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Abstract
Background Gout prediction is essential for the development of individualized prevention and treatment plans. 
Our objective was to develop an efficient and interpretable machine learning (ML) model using the SHapley Additive 
exPlanation (SHAP) to link dietary fiber and triglyceride-glucose (TyG) index to predict gout.

Methods Using datasets from the National Health and Nutrition Examination Survey (NHANES) (2005–2018) 
population to study dietary fiber, the TyG index was used to predict gout. After evaluating the performance of six ML 
models and selecting the Light Gradient Boosting Machine (LGBM) as the optimal algorithm, we interpret the LGBM 
model for predicting gout using SHAP and reveal the decision-making process of the model.

Results An initial survey of 70,190 participants was conducted, and after a gradual exclusion process, 12,645 cases 
were finally included in the study. Selection of the best performing LGBM model for prediction of gout associated 
with dietary fiber and TyG index (Area under the ROC curve (AUC): 0.823, 95% confidence interval (CI): 0.798–0.848, 
Accuracy: 95.3%, Brier score: 0.077). The feature importance of SHAP values indicated that age was the most 
important feature affecting the model output, followed by uric acid (UA). The SHAP values showed that lower dietary 
fiber values had a more pronounced effect on the positive prediction of the model, while higher values of the TyG 
index had a more pronounced effect on the positive prediction of the model.

Conclusion The interpretable LGBM model associated with dietary fiber and TyG index showed high accuracy, 
efficiency, and robustness in predicting gout. Increasing dietary fiber intake and lowering the TyG index are beneficial 
in reducing the potential risk of gout.
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Introduction
Gout is one of the most common forms of inflamma-
tory arthritis caused by a sustained elevation of serum 
uric acid (UA) above the dissolved saturation level of 408 
µmol/L, leading to an inflammatory response and pain 
due to the precipitation of sodium urate crystals and 
their deposition in the joints and soft tissues [1]. Epide-
miologic surveys have shown that the prevalence of gout 
is 2.7–6.7% in countries with a Western lifestyle and that 
the heritability of hyperuricemia and gout ranges from 
27 to 41% worldwide to about 30% in Europe [2]. While 
gout was once thought to be simply a disorder of purine 
metabolism, current research favors a multifactorial 
autoinflammatory disease, with only about 25% of simple 
hyperuricemia developing into gout [3]. Gout is associ-
ated with several important comorbidities, including 
chronic kidney disease, kidney stones, obesity, diabetes, 
and cardiovascular disease, and with the overall mortal-
ity rate of gout sufferers increasing each year, gout has 
become a public healthcare issue of concern worldwide 
[4–6].

Studies have shown that insulin resistance (IR) is prev-
alent in type 2 diabetes mellitus and obese populations, 
and the classic method for assessing insulin sensitivity is 
the hyperinsulinemic-euglycemic clamp test [7]. How-
ever, the complexity of clinical manipulation limits its 
use, and the triglyceride-glucose (TyG) index has been 
recognized as a novel and reliable indicator of IR [8]. 
A variety of dietary components such as dietary fiber, 
energy, and nutrients can influence the inflammatory 
response in the body, which has led researchers to focus 
on the relationship between diet and inflammation, and 
studies have shown that increasing dietary fiber intake 
can improve the inflammatory response in the body 
[9]. Studies have shown that urate crystals and inflam-
matory cell recruitment are strongly associated with 
gouty arthritis [10]. Vieira AT et al. showed that high 
dietary fiber promotes the reduction of the inflammatory 
response caused by urate crystals in mice, suggesting that 
diet plays a decisive role in the ability to modulate the 
inflammatory response [11]. However, studies on the cor-
relation between the TyG index, dietary fiber, and gout 
have not been clarified, and it is innovative for us to link 
the TyG index, dietary fiber, and gout using a machine 
learning (ML) approach.

Data in the field of nutrition and metabolism are 
becoming complex and high-dimensional, and while tra-
ditional analytical approaches often rely on supervisory 
variables to study correlations with gout and do not fully 
capture the complexity of interactions between nutri-
tion, metabolism, and disease, ML offers us the possibil-
ity of identifying the interactions of high-dimensional 
data variables [12, 13]. ML is a branch of Artificial Intel-
ligence (AI) dedicated to performing complex tasks and 

analyzing data, effectively identifying complex relation-
ships between variables that interact with each other, 
and dealing with unstructured data types that cannot be 
handled by traditional statistical techniques [14]. Previ-
ous ML models have not been widely used because they 
lacked interpretability and were difficult to be trusted by 
users [15]. Interpretable ML allows users to understand 
the model’s decision-making process and predicted out-
comes, it emphasizes transparency and comprehension 
of the model and adds control and interpretation of algo-
rithmic decisions that can identify potential problems in 
the model and avoid unnecessary errors and misinter-
pretations [16]. The purpose of this study was to develop 
six interpretable ML models using the National Health 
and Nutrition Examination Survey (NHANES) dataset 
and select the best model for predicting gout. We evalu-
ated the best-performing model and used the interpre-
table ML model based on SHapley Additive exPlanations 
(SHAP) to assess the contribution of the TyG index and 
dietary fiber in predicting gout to develop individualized 
interventions for potential gout risk.

Materials and methods
Data source and study design
This was a cross-sectional study, and all data for this 
study were obtained from the Centers for Disease Con-
trol and Prevention NHANES dataset for 7 cycles from 
2005 to 2018. Demographic, lifestyle, anthropometric, 
laboratory analysis, questionnaire interview, and dietary 
data from each NHANES cycle were merged according to 
SEQN (participant ID) using the Bernard D et al. method 
to generate a participant dataset containing all study 
variables [17]. The NHANES study was approved by 
the National Center for Health Statistics (NCHS) Ethics 
Review Board under approval no. # 2005- 06, # 2011– 17 
[18]. Informed consent was obtained from all partici-
pants for this study.

A total of 70,190 participants were initially assessed 
from 2005 to 2018, and Fig. 1 shows the study design and 
inclusion criteria, as well as participants excluded due 
to missing information on variables. Participants under 
the age of 20 were excluded from the dataset because 
many of the laboratory variables were not collected in 
this age group. Inclusion criteria included (1) partici-
pants aged ≥ 20 years; (2) participation in a dietary inter-
view, fasting blood glucose, and triglyceride testing; and 
(3) complete participant self-reported gout information. 
Exclusion criteria included (1) participants aged < 20 
years; (2) missing self-report of gout information; and (3) 
missing information on age, gender, fasting blood glu-
cose, triglyceride, dietary interview, and other important 
variables. The final number of participants included in 
the study was 12,645.
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Identification and screening of features
Based on previous studies reported [19–21] and expert 
opinions (four independent specialists in nutrition, endo-
crinology, and metabolic diseases at the Second Affiliated 
Hospital of Wenzhou Medical University), we included 
demographics, laboratory parameters, lifestyle, anthro-
pometric measurements, medical history, and dietary 
parameters as initial model features of the study contain-
ing 35 variables (Supplementary material 1). To elimi-
nate redundant variables and multicollinearity in the 
data, to improve the generalization of the model, and to 
avoid overfitting, we used the caret R package to perform 
near-zero variance and correlation tests on the variables 
[22]. The height, weight, vitamin E (VitE), TyG-body 
mass index (BMI) index, waist circumference (WC), and 
homeostasis model assessment-IR (HOMA-IR) were 
excluded based on variable variance approximating zero 
and strong correlations, and biological features of partici-
pants were maximally preserved. We removed features 
with more than 20% missing values (apolipoprotein B 
and high-sensitivity C-reactive protein) in the cycle data. 
After processing, the selected dataset contained 12,645 
participants, 27 variables, and limited missing data.

Calculation of features
According to Belladelli F et al. [23], the TyG index is 
calculated as ln [triglycerides (mg/dL) × fasting glucose 
(mg/dL)/2]. Huang X et al. concluded that the TyG- BMI 

has the same novel index of IR as the TyG index, which 
is a better indicator of IR than the HOMA-IR, and its 
calculation formula is TyG-BMI = TyG index × BMI 
[24]. HOMA-IR was calculated as fasting blood glucose 
(mmol/L) × fasting insulin (µU/mL)/22.5 [25]. Systemic 
immune-inflammatory index (SII) was calculated as 
platelet count multiplied by neutrophil count divided by 
lymphocyte count as described by Mahemuti N et al. [26]. 
Dietary data were obtained from two dietary recall inter-
views for six dietary antioxidants including total vitamin 
A (VitA), total vitamin C (VitC), total vitamin E (VitE), 
total zinc, total selenium (Se), and total lutein + zeaxan-
thin (LZ). According to the method described by Wu M, 
the composite dietary antioxidant index (CDAI) was cal-
culated by subtracting the mean value for each of the six 
antioxidants, dividing by the standard deviation to nor-
malize it, and then summing it to obtain it [27].

Definition of the label
We used self-reported gout as the label for the predic-
tion model, and the 2005–2018 NHANES data initially 
included in the study were for all-age participants, with 
the age limit for participation in the gout self-report 
interview questionnaire being 20 years of age and older. 
Therefore, we excluded patients under 20 years of age. 
We confirmed whether participants had gout by self-
reported data from the MCQ160N on the interview 
questionnaire. When study participants were asked, “Has 

Fig. 1 Flowchart for subject screening and study design
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a doctor ever told you that you have gout?” Confirmation 
code 1 indicated gout, confirmation code 2 indicated no 
gout, confirmation code 7 indicated refusal to answer, 
and confirmation code 9 indicated not sure.

Handling missing values
Missing data is a real problem that is often encountered 
in clinical medical studies. Simple direct deletion of data 
will result in the loss of valuable information and waste 
of resources, so the filling of missing data is a reasonable 
and realistic operation. Conventional data-filling meth-
ods such as multiple interpolation and median inter-
polation are unable to deal with data interactions and 
nonlinearities of variables in the face of high dimensional 
and large sample data, so algorithm-based data-filling can 
more accurately maintain the overall characteristics of 
the data [28]. We used the missForest R package (hyper-
parameters: maxiter = 10, ntree = 1000, verbose = TRUE) 
to interpolate variables with a few missing data. The 
method is based on using the missing data problem as a 
model prediction, and each variable in turn is predicted 
using a fitted Random Forest (RF) regression model to 
predict the missing data for the dependent variable, and 
the study confirms that this method outperforms non-
algorithm-based interpolation methods [29, 30].

Model development strategy
To better reflect the performance of the model on 
unknown data, we use nested 5-fold cross-validation 
[31]. It exists inner and outer loops for a total of 5 itera-
tions, and for each iteration in the 5-fold cross-valida-
tion, there exists a nested 5-fold cross-validation. An 
inner loop is a 5-fold cross-validation with a grid search 
for the best hyperparameters of the model to provide the 
outer loop with the best hyperparameters of the model. 
The outer loop is to provide the inner loop with 4 subsets 
of data for training the model while retaining 1 subset of 
data as a test of the inner loop model. In real-world medi-
cal studies, where the low incidence of disease makes 
imbalanced data more common, and ML classifiers will 
provide a bias towards higher predictive accuracy for 
most classes, ML may face challenges when encounter-
ing class-imbalanced data [32]. The Synthetic Minor-
ity Oversampling Technique (SMOTE) is based on the 
feature space of the samples and increases the number 
of minority class samples in the dataset by interpolating 
them to synthesize the minority class samples to achieve 
sample balance with the majority class [33]. The SMOTE 
method allows the ML model to fully learn the features 
of the minority class samples, improve the generalization 
ability and accuracy of the model, and reduce overfit-
ting [34]. The prevalence of gout in this study was 5.27% 
and there was a class imbalance in the data, thus the data 
needed to be SMOTE-processed. We used the SMOTE 

module (hyperparameters: sampling_strategy = ‘auto’, k_
neighbors = 5, random_state = 42) of the imblearn library 
version 0.10.1 to handle the class imbalance of the data, 
and the ratio of labeled classes of 0 and 1 after processing 
was 50%: 50%. In addition, we calculated the similarity 
between the SMOTE-processed dataset and the origi-
nal dataset using the Jaccard distance, and the results 
showed a high similarity. We normalized the feature data 
using the MinMaxScaler and processed the categorical 
variables using one-hot coding [35].

We used six classification ML algorithms including 
Light Gradient Boosting Machine (LGBM), Support 
Vector Machine (SVM), RF, Gradient Boosting Decision 
Tree (GBDT), Extreme Gradient Boosting (XGBoost), 
and Category Boosting (CatBoost) to predict gout asso-
ciated with dietary fiber and TyG index. Since different 
ML algorithms have different properties when analyz-
ing data, we trained and tested six different classification 
ML models. After comparing the AUC performance of 
each classification ML model, the LGBM model with the 
best AUC performance was selected as the optimal gout 
prediction model and the model was interpreted using 
SHAP.

SHAP-based interpretable tools
SHAP combines game theory with local interpreta-
tion of machine learning models and generates a SHAP 
value for each model feature that identifies the value of 
the feature’s contribution to the outcome prediction, and 
a positive or negative SHAP value indicates that the fea-
ture positively or negatively affects the probability of the 
outcome prediction [36]. The importance of the model’s 
features and the contribution of each feature to the mod-
el’s output can be directly observed by plotting the SHAP 
summary plot, and the SHAP decision plot allows for 
observation of how the model makes decisions about the 
prediction of the outcome [37].

Statistical analysis
Due to the complex survey design of NHANES, we used 
sample weights for analysis. Continuous variables were 
expressed as median (interquartile range) and categori-
cal variables as counts (percentages) according to the 
distribution of variables. We grouped study participants 
by gout and used the Wilcoxon rank sum test for com-
plex survey samples to compare differences between 
two groups for continuous variables and the Rao & Scott 
second-order corrected chi-square test for categorical 
variables. Use correlation heatmaps to analyze the cor-
relation between variables. The area under the receiver 
operating characteristic (ROC) curve (AUC), accuracy, 
precision, recall, F1 score, brier score, and the area under 
the P-R curve (AP) of the six categorical ML models 
were summarized to evaluate the performance of the 
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models. All statistical analyses were performed using R 
version 4.3.1 and Python version 3.11.5. R packages used 
included haven, tableone, gtsummary, survey, plyr, dplyr, 
tidyverse, arsenal, caret, ggcor, ggplot2 and missForest. 
ML analysis using Scikit-learn 1.2.2 library and imblearn 
library version 0.10.1 to handle class imbalance of data. A 
two-sided P < 0.05 was considered statistically significant.

Results
Baseline characteristics for study participants
A total of 12,645 participants (male 48.03%, female 
51.97%) were included in this study, and Table 1 summa-
rizes the demographic characteristics, lifestyle, medical 
history, laboratory parameters, and dietary data for par-
ticipants in the gout and no-gout subgroups. The preva-
lence of gout among all participants was 5.27%, with a 
statistically significant difference between 70.46% males 
and 29.54% females (P < 0.001). The highest percentage 
of gout participants was 70.61% aged 50–79 years. Age, 
triglycerides (TG), UA, glycosylated hemoglobin (GHB), 
insulin, tobacco use, WC, BMI, hypertension, diabetes 
mellitus, TyG index, TyG-BMI index, and HOMA-IR 
were statistically significantly higher in the gout group 
than in the no-gout group (all P < 0.001). High-density 
lipoprotein (HDL), low-density lipoprotein (LDL), and 
dietary fiber were statistically significantly lower in the 
gout group than in the no-gout group (P < 0.001 for HDL, 
P = 0.004 for LDL, and P = 0.040 for dietary fiber). There 
was no statistical difference in alcohol consumption 
between the two groups (P = 0.400).

Correlation analysis between variables
Figure  2 demonstrates the correlation analysis between 
the variables. The results showed strong correlations 
between BMI with WC and TyG-BMI index, respectively, 
with Pearson’s correlation coefficients of 0.90 and 0.96 
(P < 0.001). There were also strong correlations between 
WC and TyG-BMI index, HOMA-IR and Insulin, with 
correlation coefficients of 0.90 and 0.93 (P < 0.001), 
respectively. TyG index was positively correlated with 
age, UA, BMI, WC, HOMA-IR, and GHB with correla-
tion coefficients of 0.20, 0.26, 0.25, 0.35, 0.42, and 0.45 
(P < 0.001), respectively. There was a positive correlation 
between dietary fiber and total calories with a correlation 
coefficient of 0.52 (P < 0.001).

ML model performance comparison and final confirmation
Table  2 summarizes the performance of SVM, LGBM, 
RF, GBDT, XGBoost, and CatBoost models in predict-
ing gout. We used the Bootstrap method with 1000 
resamples to estimate the 95% CI of the model AUC. 
Figure  3 shows that the LGBM classification ML model 
with an AUC of 0.823 (95% CI: 0.798–0.848) performed 
the best in predicting gout when compared to SVM, 

RF, GBDT, XGBoost and CatBoost models. A compre-
hensive analysis based on the discriminant features of 
the model showed that LGBM has high accuracy and 
robustness in predicting gout. The LGBM model has an 
accuracy of 95.3%, precision of 100%, recall of 64.8%, F1 
score of 0.786, brier score of 0.077, and AP value of 0.175 
(Figs.  4 and 5). The optimal hyperparameters for our 
finalized and saved LGBM model are learning_rate: 0.1, 
max_depth: -1, num_leaves: 31, min_data_in_leaf: 20, 
feature_fraction: 1, bagging_fraction: 1, bagging _freq: 0, 
max_bin: 255, n_estimators: 40.

ML model features importance visualization
We used SHAP summary plots to show the effect of the 
top 20 features across the dataset on predicting gout 
after fitting the LGBM model (Fig. 6). The importance of 
SHAP plot features showed that age was the most impor-
tant feature of the LGBM model for predicting gout. The 
SHAP values indicated that age (SHAP value: 0.356), 
VitC (SHAP value: 0.355), LDL (SHAP value: 0.338), 
HDL (SHAP value: 0.285), dietary fiber (SHAP value: 
0.174), SII (SHAP value: 0.106), BMI (SHAP value: 0.081), 
CDAI (SHAP value: 0.074), Se (SHAP value: 0.072), and 
TyG index (SHAP value: 0.068) all positively influenced 
the predictions of the model. While SHAP values showed 
GHB (SHAP value: -0.179), VitA (SHAP value: -0.110), 
LZ (SHAP value: -0.106), Zinc (SHAP value: -0.089), 
UA (SHAP value: -0.088), insulin (SHAP value: -0.069), 
total calories (SHAP value: -0.049), lycopene (SHAP 
value: -0.043), TG (SHAP value: -0.034), and VitD (SHAP 
value: -0.019) negatively influenced the predictions of 
the model. In addition, the figure shows that older age, 
higher UA, lower dietary fiber intake, and higher TyG 
index all lead to an increased risk of gout.

Interpretability of individual decision-making processes
The decision plot shows how individuals determine their 
decision to predict gout from the complex LGBM catego-
rization model. The gray vertical line in the middle of the 
decision plot is the base value for the categorical LGBM 
model, and the red line indicates a positive prediction, 
marking whether or not each feature moved the output 
value above or below the average prediction, and marking 
the value of each feature (Fig. 7A). Starting at the bottom 
of the decision plot, the prediction lines show how the 
SHAP values accumulate from the base value to the final 
gout prediction result of the model at the top of the plot, 
ultimately boiling down to 0 for a negative prediction and 
1 for a positive prediction. The decision plot shows the 
top 200 individual predictions, with the purple line being 
the negative prediction and the red line being the positive 
prediction, highlighting the first individual prediction 
(Fig. 7B).
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Gout group
Characteristic Overall No, N = 11,978 (94.73%) Yes, N = 667 (5.27%) P-value
Demographics
Age (years) 47.0 (33.0, 60.0) 47.0 (32.0, 60.0) 62.0 (50.0, 70.0) < 0.001
Age group (years) < 0.001
20–49 6,397 (50.59%) 6,289 (52.50%) 108 (16.19%)
50–79 5,515 (43.61%) 5,044 (42.11%) 471 (70.61%)
≥ 80 733 (5.80%) 645 (5.39%) 88 (13.20%)
Gender < 0.001
Female 6,572 (51.97%) 6,375 (53.22%) 197 (29.54%)
Male 6,073 (48.03%) 5,603 (46.78%) 470 (70.46%)
Race 0.400
Non-Hispanic White 3,038 (38.16%) 2,850 (37.85%) 188 (43.52%)
Non-Hispanic Black 1,769 (22.22%) 1,660 (22.05%) 109 (25.23%)
Other Race 1,244 (15.62%) 1,183 (15.71%) 61 (14.12%)
Mexican American 1,069 (13.42%) 1,032 (13.70%) 37 (8.56%)
Other Hispanic 842 (10.58%) 805 (10.69%) 37 (8.56%)
Education attainment 11,966 667 0.500
Less than 9th grade 1,307 (10.35%) 1,232 (10.30%) 75 (11.24%)
9-11th grade 1,785 (14.13%) 1,692 (14.14%) 93 (13.94%)
High School graduate/GED or equivalent 2,866 (22.69%) 2,695 (22.52%) 171 (25.64%)
Some college or AA degree 3,642 (28.83%) 3,448 (28.81%) 194 (29.09%)
College graduate or above 3,033 (24.00%) 2,899 (24.23%) 134 (20.09%)
PIR 2.88 (1.39, 5.00) 2.88 (1.39, 5.00) 2.91 (1.44, 4.91) > 0.900
Laboratory parameters
TG (mmol/L) 101.00 (70.00, 150.00) 100.00 (69.00, 148.00) 133.00 (87.00, 197.00) < 0.001
UA (umol/L) 321.20 (267.70, 380.70) 321.20 (261.70, 374.70) 389.40 (321.20, 463.90) < 0.001
HDL (mmol/L) 1.34 (1.11, 1.63) 1.34 (1.11, 1.66) 1.19 (1.01, 1.50) < 0.001
LDL (mmol/L) 2.87 (2.30, 3.52) 2.87 (2.33, 3.54) 2.72 (2.02, 3.36) 0.004
VitD (nmol/L) 64.10 (46.41, 82.60) 64.10 (46.54, 82.40) 63.37 (43.29, 85.25) 0.900
SII 448.00 (325.15, 627.75) 447.69 (325.50, 626.21) 470.16 (315.73, 667.38) 0.200
GHB (%) 5.50 (5.20, 5.80) 5.40 (5.20, 5.70) 5.70 (5.40, 6.20) < 0.001
TyG index 8.55 (8.14, 8.99) 8.54 (8.13, 8.97) 8.93 (8.46, 9.41) < 0.001
TyG-BMI index 238.98 (200.48, 285.57) 237.65 (199.31, 282.69) 280.83 (233.27, 331.62) < 0.001
Insulin (uU/mL) 9.90 (6.27, 16.07) 9.71 (6.21, 15.86) 14.24 (8.61, 23.26) < 0.001
HOMA-IR 2.47 (1.48, 4.24) 2.42 (1.46, 4.15) 3.96 (2.29, 6.68) < 0.001
Lifestyles
Alcohol consumption (drinks/month) 0.400
1–5 5,016 (49.98%) 4,773 (50.05%) 243 (48.70%)
5–10 784 (7.81%) 747 (7.83%) 37 (7.41%)
More than 10 1,452 (14.47%) 1,362 (14.28%) 90 (18.04%)
Non-drinker 2,784 (27.74%) 2,655 (27.84%) 129 (25.85%)
Tobacco use < 0.001
Never smoker 7,058 (55.85%) 6,776 (56.61%) 282 (42.28%)
Former smoker 3,045 (24.10%) 2,772 (23.16%) 273 (40.93%)
Current smoker 2,534 (20.05%) 2,422 (20.23%) 112 (16.79%)
Examination
WC (cm) 97.50 (87.00, 108.60) 97.00 (86.70, 107.90) 109.20 (99.00, 119.10) < 0.001
BMI group (kg/2) < 0.001
Underweight (< 18.5) 217 (1.72%) 212 (1.77%) 5 (0.75%)
Normal (18.5 to < 25) 3,525 (27.88%) 3,423 (28.58%) 102 (15.29%)
Overweight (25 to < 30) 4,176 (33.02%) 3,976 (33.19%) 200 (29.99%)
Obese (30 or more) 4,727 (37.38%) 4,367 (36.46%) 360 (53.97%)
Medical history

Table 1  Participants’ baseline characteristics weighted according to gout subgroups
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Discussion
We trained and tested six classification ML models for 
predicting gout using the NHANES dataset from 2005 
to 2018. Based on the performance of the model on 
unknown data, the LGBM model outperforms SVM, 
RF, GBDT, XGBoost, and CatBoost. The SHAP method 
is used to interpret the LGBM model, which provides 
global and local interpretability of the model. This will 
help clinicians better understand the model’s decision-
making process and trust the model more. The AUC 
of the LGBM model was 0.823 (95% CI: 0.798–0.848), 
reflecting excellent classification model efficiency and 
stability with an accuracy of 95.3%. We used SHAP global 
summary plots to demonstrate the importance of each 
feature in the LGBM model and how much each feature 
contributes to the model’s prediction of gout. Further-
more, we found that age was the most important char-
acteristic among the variables used to predict gout in the 
LGBM model, followed by UA. The decision plots pro-
vide a clear and intuitive demonstration of how individu-
als make decisions in the categorical LGBM model.

Zou F et al. studied the relationship between the com-
position of fruits and UA suggesting that the viscosity 
and bulk of dietary fiber hinder the absorption of purines 
and fructose in the digestive tract and reduce the rate of 
small intestinal reabsorption and that dietary fiber may 
also facilitate defecation and promote the excretion of 
UA [38]. Guo Y et al. found that inulin, a non-digestible 
dietary fiber, can significantly ameliorate hyperurice-
mia in mice by studying the effect of inulin on mice 
with hyperuricemia due to knockout of the UA oxidase 
gene [39]. In a multicenter retrospective study, Wu Z et 
al. pointed out that the TyG index, a novel and reliable 
surrogate for IR, and hyperuricemia are both important 
metabolic risk factors, that are closely related to each 
other and contribute to each other through multiple 

mechanisms [40]. Zhao Q et al. demonstrated a nonlinear 
relationship between serum UA and TyG index in chil-
dren with short stature, which remained nonlinear after 
gender stratification [41]. Hyperuricemia is an impor-
tant influence in causing gout [42], thus supporting our 
findings.

This study differs from the prediction of gout and cor-
relation analysis using traditional analysis. Studies have 
shown that ML consistently outperforms traditional analyt-
ics in predicting disease and that the use of more sophisti-
cated integrated classification algorithms can be effective in 
improving the accuracy and robustness of predicting dis-
ease [43]. In recent years, AI has been accumulating great 
success in medical research and applications at an alarming 
rate, AI encompasses a large number of different technolo-
gies, and ML is a sub-field of AI that provides separate tools 
to enable most of the techniques of AI [44]. In addition, ML 
has many distinct advantages. First, it can learn from large 
amounts of information, discover hidden patterns and laws, 
and excel at handling complex problems and big data. Sec-
ond, it can provide more powerful predictive capabilities 
than traditional methods. Third, it can automate many tasks 
and improve computational efficiency. Fourth, it can give 
data-driven probabilistic predictions. However, ML also 
faces challenges. First, it requires a large amount of sample 
data for computation; Second, there is a potential risk of 
overfitting; and third, the accuracy of the model is highly 
dependent on the reliability of the data to reflect clinical 
reality [45].

The performance of an ML algorithm depends on many 
factors, the most important of which is often not the algo-
rithm itself but reliable data and representative features [46]. 
The quality and quantity of data determines the upper limit 
of the performance of an ML algorithm, and the selection of 
appropriate features determines the ability of an ML algo-
rithm to represent and generalize the data. Once we have 

Gout group
Characteristic Overall No, N = 11,978 (94.73%) Yes, N = 667 (5.27%) P-value
Hypertension < 0.001
No 7,520 (62.34%) 7,381 (64.53%) 139 (22.24%)
Yes 4,543 (37.66%) 4,057 (35.47%) 486 (77.76%)
Diabetes mellitus < 0.001
No 10,767 (87.22%) 10,342 (88.34%) 425 (66.61%)
Yes 1,578 (12.78%) 1,365 (11.66%) 213 (33.39%)
Dietary parameters
Total calories (kcal) 1,968 (1,509, 2,532) 1,969 (1,515, 2,531) 1,907 (1,406, 2,577) 0.300
Lycopene (mcg) 2,740.25 (772.50, 7,046.94) 2,743.30 (775.05, 7,095.11) 2,637.97 (672.44, 6,545.18) 0.500
Dietary fiber (gm) 15.45 (10.70, 21.65) 15.50 (10.75, 21.65) 14.20 (9.65, 21.21) 0.040
CDAI -0.39 (-2.02, 1.71) -0.38 (-2.01, 1.70) -0.71 (-2.21, 1.78) 0.400
Continuous variables were expressed as median (interquartile range), categorical variables were expressed as counts (percentages).

PIR, family poverty income ratios; TyG index, triglyceride-glucose index; TyG-BMI index, TyG-body mass index; TG, triglycerides; UA, uric acid; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; VitD, 1, 25-hydroxyvitamin D; GHB, glycosylated hemoglobin; CDAI, composite dietary antioxidant index; HOMA-IR, 
homeostasis model assessment-IR; WC, waist circumference; BMI, body mass index; SII, systemic immune-inflammatory index.

Table 1 (continued) 
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Table 2 Performance comparison of six classification ML models
Characteristics SVM LGBM RF GBDT XGBoost CatBoost
AUC 0.776 0.823 0.794 0.809 0.798 0.776
AUC 95% CI 0.748–0.805 0.798–0.848 0.769–0.818 0.783–0.834 0.773–0.823 0.747–0.804
Accuracy 0.867 0.953 0.933 0.933 0.978 0.984
Precision 0.467 1.000 1.000 1.000 1.000 1.000
Recall 1.000 0.648 0.323 0.719 0.716 0.682
F1 score 0.636 0.786 0.488 0.837 0.835 0.811
Brier score 0.145 0.077 0.077 0.114 0.068 0.061
AP 0.142 0.175 0.145 0.173 0.141 0.147
SVM, support vector machine; LGBM, light gradient boosting machine; RF, random forest; GBDT, gradient boosting decision tree; XGBoost, extreme gradient 
boosting; CatBoost, category boosting; AUC, the area under the ROC; AP, the area under the P-R curve

Fig. 2 The correlation heat map of variables. The r represents Pearson’s correlation coefficient, * for P < 0.05, ** for P < 0.01, *** for P < 0.001, blue for posi-
tive correlation, and orange for negative correlation
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acquired reliable data and suitable features, increasing the 
interpretability of the predictive model becomes the main 
problem we need to face. However, the inner workings 
of traditional ML are often ambiguous, with the nature of 
an “algorithmic black box” and the inability to see the pro-
cess of conclusions, which greatly restricts the confidence 
of healthcare practitioners in their use, and the transpar-
ency and interpretability of ML models have become a 
hot research direction for researchers [47]. Therefore, it is 
important that we finalize an interpretable LGBM model 
associated with dietary fiber and TyG index for the predic-
tion of gout to provide individualized preventive and thera-
peutic plans for populations at potential risk of gout.

The LGBM classification model we trained for predict-
ing gout using NHANES data has many strengths and 
limitations. First, we use SHAP to make the behavior and 
predictions of the LGBM model easier to interpret and to 
make the decision or prediction process easier to under-
stand in complex models. Second, to avoid the substantial 
labor and economic costs of data collection and ill-designed 
data surveys, demographic, laboratory, dietary interview, 
and disease self-report questionnaire data from NHANES 

were utilized to screen for relevant 27 study features. Third, 
NHANES is nationally representative and has high-quality 
data. The predictive models developed in conjunction with 
ML have national utility and are superior to predictive mod-
els developed from localized census data and models devel-
oped using traditional analytical methods. Fourth, our study 
was a cross-sectional investigation and could not confirm 
causality, as well as the fact that the diagnosis of gout was 
based on participants’ self-reports, which could be poten-
tially confused by memory.

Conclusion
The LGBM model associated with dietary fiber and TyG 
index showed high accuracy, efficiency, and robustness in 
predicting gout, and may provide individualized preven-
tion and treatment strategies for people with potential gout 
risk. Increasing dietary fiber intake and lowering the TyG 
index may reduce the potential risk of gout. We will fur-
ther validate and generalize the medical applicability of this 
predictive model by expanding and updating the data with 
ongoing follow-up analysis of selected features to improve 
the interpretability of the categorical LGBM model.

Fig. 3 AUC comparison of six classification ML models
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Fig. 4 Confusion matrix comparison of six classification ML models

 



Page 11 of 15Cao and Hu Nutrition & Metabolism           (2024) 21:25 

Fig. 5 Comparison of P-R curves of six classification ML models
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Fig. 6 SHAP summary plot of LGBM model predicting gout
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