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Cholecalciferol supplementation lowers 
leptin and TMAO but increases NO and VEGF-A 
levels in obese vitamin D deficient patients: 
Is it one of the potential cardioprotective 
mechanisms of vitamin D?
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Abstract 

Background: Vitamin D deficiency is one of the most common health issues in developed countries. Obese patients 
are most at risk of having serum 25‑hydroxyvitamin  D3 (25(OH)D3) levels that are too low due to the accumulation of 
vitamin D in adipose tissue. While the effects of a deficiency on the skeletal or immune system are known, the effects 
on the cardiovascular system are not yet clear. Our study investigates the effect of cholecalciferol supplementation in 
obese patients on selected biomarkers associated with cardiovascular diseases (CVDs).

Methods: The study enrolled 33 obese patients with insufficient 25(OH)D3 levels. For three months, the subjects 
supplemented with cholecalciferol at a dose of 2000 IU/day. Concentrations of nitric oxide (NO), vascular endothelial 
growth factor A (VEGF‑A), leptin, trimethylamine N‑oxide (TMAO) and soluble suppression of tumorigenicity 2 (sST2) 
were measured in baseline samples using ELISA (BioTek EPOCH). 25(OH)D3 levels measured on Beckman Coulter DXI 
800 by chemiluminescence method.

Results: After supplementation, 25(OH)D3 levels increased significantly. Normal levels were achieved in most 
patients. A statistically significant reduction leptin and TMAO levels was observed. At the same time, NO and VEGF‑A 
levels increased statistically significantly.

Conclusion: This study indicates that restoring normal 25(OH)D3 levels in obese people reduces the concentration 
of pro‑inflammatory factors associated with cardiovascular diseases. Reducing inflammation and the potential impact 
on vascular reactivity leads to the conclusion that cholecalciferol supplementation in obese patients may benefit the 
cardiovascular system.
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Introduction
The vitamin D receptor (VDR) is located in endothelial 
cells, vascular smooth muscle and cardiomyocytes [1]. 
Many studies have described the importance of vitamin 
D deficiency in the development of atherosclerosis, coro-
nary heart disease, hypertension, heart failure and atrial 
fibrillation. Moreover, the cardioprotective role of this 
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vitamin in patients after myocardial infarction has been 
described [2].

There is evidence that vitamin D can modulate the 
pathogenesis of atherosclerosis. An undoubted role in 
the development of atherosclerotic plaque is played by 
a chronic inflammatory process. Inflammation together 
with oxidative stress promotes impaired vascular perfu-
sion, resulting in an increased risk of coronary artery dis-
ease [3]. Tare et al. observed that mesenteric arteries of 
25(OH)D3 deficient rats were characterised by a twofold 
decrease in their ability to diastole. The pathomechanism 
of this process is related to impaired NO signalling and 
endothelium-derived hyperpolarizing factor (EDHF) [4, 
5]. In the Framingham Offspring Study, which included 
1739 subjects without heart disease, the risk of a car-
diovascular incident was 53% to 80% higher in subjects 
with low 25(OH)D3 levels during a seven-year prospec-
tive observation [6]. Anderson et al. reported that Ameri-
can patients with vitamin D deficiency, defined as serum 
25(OH)D3 levels < 30  ng/ml, reached 60% and signifi-
cantly correlated with the occurrence of type 2 diabetes, 
hypertension, coronary heart disease (CHD), myocardial 
infarction (MI), heart failure (HF) and was associated 
with higher overall mortality [7].

Vitamin D deficiency likely leads to the development of 
cardiovascular diseases (CVDs) by an overactive renin–
angiotensin–aldosterone system (RAAS). It has also been 
proven that low serum 25(OH)D3 concentration is asso-
ciated with endothelial dysfunction and increases inflam-
mation [8].

Many studies have shown that obese people have 
lower levels of 25(OH)D3 the serum compared to peo-
ple of normal weight. A potential explanation for this 
phenomenon is vitamin D sequestration in adipose tis-
sue [9]. Another hypothesis is that decreased 25(OH)D3 
levels in obese people are due to a sedentary lifestyle and 
lack of physical activity. It is associated with lower expo-
sure to sunlight and reduced skin synthesis [10]. Targher 
et al. suggest that lower 25(OH)D3 levels may be associ-
ated with impaired 25-hydroxylation in non-alcoholic 
fatty liver disease (NAFLD), which is common in obese 
patients [11].

We can distinguish two types of adipose tissue—
white adipose tissue (WAT) and brown adipose tis-
sue (BAT) [12]. Vascular endothelial growth factor A 
(VEGF-A) is indicated as an important protein in the 
development of BAT, which shows increased metabo-
lism in contrast to WAT [13]. WAT performs an auto, 
para- and endocrine function, and the substances it 
secretes, called adipokines, are pro-inflammatory and 
anti-inflammatory. The pro-inflammatory adipokines 
include leptin, tumor necrosis factor (TNF-α), resistin, 

interleukin 6 (IL-6) and visfatin [14]. Obesity is asso-
ciated with chronic inflammation that results from 
excess body fat [15, 16]. Recent clinical studies show 
a positive correlation between increased serum levels 
of trimethylamine N-oxide (TMAO) and an increased 
risk of adverse cardiovascular events. There is compel-
ling evidence suggesting a relationship between TMAO 
and inflammation [17]. Studies have suggested that not 
only low vitamin D level but also high level of TMAO, 
which is associated with changes in the gut microbiota 
of obese individuals, are associated with the severity of 
NAFLD [18].

Nitric oxide (NO) plays an important role in regu-
lating blood flow and pressure [19]. It is produced not 
only in the endothelium, but also in cardiomyocytes, 
smooth muscle cells, monocytes and macrophages, 
and in thrombocytes. It has an anticoagulant and anti-
platelet effect by inhibiting the formation of the active 
GPIIb/IIIa receptor conformation, and affects the con-
tractility of cardiomyocytes [20].

Leptin is a protein hormone belonging to the group 
of adipokines, produced by adipocytes. This peptide 
has been shown to activate the renin–angiotensin–
aldosterone axis (RAA), increase the reabsorption of 
sodium in the renal tubules and stimulate the activity of 
the sympathetic nervous system [21].

The relationship between VEGF-A and the heart is 
two-sided. On the one hand, VEGF-A activates cardio-
myocytes, inducing morphogenesis, contractility and 
wound healing. The concentration of VEGF-A increases 
in cardiomyocytes during inflammation and mechani-
cal damage to the heart. Moreover, high concentrations 
of VEGF-A have been found in patients suffering from 
various CVDs, which are often correlated with poor 
prognosis and disease severity [22].

A new biomarker of heart failure is the ST2 (suppres-
sion of tumorigenicity 2) receptor, which belongs to the 
interleukin 1 (IL-1) receptor family. Of the 4 known 
isoforms of this glycoprotein, 2 play a special role in 
the physiology and pathophysiology of the cardiovascu-
lar system: transmembrane (ST2L) and soluble (sST2), 
present in the blood [23]. A meta-analysis by Ip et  al. 
showed that sST2 significantly predicts severity and 
mortality in cardiovascular diseases and is a good pre-
dictor of mortality in patients with stable coronary dis-
ease and chronic heart failure [24].

The results of studies available in the literature on the 
discussed biomarkers remain inconclusive. We decided 
to investigate the effect of cholecalciferol supplementa-
tion in obese patients on the concentration of biomark-
ers with their potential role in CVD.
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Material and methods
The study population consisted of selected patients of 
Primary Care Clinic in Poland. Inclusion criteria for the 
study were: age (subjects over 18 years old) and obesity 
(according to BMI). Exclusion criteria for participation 
in the study were: nicotinism, hormone replacement 
therapy, history of myocardial infarction or stroke within 
the past year, cancer, dialysis, liver disease, osteoporo-
sis, pregnancy, vitamin D malabsorption (cystic fibrosis, 
Crohn’s disease), allergy to components contained in the 
tablet of the drug, refusal to draw blood for the study. All 
subjects were in good health and were not on any special 
diet. The study was conducted between October 2019 
and March 2020, eliminating the effect of UV-B radiation 
on dermal cholecalciferol synthesis. The study design was 
approved by the ethics committee of Collegium Medi-
cum in Bydgoszcz, Nicolaus Copernicus University, in 
Toruń (approval number KB48/2019). The study was 
conducted according to the criteria set by the declaration 
of Helsinki and each subject signed an informed consent 
before participating in the study.

42 patients were included in the study and consented 
to participate in it. Nine dropped out during the study or 
did not show up for repeat blood draws. 33 patients (17 
males and 16 females aged, 23–71) completed the study. 
Table 1 shows basic anthropometric data of the subjects.

Patients were screened for serum vitamin D level, 
determined as 25(OH)D3, and for markers such as NO, 

VEGF-A, leptin, TMAO and sST2. The criterion for 
serum 25(OH)D3 deficiency was a serum concentra-
tion < 30 ng/ml. Subsequently, patients received cholecal-
ciferol at a dose of 1000 IU (25 µg) per tablet. 180 tablets 
were the amount needed for 90 days of treatment. They 
were advised to take two tablets once daily after a meal in 
the morning for 3 months. After this time, serum 25(OH)
D3 and marker levels were controlled again (Table 2).

Body mass index (BMI) was calculated as weight in kil-
ograms divided by height in meters squared. The concen-
tration of 25(OH)D3 at all stages of the experiment was 
measured on a Beckman Coulter DXI 800 by the chemi-
luminescence method (mini Vidas Blue 25 H Vitamin D 
total quantitative kit). Biomarkers were determined with 
the ELISA method on a BioTek EPOCH Instrument using 
Elisa Kits by SunRed for factors as NO, leptin, TMAO, 
sST2, VEGF-2.

Statistical analysis
Data analysis were performed with Statistica 13.3. All 
results were presented as mean values with standard 
error of the mean (± SEM). Statistical significance was 
determined with the dependent t-test. The compliance 
of the results distribution with the normal distribution 
was checked using the Shapiro–Wilk test separately 
for the results obtained before (Time point 1) and after 
the 3-months cholecalciferol supplementation (Time 
point 2).Values of p ≤ 0.05 were considered statistically 
significant.

Results
After 3  months of supplementation with cholecalciferol 
2000  IU/day in obese people, a decrease in the level of 
leptin and TMAO as well as an increase in the level of 
NO and VEGF-A was observed. There were no statisti-
cally significant changes in serum sST2 concentration. 
The box plots (Fig.  1) show the concentrations of indi-
vidual markers and 25(OH)D3 before therapy (Sample 
1) and after 3  months of supplementation (Sample 2). 
Leptin concentration decreased from 16.90 ± 1.65  ng/
ml to 14.72 ± 1.78 ng/ml and TMAO concentration from 

Table 1 Anthropometric data of patients

Baseline After 3 months of 
supplementation

Male

Number 17

Age (mean) 40.59

BMI (kg/m2) 37.85 ± 5.92 37.98 ± 6.59 (p = 0.651)

Female

Number 16

Age (mean) 47.69

BMI (kg/m2) 35.92 ± 6.10 35.6 ± 6.33 (p = 0.052)

Table 2 Statistical data before and after supplementation

Mean ± SEM [1] Mean ± SEM [2] p value Δ

NO (µmol/l) 39.19 ± 10.96 70.02 ± 13.80 0.021  + 30.83 ± 12.38

Leptin (ng/ml) 16.90 ± 1.65 14.72 ± 1.78 0.029  − 2.18 ± 0.95

TMAO (ng/ml) 63.41 ± 12.59 59.98 ± 12.36 0.022  − 3.44 ± 1.42

VEGF‑A (pg/ml) 298.81 ± 27.44 322.91 ± 26.02 0.024  + 24.10 ± 10.13

sST2 (ng/ml) 46.75 ± 4.91 51.69 ± 4.28 0.065  + 4.94 ± 2.59

25(OH)D3 (ng/ml) 18.22 ± 1.10 29.89 ± 1.16  < 0.001  + 11.67 ± 1.05
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63.41 ± 12.59 ng/ml to 59.98 ± 12.36 ng/ml. A significant 
increase in VEGF-A (298.81 ± 27.44 vs. 322.91 ± 26.02 pg/
ml), NO (39.19 ± 10.96 vs. 70.02 ± 13.80  µmol/l) and 

25(OH)D serum levels (18.22 ± 1.10 vs. 29.89 ± 1.16  ng/
ml) was observed (Fig. 2).

Table  3 shows the gender distribution of 25(OH)
D3 levels before and after supplementation. Before the 

Fig. 1 Concentration of markers and 25(OH)D3 before (1) and after 3 months of cholecalciferol supplementation (2). A leptin, p = 0.029; B TMAO, 
p = 0.022; C NO, p = 0.021; D VEGF‑A, p = 0.024; E sST2, p = 0.065; F 25(OH)D3, p < 0.001
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supplementation, none of the patients was in the group 
with the optimal 25(OH)D3. After 3 months of treatment, 
the 25(OH)D3 level increased significantly in all the sub-
jects, and none of the patients was in the severely defi-
cient group. Most of the patients achieved suboptimal 
or optimal 25(OH)D3 levels (men 47.06% and 47.06%, 
women 50.00% and 43.75%).

According to WHO recommendations, 13 patients 
were classified as obesity grade I, 12 patients as obesity 
grade II, 7 patients as obesity grade III, and one patient as 
overweight (Table 4).

Discussion
Almost 10  years ago, Gotsman et  al. published a study 
in which they showed that vitamin D deficiency is asso-
ciated with a higher risk of death in patients with heart 
failure (HF) [25]. Patients who develop HF show lower 
serum 25(OH)D3 levels [25]. Researchers also observed a 
greater risk of subsequent HF in patients with vitamin D 
deficiency suffering from hypertension [26]. In the meta-
analysis by Bjelakovic et  al. on two-year cholecalciferol 
supplementation, lower mortality is observed among 
people with vitamin D supplementation compared to 

Fig. 2 Suggested mechanism for the effect of vitamin D on adipose tissue

Table 3 Distribution of 25(OH)D3 levels before and after supplementation according to gender (%)

Severe deficiency Deficiency Suboptimal Optimal

0–10 ng/ml  > 10–20 ng/ml  > 20–30 ng/ml  > 30–50 ng/ml

Baseline After 3 months of 
supplementation

Baseline After 3 months of 
supplementation

Baseline After 3 months of 
supplementation

Baseline After 
3 months of 
supplemetation

Male 23.53 0 35.29 5.88 41.18 47.06 0 47.06

Female 6.25 0 43.75 6.25 50.00 50.00 0 43.75
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the control group [27]. A study conducted on over two 
million Americans indicates that a higher daily intake 
of cholcelciferol correlates positively with a lower risk 
of CVDs in men, while in women this relationship was 
statistically insignificant [28]. These studies may indicate 
an important role of vitamin D in the proper functioning 
of the circulatory system. Our study evaluates the effect 
of cholecalciferol supplementation on serum biomark-
ers associated with CVDs (NO, leptin, TMAO, VEGF-A, 
sST2) in obese patients with 25(OH)D3 deficiency.

We found that leptin and TMAO levels decreased after 
3 months of cholecalciferol supplementation, while levels 
of NO and VEGF-A increased. There were no statistically 
significant changes in the serum concentration of sST2. 
It has been shown that both the observed decrease in 
the level of pro-inflammatory proteins and the increase 
in the level of VEGF-A positively correlate with a lower 
risk of CVD. In contrast, higher levels of sST2 indicate 
a higher risk of CVD. The role of NO in the peripheral 
regulation of the circulatory system is mainly related 
to the vasodilatory effect. The increase in NO synthe-
sis leads to vasodilation, which results in an increase in 
blood flow and a decrease in peripheral resistance in the 
circulatory system. The synthesis of NO in the vessels is 
mainly related to the activity of endothelial nitric oxide 
synthase (eNOS), which is regulated depending on vari-
ous factors, including serum 25(OH)D3 concentration 
[29, 30]. Al-Daghri et al. indicated a negative correlation 
between the concentration of NO and 25(OH)D3 in the 
serum of healthy adolescents [31]. On the other hand, 
Huang et  al. proved that calcitriol improves the func-
tioning of endothelial cells by increasing NO in patients 
with systemic lupus erythematosus [32]. According to the 
research of Andrukhova et  al., vitamin D improves the 
functioning of the endothelium by increasing the tran-
scription of genes encoding eNOS [33]. Studies in mice 
have shown that animals lacking eNOS or the neuronal 
nitric oxide synthase (nNOS) gene increase the risk of 
metabolic syndrome and possible vascular consequences 
[34]. Therefore, it seems that NO, apart from its vasodila-
tory effect, may play an important role in the pathogen-
esis of obesity.

In our study, the concentration of NO in patients was 
39.19 ± 10.96  µmol/L before cholecalciferol supplemen-
tation and increased to 70.02 ± 13.80 µmol/L after three 
months of supplementation (p = 0.021). The obtained 
results are consistent with the data published by Huang 
et al., who showed that vitamin D increases the expres-
sion of eNOS and increases the bioavailability of NO 
[32]. Wolf et  al. in their study assessed the relationship 
between serum 25(OH)D3 concentration and the suscep-
tibility of skin vessels to dilation under the influence of 
temperature. They observed that after four weeks of oral 
vitamin D supplementation in a dose of 2000 IU, a signifi-
cant increase in the mean concentration of 25(OH)D3 in 
the serum of the subjects was achieved (from 17.93 ± 5.24 
to 26.07 ± 3.73 ng/mL, p = 0.04). Cholecalciferol supple-
mentation for 4 weeks increased NO concentration and 
vasodilatation [35]. On the other hand, the meta-analysis 
by Akbari et  al. showed that cholecalciferol supplemen-
tation caused a significant decrease in high-sensitivity 
C-reactive protein (hs-CRP), but did not affect NO levels 
[36].

High level of leptin, positively correlates with risk 
of CV events like coronary heart disease (CHD) [37], 
stroke [38, 39] or coronary events [40]. Clinical trials 
have shown that elevated serum leptin levels are associ-
ated with the risk of hypertension [41]. This peptide has 
been shown to activate the renin–angiotensin–aldoster-
one system (RAAS), increase renal tubular sodium reab-
sorption and stimulate sympathetic activity. In our study, 
the concentration of leptin in patients was measured 
before and after the three-month supplementation with 
cholecalciferol. There was a significant decrease in leptin 
concentration from 16.9 ± 1.65 ng/ml to 14.72 ± 1.78 ng/
ml (p = 0.029). Manoy et  al. assessed the effect of vita-
min D on the levels of inflammatory markers (hs-CRP, 
IL-6) and leptin in patients with osteoarthritis. In this 
study, patients were supplemented with ergocalciferol 
at a dose of 40,000 IU every week for six months. There 
were no significant differences in the concentration of 
leptin and inflammatory markers [42]. However, this 
study should take into account the fact that people with 
chronic inflammatory disease took part in it. Moreover, 
supplementation with ergocalciferol and cholecalciferol 
differ from each other. Ergocalciferol has a lower affinity 
for vitamin D binding protein (VDBP), so its transport to 
the liver may be limited compared to cholecalciferol. In 
addition, ergocalciferol has a shorter serum half-life [43]. 
High serum leptin levels are associated with pathologi-
cal myocardial hypertrophy and ischemia, an increased 
risk of serious cardiovascular events, and a poorer prog-
nosis in patients with heart failure [44]. In a study by 
Mousa et al., cholecalciferol supplementation at a dose of 
4000 IU daily for 16 weeks in overweight or obese people 

Table 4 Obesity classification

BMI (kg/m2) WHO classification

 < 18.5 Underweight

18.5–24.9 Normal weight

25–29.9 Overweight

30–34.9 Obesity I grade

35–39.9 Obesity II grade

 > 40 Obesity III grade
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with a baseline 25(OH)D3 concentration ≤ 50  nmol/L 
did not cause significant differences in the concentra-
tion of adiponectin and leptin in the serum (p > 0.05) [45]. 
Research on the role of leptin and its effects on the body 
is still ongoing.

TMAO is generated from dietary choline, betaine, and 
L-carnitine. Multiple studies have suggested a correla-
tion between plasma TMAO levels and the risk of CVDs. 
Its levels positively correlates with ongoing atheroscle-
rosis [46], HF [47], CHD [48] and multivessel disease 
[49]. High levels TMAO indicate higher risk of athero-
sclerosis [50], first ischaemic stroke [51], as well as other 
CVDs and is associated with higher mortality among 
heart failure patients [52]. Most of the researchers show 
reverse correlation between VEGF-A level and CHD [53] 
and worse predictions for CHD patients [54]. Bernhard 
et al., indicate this relation may not be linear but may be 
reverted U-shaped [55]. According to their paper our 
patients are at the highest risk both before and after sup-
plementation. According to other researchers levels after 
supplementation in our group are observed in healthy 
controls. As most studies are in contrast to the results of 
Berhard et al., it rather seems that lower levels of VEGF-
A correlates with higher risk of CVDs. Three months of 
cholecalciferol therapy did not induce any statistically 
significant changes in serum levels of sST2. Our research 
results are consistent with the results of Francic et  al. 
They showed that oral cholecalciferol supplementation at 
a dose of 2800 IU/day for 8 weeks, despite a statistically 
significant increase in serum 25(OH)D3 concentration of 
the studied patients [25(OH)D3 (11.3(9.2–13.5) ng/mL; 
p < 0.001)] compared to placebo, did not change the sST2 
level [56].

Sarkar et  al. reports that VEGF-A expression is 
dependent on a biochemical pathway linked to the VDR. 
VDR activation by vitamin D increases VEGF-A syn-
thesis in vascular endothelial cells [57]. Research shows 
that the VDR is a transcription factor for the promoter of 
the gene encoding VEGF-A [58]. VDR is found in many 
cells, including adipocytes [59] and it seems justified that 
VEGF-A expression is also stimulated in them by a bio-
chemical mechanism dependent on vitamin D. Biosyn-
thesis of TMAO seems to depend on vitamin D. Obeid 
et  al. show that TMAO plasma levels are significantly 
lower after cholecalciferol supplementation [60]. Adi-
pose tissue, and more precisely WAT, apart from energy 
storage, also plays an endocrine role and is the largest 
gland in obese people [61]. It secretes many hormones, 
mainly leptin and to a lesser extent tumor necrosis factor 
α (TNFα) [62]. High levels of secreted TNFα and other 
pro-inflammatory cytokines indicate the existing inflam-
mation of WAT [63]. Endothelium may be another source 
of proinflammatory protein synthesis, and this process 

also appears to depend on leptin [64]. The present study 
seems to show that vitamin D interrupts this pathological 
positive feedback mechanism of prolonged inflammation 
by reducing the serum leptin concentration of patients 
after three months of cholecalciferol supplementation. 
In our opinion, this may be accomplished by the inhibi-
tory effect of vitamin D on TNFα secretion by M1 mac-
rophages or by inhibition of the action on lipocytes for 
the production of leptin. The secretion of inflammatory 
factors can also be stimulated by TMAO [65]. The effect 
of cholecalciferol supplementation on the reduction 
of serum TMAO levels may explain its potential anti-
inflammatory effect by reducing TNFα synthesis. In addi-
tion, the beneficial effect on adipose tissue results from 
the increase in VEGF-A concentration in WAT. As a 
result of angiogenesis in the WAT, there is a better blood 
supply and its saturation with oxygen [66]. While high 
levels of VEGF-A may indicate existing inflammation, 
there is no reason to believe that this is the case since a 
decrease in pro-inflammatory factors was observed in 
the patients studied. Mouse models of VEGF-A over-
expression in WAT showed better blood supply to this 
tissue, and the adipocytes themselves showed features 
of more metabolically active cells [67, 68]. Moreover, 
VEGF-A reduces the expression of leptin in adipose tis-
sue [69], which may be another part of the mechanism of 
the observed decrease in leptin levels. On the other hand, 
in murine models in which VEGF-A levels in WAT are 
decreased, higher levels of TNFα and leptin are observed 
[70]. Mahdaviani et  al. reported that the thermally and 
metabolically active BAT adipose tissue is characterized 
by a higher expression of VEGF-A compared to energy 
storage WAT [71]. Based on the above data, it can be con-
cluded that the correct level of 25(OH)D3 in the serum is 
essential for the maintenance of homeostasis in adipose 
tissue. In our opinion cholecalciferol supplementation 
in obese patients has a positive effect on adipose tissue 
and the gut microbiome. This leads to a reduction in the 
levels of inflammatory factors in the serum and may be 
responsible for a reduction in the risk of CVDs. Based 
on the beneficial effects of cholecalciferol supplemen-
tation on CVS shown in many studies, we believe that 
vitamin D may have beneficial clinical implications also 
in obese patients. Our study has some limitations, but in 
some respects it is in line with data published by other 
researchers. A limitation may be the methodological dif-
ferences between our research and those discussed in the 
discussion, as well as the relatively small of test group.

Conclusions
The data presented in our article indicate the potential 
effect of vitamin D on the concentration of some bio-
markers in the blood serum related to CVDs. We have 
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shown that cholecalciferol in a dose of 2000 IU/day in 
obese patients modifies the function of the vascular 
endothelium and selected parameters of inflammation. 
Our study provides important and valuable information 
at the molecular level. The three month vitamin D sup-
plementation was associated with a decrease in TMAO 
and leptin levels. Supplementation was associated with 
an increase in NO and VEGF-A. There was no statis-
tically significant change in sST2 concentration. The 
results of our study are consistent with the results of 
some researchers, but the data in the literature remain 
inconclusive. Further studies will verify whether the 
intervention undertaken by our team is significant 
in assessing the risk stratification of selected clinical 
aspects.
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