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Abstract 

Homocysteine is associated with several diseases, and a series of dietary factors are known to modulate homocyst-
eine levels. As mice are often used as model organisms to study the effects of dietary hyperhomocysteinemia, we 
collected data about concentrations of vitamin B12, vitamin B6, folate, methionine, cystine, and choline in mouse diets 
and the associated plasma/serum homocysteine levels. In addition, we more closely examined the composition of 
the control diet, the impact of the mouse strain, sex and age, and the duration of the dietary intervention on homo-
cysteine levels. In total, 113 out of 1103 reviewed articles met the inclusion criteria. In the experimental and control 
diets, homocysteine levels varied from 0.1 to 280 µmol/l. We found negative correlations between dietary vitamin B12 
(rho = − 0.125; p < 0.05), vitamin B6 (rho = − 0.191; p < 0.01) and folate (rho = − 0.395; p < 0.001) and circulating levels 
of homocysteine. In contrast, a positive correlation was observed between dietary methionine and homocysteine 
(methionine: rho = 0.146; p < 0.05). No significant correlations were found for cystine or choline and homocysteine 
levels. In addition, there was no correlation between the duration of the experimental diets and homocysteine 
levels. More importantly, the data showed that homocysteine levels varied widely in mice fed control diets as well. 
When comparing control diets with similar nutrient concentrations (AIN-based), there were significant differences in 
homocysteine levels caused by the strain (ANOVA, p < 0.05) and age of the mice at baseline (r = 0.47; p < 0.05). When 
comparing homocysteine levels and sex, female mice tended to have higher homocysteine levels than male mice 
(9.3 ± 5.9 µmol/l vs. 5.8 ± 4.5 µmol/l; p = 0.069). To conclude, diets low in vitamin B12, vitamin B6, or folate and rich 
in methionine are similarly effective in increasing homocysteine levels. AIN recommendations for control diets are 
adequate with respect to the amounts of homocysteine-modulating dietary parameters. In addition, the mouse strain 
and the age of mice can affect the homocysteine level.
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Introduction
Homocysteine is a sulfur-containing essential amino 
acid. Its accumulation is associated with several dis-
eases, including cardiovascular diseases such as stroke, 
cancer, Alzheimer’s disease and Parkinson’s disease [1]. 
Homocysteine is a component of one-carbon metabo-
lism that is involved in the provision of methyl groups 
for biological methylation reactions. The enzyme 

S-adenosylmethionine synthetase catalyzes the synthesis 
of S-adenosylmethionine (SAM) through the reaction of 
methionine and adenosine triphosphate. SAM, an impor-
tant methyl donor for methylation reactions, is converted 
to S-adenosylhomocysteine (SAH) after dispensing the 
methyl group. The formation of homocysteine from SAH 
is catalyzed by adenosylhomocysteinase. Homocysteine 
can be converted to methionine through the vitamin 
B12-dependent enzyme methionine synthase [2]. The 
acquired methyl group for remethylation comes from 
5-methyltetrahydrofolate or from betaine [3]. Folate is 
the precursor of tetrahydrofolate [4], which is converted 
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through methyl-tetrahydrofolate reductase to 5-methyl-
tetrahydrofolate. Betaine can be formed from its precur-
sor choline [5]. Homocysteine can also be converted to 
cystathionine via transsulfuration through the vitamin 
B6-dependent enzyme cystathionine β-synthase [6].

The metabolic steps clearly show that several nutrients 
are involved in the one-carbon pathway and therefore 
can modulate homocysteine levels: methionine, vita-
min B12, B6, folate and choline (Fig. 1). Thus, any excess 
in methionine intake or deficiencies in vitamin B12, B6, 
folate and choline can contribute to an increase in homo-
cysteine levels [7].

Mice are often used as models of induced hyperhomo-
cysteinemia and to study the impact of homocysteine on 
disease development. Thus, the current review evalu-
ates different diets regarding their efficacy in increasing 
homocysteine levels in mice. We particularly focused 
on vitamin B12, vitamin B6, folate, the sulfur-containing 
amino acids methionine and cystine, and choline. In 
addition to the experimental diets, special focus was also 
placed on the control diets, which were used as reference. 
Additionally, we reviewed the impact of mouse strains, 
sex, age and feeding period on plasma/serum homocyst-
eine levels. This review may be used as a reference for 
planning future nutrition studies on this topic.

Methods
A systematic literature search was conducted using the 
database PubMed and the search items (vitamin B12 OR 
cobalamin OR vitamin B6 OR pyridoxine OR B vitamins 
OR folic acid OR folate OR folates OR homocysteine 
OR hyperhomocysteinemia) AND (mice OR mouse OR 
murine) in the title of publications. Studies were included 
if they met the following criteria: (I) the study was written 

in English and published through July 2020, (II) wild-type 
mice were used as the model organism, and (III) plasma 
or serum homocysteine levels were measured. Stud-
ies were excluded when nutrients were administered via 
injections, gavage or drinking water or when any kind of 
surgery was performed. A total of 113 studies with 305 
data sets (Additional file 1: Table S1) were eligible to be 
included in the evaluation of this review.

The following data were extracted from each study: 
mouse strain, sex, age and/or body weight at baseline, 
duration of feeding, dietary concentrations of vitamin 
B12, vitamin B6, folate, the added S-containing amino 
acids methionine and cystine, choline and plasma 
or serum homocysteine levels (in the following term 
"plasma" is used for plasma and serum concentrations). 
If diet composition was not shown in the publications 
but was based on commercial diets, we added the manu-
facturer’s information on nutrient contents. If diets were 
termed AIN-based, we used data on the composition of 
the AIN-93/G and AIN-93/M diets [8]. Otherwise, cor-
responding authors were asked for further information 
(which also included information regarding strain, sex or 
age of the mice as well as duration of dietary interven-
tion). Correlations between plasma homocysteine levels 
(means and medians) and dietary compounds, age of the 
mice and duration of dietary intervention were analyzed 
using Pearson’s correlation testing since variables are 
normally distributed and Spearman correlation since var-
iables are not normally distributed. Differences between 
plasma homocysteine levels and sex variables were ana-
lyzed using Student’s t test, and strain differences were 
analyzed with Levene’s test to assess homogeneity of 
variances and single-factor analysis of variance (ANOVA) 
followed by Hochberg’s GT2 post hoc test (SPSS 2020).

Results
Dietary parameters
In 56 out of 113 studies, the composition of the experi-
mental diets was described in detail. Experimental 
diets had vitamin B12 concentrations varying from 0 to 
81.6 µg/kg diet, vitamin B6 concentrations varying from 0 
to 22 mg/kg diet, folate concentrations varying from 0 to 
40 mg/kg diet, methionine + cystine concentrations vary-
ing from 0 to 24.3 g/kg diet, and choline concentrations 
varying from 0 to 3.5 g/kg diet (Fig. 2).

In addition to the experimental diets, we also evaluated 
the control diets that were used as a reference, especially 
with regard to their potential to minimize homocyst-
eine levels. In 85 out of 113 studies, the composition of 
the control diets was described in detail. Studies have 
shown high variations in homocysteine-relevant nutri-
ents in control diets. The concentration of vitamin B12 
varied from 10 to 100 µg/kg diet, that of vitamin B6 from 

Fig. 1  The biochemical pathways of homocysteine involving 
vitamin B12, vitamin B6, folate, methionine and choline. SAH—
S-adenosylhomocysteine, SAM—S-adenosylmethionine, THF—
tetrahydrofolate
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5.4 to 28 mg/kg diet, that of folate from 0.5 to 16 mg/kg 
diet, that of methionine and cysteine from 0 to 13  g/kg 
diet, and that of choline from 0 to 3.5 g/kg diet (Fig. 2). 
Compared to nutrient recommendations for mice [8], 
concentrations of vitamin B12, vitamin B6, folate and 
S-containing amino acids in the control diets used were 
often markedly higher (Fig. 2). However, AIN-based con-
trol diets were administered in only 14 out of 113 studies 
(Table 1 and Additional file 1: Table S1).

In mice fed the experimental or control diets, circulat-
ing homocysteine levels varied from 0.1 to 280  µmol/l. 
Analysis of the associations between components of the 
experimental and control diets and plasma homocyst-
eine levels revealed negative correlations for vitamin 
B12 (rho = − 0.125; p < 0.05), vitamin B6 (rho = − 0.191; 
p < 0.01) and folate (rho = − 0.395; p < 0.001; Fig.  3). 
A positive correlation was observed between dietary 
methionine and plasma homocysteine levels (methio-
nine: rho = 0.146; p < 0.05; Fig.  3). No significant corre-
lations were found for homocysteine levels and dietary 
cystine (rho = − 0.076; p > 0.05) or choline (rho = 0.044; 
p > 0.05). The duration of the analyzed feeding experi-
ments varied between 3 and 17  weeks. However, there 
was no correlation between feeding duration and plasma 
homocysteine level (r = − 0.05; p > 0.5).

Strain, sex, and age of mice
When comparing the circulating homocysteine levels in 
mice resulting from all analyzed control diets (including 
AIN-based control diets), we found varying homocyst-
eine levels ranging from 0.1 to 24.1  µmol/l (Additional 
file 1: Table S1). Surprisingly, homocysteine levels in mice 
consuming strictly AIN-based control diets also varied in 
a wide range (from 0.1 to 22.5 µmol/l; Table 1), indicating 
that parameters other than nutrients influenced homo-
cysteine levels.

In mice that received AIN-93-based control diets 
(Table  1), there were differences in homocysteine levels 
related to the strain (p < 0.05; Fig. 4) and age of the mice 
at baseline (r = 0.474; p < 0.05). When comparing homo-
cysteine levels and sex, female mice tended to have higher 
homocysteine levels than male mice (9.3 ± 5.9 µmol/l vs. 
5.8 ± 4.5 µmol/l; p = 0.069, Table 1).

Discussion
The current review shows that hyperhomocysteinemia 
can be induced by numerous different dietary interven-
tions, such as a reduction in vitamin B6, vitamin B12 or 
folate concentration and an increase in methionine con-
centration. Study data showed that dietary cystine and 
choline had no effects on plasma homocysteine levels in 

Fig. 2  Boxplots show medians, interquartile ranges and 1.5 × interquartile ranges of concentrations of vitamin B12 (µg/kg), vitamin B6 (mg/
kg), folate (mg/kg), methionine + cystine (g/kg) and choline (g/kg) in control (gray box, n = 118 data sets out of 85 studies) and experimental 
(white box, n = 137 data sets out of 56 studies) diets, which were used to increase plasma levels of homocysteine. AIN-93-based nutrient 
recommendations [8] for control diets are depicted as dashed lines for each nutrient. For vitamin B12, vitamin B6 and folate the medians coincide 
with the 25th percentile
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mice. In addition, there was no correlation between the 
duration of feeding the experimental diets and plasma 
homocysteine levels. When diets were fed over varying 
periods, in most cases, there was no difference between 
homocysteine levels at different time points (Addi-
tional file 1: Table S1). One study found differences after 
2 weeks of feeding the experimental diets, but no differ-
ences between 2 and up to 10 weeks. Thus, dietary inter-
ventions to increase homocysteine levels appear to be 
rapidly effective.

The type of control diet used in these studies showed 
great variations (Additional file  1: Table  S1). The intake 
of AIN-93-based diets resulted in homocysteine levels 
similar to those of the other control diets. Hence, higher 
doses of vitamin B12, vitamin B6 and folate than recom-
mended in the AIN-93 diet [8] do not seem to further 
decrease homocysteine levels. However, it should be 

mentioned that AIN-based control diets were only used 
in 14 out of 113 studies (Additional file 1: Table S1).

Plasma levels of homocysteine depend on the mouse 
strain because the growth rate of mice and thus the nutri-
ent requirements depend on the genetic background 
[21]. Older mice have higher homocysteine levels than 
younger mice, which is in line with homocysteine data 
in humans [22, 23]. An age-related reduction in renal 
function is attributable to this effect [24]. In addition, 
females tend to have higher homocysteine levels than 
males. It is assumed that the renal activity of cystathio-
nine β-synthase, which catalyzes an important step in the 
formation of cysteine from homocysteine, is regulated by 
testosterone [25] and thus is commonly higher in males 
than in females [26].

In addition, it must be kept in mind that the different 
methods used for quantification of homocysteine such 

Table 1  Plasma homocysteine levels in mice fed AIN-93-based control diets

f, female; m, male; n, number of included mice; nda, no data available; wks, weeks
a Mean ± standard deviation
b Mean ± standard error
c Median ± interquartile range
# Read from diagrams of data from mice that received AIN-93-based control diets containing 25 µg vitamin B12, 7 mg vitamin B6, 2 mg folate, 3 g methionine + cystine 
and 2.5 g choline per kg diet; only studies with complete data sets about mouse strain, sex, age at baseline, and the duration of feeding (in weeks) were included

Mouse strain Sex Age at baseline Duration (weeks) Plasma Hcy (µmol/l) n References

129/Sv f + m 3 wks 6 0.1# 15 [9]

129/Sv f + m 3 wks 9 0.1# 15 [9]

129/Sv f + m 3 wks 9–13 2.0 ± 0.6b nda [10]

CD-1 f + m Adult 9 2.5# 13 [11]

C57BL/6 m 6 wks 8 2.5 ± 0.7b nda [12]

C57BL/6 m 6 wks 4 2.6 ± 0.8b nda [12]

129/Sv f + m 3 wks 9 2.8 ± 0.3nda nda [13]

Swiss m 3 wks 27 3.0 ± 0.4b 6–8 [14]

C57BL/6 m 3 wks 5 3.0 ± 2.2c nda [15]

C57BL/6 m 6 wks 8 3.3 ± 0.8b 6 [16]

C57BL/6 f 8 wks 9 3.6 ± 0.7b 15 [17]

SAMP8 m 13 wks 4 4.0# nda [18]

BALB/c f 17 wks 2 5.2 ± 0.2b 23 [19]

Swiss m 3 wks 10 5.2 ± 0.6b 6–8 [14]

C57BL/6 f 3 wks 5 5.4 ± 1.7c nda [15]

C57BL/6 f 6–8 wks 7 5.5 ± 5.4c 10 [15]

SAMP8 m 17 wks 26 6.5# 15 [18]

SAMR1 m 17 wks 26 6.5# nda [18]

Swiss f 3 wks 10 7.1 ± 0.7b 6–8 [14]

Swiss f 3 wks 27 8.1 ± 0.8b 6–8 [14]

Swiss m 3 wks 1 8.7 ± 0.9b 6–8 [14]

Swiss f Adult 3 9.2# 6–8 [14]

Swiss f 3 wks 1 9.7 ± 0.6b 6–8 [14]

C57BL/6 f 7 wks 2 16.7 ± 1.5a 20 [20]

BALB/c m 17 wks 52 18# nda [19]

BALB/c f 17 wks 52 22.5# nda [19]
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as chromatography, immunoassays or capillary elec-
trophoresis could have influenced the results [27]. In 
our review, the high-performance liquid chromatogra-
phy (HPLC) was the most frequently used method to 
quantify plasma homocysteine (in 72 out of 113 stud-
ies, Additional file 1: Table S1).

To conclude, vitamin B12, vitamin B6, folate, and 
methionine are similarly effective in reducing homo-
cysteine levels. AIN recommendations for control diets 
are adequate with respect to the amounts of homocyst-
eine-modulating dietary parameters. In addition to die-
tary parameters, the mouse strain and the age of mice 
can affect homocysteine levels.

Abbreviations
ANOVA: Analysis of variance; SAH: S-adenosylhomocysteine; SAM: 
S-adenosylmethionine.
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Fig. 3  Correlations between the diet ingredients vitamin B12 (A), vitamin B6 (B), folate (C) as well as methionine (D) and the plasma homocysteine 
level (logarithmic scale) of mice fed experimental or control diets; Spearman correlation (rho) was performed, since variables are not normally 
distributed; n = 255 data sets
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Fig. 4  Circulating plasma homocysteine levels (µmol/l) in mice 
of different strains that received AIN-93-based control diets 
containing 25 µg vitamin B12, 7 mg vitamin B6, 2 mg folate, 3 g 
methionine + cystine and 2.5 g choline per kg diet; mean + standard 
deviation, when more than one data set was available; different 
letters indicate a statistically significant difference (p < 0.05, ANOVA 
followed by Hochberg’s GT2 post hoc test); n, number of included 
data sets (Table 1); number of integrated animals per study (ranges) 
are stated in square brackets; nda, no data available
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