. By querying the GENE database 
in NCBI, we noticed that SCD (also known as SCD1; 
FADS5; SCDOS; hSCD1; MSTP008; gene ID: 6319, 
HGNC: 10571, OMIM: 604031) is positioned on chromo-
some 10q24.31 (exon count: 6) and encodes a biological 
synthase, which is mainly involved in the metabolism of 
fatty acids, especially oleic acid. This protein is an intact 

membrane protein located in the endoplasmic reticulum 
and is a member of the fatty acid desaturase family. Her-
man-Edelstein M et al. proved that SREBPs are transcrip-
tion factors that activate the synthesis of fatty acids (FAs), 
triglycerides (TGs), and cholesterol, and SREBP2 acti-
vates cholesterol production, whereas SREBP1 primar-
ily activates FA and TG synthesis [49]. ATP-citrate lyase 
(ACLY), a cytosolic enzyme that generates acetyl-CoA for 
cholesterol and de novo fatty acid synthesis, is a potential 
target for hyperlipidaemic intervention [50]. ACLY acts 
as a critical enzyme involved in de novo fatty acid syn-
thesis and catalyses the conversion of citrate to cytosolic 
acetyl-CoA. Acetyl-CoA is converted to malonyl CoA via 
acetyl-CoA carboxylase (ACC​), which plays a key role in 
the first committed step in the synthesis of fatty acids 
[51]. SCD is another key rate-limiting enzyme in fatty 
acid metabolism downstream of ACLY; it can convert 

Fig. 7  Validation with RT-qPCR (a) and the relationship between genes and lipid parameters in the control (b), HCH (c) and HTG (d) groups. 
*P < 0.001
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different saturated fatty acids into monounsaturated fatty 
acids, and its expression is directly regulated by SREBP1 
[52–55]. Both animal and human studies have shown 
that SCD is associated with obesity and insulin resist-
ance [56, 57]. Mice with the SCD gene exhibited reduced 
diet-induced weight gain and improved insulin resist-
ance compared to wild-type controls [58]. Deletion of 
the SCD1 gene product in mice could effectively improve 
insulin sensitivity, reduce plasma non-HDL cholesterol 
and triglyceride levels and liver lipid accumulation and 
increase beneficial HDL cholesterol levels [59]. Daniel 
Castellano-Castillo et  al. also found a negative relation-
ship between SCD DNA methylation and BMI and the 
MetS index [60]. In the current study, we also noticed 
that SCD was mainly involved in fatty acid metabolism 
and the biosynthesis pathways of unsaturated fatty acids.

Several recent studies have indicated that smoking 
[61, 62] and excessive drinking [63] were associated 
directly to HLP development and progression along 

with its complications. In recent years, the influence 
of smoking on HLP has attracted increasing attention. 
A compelling research has indicated the existence of 
lower HDL-C and higher TC, LDL-C and TG levels in 
smokers than in non-smokers [61]. In addition, ather-
osclerosis formation has also been shown to be influ-
enced by different alcohol doses [64]. Moderate alcohol 
consumption may be protective against cardiovascular 
events, a phenomenon that has been attributed to ele-
vated levels of ApoA1 and HDL-C [65]. Nevertheless, 
frequent heavy drinking leading to dyslipidaemia, alco-
holic fatty liver and abnormal liver function is known 
to increase risk of CAD mortality [66]. In the present 
study, we found that the percentage of participants 
who smoking and excessive drinking was greater in 
the hyperlipidaemic group than in the normal group. 
Therefore, the preventive effect of a healthy lifestyle on 
hyperlipidaemia should not be ignored when exploring 
new therapeutic targets for hyperlipidaemia.

Table 2  Comparison of demographic, lifestyle characteristics and serum lipid levels of the participants

SBP Systolic blood pressure; DBP Diastolic blood pressure; PP Pulse pressure; Glu Glucose; HDL-C high-density lipoprotein cholesterol; LDL-C low-density lipoprotein 
cholesterol; Apo Apolipoprotein; TC Total cholesterol; TG Triglyceride
1  Mean ± SD determined by t-test
2  Median (interquartile range) tested by the Wilcoxon–Mann–Whitney test
3  The rate or constituent ratio between the different groups was analyzed by the chi-square test

Characteristic Control (n = 462) HCH (n = 485) HTG (n = 474) PHCH vs. controls PHTG vs. controls

Male/female3 229/233 236/249 232/241 0.780 0.870

Age (years)1 57.60 ± 8.81 58.13 ± 9.69 57.10 ± 7.61 0.379 0.359

Height (cm)1 159.83 ± 8.20 160.66 ± 7.93 159.92 ± 8.11 0.114 0.771

Weight (kg)1 58.98 ± 9.90 62.66 ± 10.09 60.52 ± 11.08 1.97E−8 0.021

Body mass index (kg/m2)1 23.05 ± 3.32 24.21 ± 3.12 23.61 ± 3.67 3.59E−8 0.014

Waist circumference1 74.50 ± 8.47 78.37 ± 8.76 81.10 ± 9.21 1.00E−11 4.10E−28

Smoking, n %3

 Non-smoker 355 331 349

 ≤ 20 cigarettes/day 98 114 73

 > 20 cigarettes/day 9 40 52 1.73E−5 4.42E−8

Alcohol, n %3

 Non-drinker 377 354 363

 ≤ 25 g/day 45 55 44

 > 25 g/day 40 76 67 0.002 0.031

SBP (mmHg)1 135.49 ± 22.58 139.52 ± 22.56 141.15 ± 20.42 0.006 1.08E−4

DBP (mmHg)1 82.45 ± 12.42 84.01 ± 11.71 85.15 ± 11.72 0.047 0.001

PP (mmHg)1 53.04 ± 17.77 55.51 ± 18.19 56.00 ± 14.43 0.035 0.007

Glu (mmol/L)1 6.14 ± 1.42 6.44 ± 1.58 6.35 ± 1.32 0.002 0.015

TC (mmol/L)1 4.37 ± 0.64 5.80 ± 0.50 4.46 ± 0.37 9.42E−47 0.007

TG (mmol/L)2 0.99(0.53) 1.15(0.45) 2.30(1.03) 4.46E−9 1.69E−84

HDL-C (mmol/L)1 1.64 ± 0.48 1.48 ± 0.43 1.44 ± 0.46 2.56E−8 7.22E−11

LDL-C (mmol/L)1 2.50 ± 0.55 3.52 ± 0.80 2.79 ± 0.86 4.89E−32 1.86E−9

ApoA1 (g/L)1 1.33 ± 0.24 1.23 ± 0.25 1.25 ± 0.24 3.49E−11 4.66E−8

ApoB (g/L)1 0.98 ± 0.17 1.02 ± 0.18 1.07 ± 0.21 0.002 1.06E−11

ApoA1/ApoB1 1.39 ± 0.33 1.25 ± 0.40 1.22 ± 0.39 1.91E−8 7.62E−12
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This research had several limitations. First, this is a 
single-centre study comprising a small patient num-
ber, and large multicentre studies are necessary to vali-
date our findings. Second, the molecular mechanisms 
of SQLE and SCD involved in HLP are still not fully 
defined and require further cytology and animal experi-
ments to further outline their respective roles in  vivo 
and in vitro.

Conclusions
WGCNA identified that the royal blue module was sig-
nificantly associated with TC, TG and non-HDL. GO 
and KEGG enrichment analyses revealed that the hub 
genes of SQLE were associated with TC and that SCD 
was associated with TG metabolism. The verification 
results of RT-qPCR revealed that the expression of SQLE 
in hypercholesterolaemia and SCD in hypertriglyceri-
daemia was higher than that in normal controls, which 
further increased the credibility of the conclusion. Thus, 
we speculated that SQLE may be a novel target for cho-
lesterol-lowering therapy and that SCD may be a novel 
target for triglyceride-lowering therapy.
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