King AJ, Levey AS: Dietary protein and renal function. J Am Soc Nephrol. 1993, 3 (11): 1723-1737.
CAS
Google Scholar
Metges CC, Barth CA: Metabolic consequences of a high dietary-protein intake in adulthood: assessment of the available evidence. J Nutr. 2000, 130 (4): 886-889.
CAS
Google Scholar
Brenner BM, Meyer TW, Hostetter TH: Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982, 307 (11): 652-659.
CAS
Google Scholar
The University of Pennsylvania Health System: Media Review: mouth to mouth. 1999, Janurary, 1999
Google Scholar
Sugaya K, Ogawa Y, Hatano T, Koyama Y, Miyazato T, Naito A, Yonou H, Kagawa H: Compensatory renal hypertrophy and changes of renal function following nephrectomy. Hinyokika Kiyo. 2000, 46 (4): 235-240.
CAS
Google Scholar
Calderon JL, Zadshir A, Norris K: A survey of kidney disease and risk-factor information on the World Wide Web. MedGenMed. 2004, 6 (4): 3-
Google Scholar
Lindheimer MD, Katz AI: Physiology and Pathophysiology . Renal physiology and disease in pregnancy. Edited by: Seldin DW, Giebisch G. 1992, New York , Raven Press , 3371–3431-2nd
Google Scholar
Conrad KP: Mechanisms of renal vasodilation and hyperfiltration during pregnancy. J Soc Gynecol Investig. 2004, 11 (7): 438-448. 10.1016/j.jsgi.2004.05.002.
CAS
Google Scholar
Higashihara E, Horie S, Takeuchi T, Nutahara K, Aso Y: Long-term consequence of nephrectomy. J Urol. 1990, 143 (2): 239-243.
CAS
Google Scholar
Regazzoni BM, Genton N, Pelet J, Drukker A, Guignard JP: Long-term followup of renal functional reserve capacity after unilateral nephrectomy in childhood. J Urol. 1998, 160 (3 Pt 1): 844-848. 10.1097/00005392-199809010-00073.
CAS
Google Scholar
Food and Nutrition Board, Institute of Medicine: Macronutrient and Healthful Diets. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). 2002, Washington, D.C. , The National Academies Press, 609-696.
Google Scholar
Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, Christou DD: A Reduced Ratio of Dietary Carbohydrate to Protein Improves Body Composition and Blood Lipid Profiles during Weight Loss in Adult Women. J Nutr. 2003, 133 (2): 411-417.
CAS
Google Scholar
Piatti PM, Monti F, Fermo I, Baruffaldi L, Nasser R, Santambrogio G, Librenti MC, Galli-Kienle M, Pontiroli AE, Pozza G: Hypocaloric high-protein diet improves glucose oxidation and spares lean body mass: comparison to hypocaloric high-carbohydrate diet. Metabolism. 1994, 43 (12): 1481-1487. 10.1016/0026-0495(94)90005-1.
CAS
Google Scholar
Luscombe ND, Clifton PM, Noakes M, Farnsworth E, Wittert G: Effect of a high-protein, energy-restricted diet on weight loss and energy expenditure after weight stabilization in hyperinsulinemic subjects. Int J Obes Relat Metab Disord. 2003, 27 (5): 582-590. 10.1038/sj.ijo.0802270.
CAS
Google Scholar
Brinkworth GD, Noakes M, Keogh JB, Luscombe ND, Wittert GA, Clifton PM: Long-term effects of a high-protein, low-carbohydrate diet on weight control and cardiovascular risk markers in obese hyperinsulinemic subjects. Int J Obes Relat Metab Disord. 2004, 28 (5): 661-670. 10.1038/sj.ijo.0802617.
CAS
Google Scholar
Fine EJ, Feinman RD: Thermodynamics of weight loss diets. Nutr Metab (Lond). 2004, 1 (1): 15-10.1186/1743-7075-1-15.
Google Scholar
Parker B, Noakes M, Luscombe N, Clifton P: Effect of a High-Protein, High-Monounsaturated Fat Weight Loss Diet on Glycemic Control and Lipid Levels in Type 2 Diabetes . Diabetes Care. 2002, 25 (3): 425-430.
Google Scholar
Layman DK: Protein quantity and quality at levels above the RDA improves adult weight loss. J Am Coll Nutr. 2004, 23 (6 Suppl): 631S-636S.
CAS
Google Scholar
Wolfe RR, Chinkes D, Baba H, Rosenblatt J, Zhang XJ: Response of phosphoenolpyruvate cycle activity to fasting and to hyperinsulinemia in human subjects. Am J Physiol Endocrinol Metab. 1996, 271 (1): E159-176.
CAS
Google Scholar
Sharman MJ, Volek JS: Weight loss leads to reductions in inflammatory biomarkers after a very-low-carbohydrate diet and a low-fat diet in overweight men. Clin Sci (Lond). 2004, 107 (4): 365-369.
CAS
Google Scholar
Yancy WSJ, Olsen MK, Guyton JR, Bakst RP, Westman EC: A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med. 2004, 140 (10): 769-777.
Google Scholar
Johnston CS, Tjonn SL, Swan PD: High-Protein, Low-Fat Diets Are Effective for Weight Loss and Favorably Alter Biomarkers in Healthy Adults. J Nutr. 2004, 134 (3): 586-591.
CAS
Google Scholar
Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S: A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003, 348 (21): 2082-2090. 10.1056/NEJMoa022207.
CAS
Google Scholar
Skov AR, Toubro S, Ronn B, Holm L, Astrup A: Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Disord. 1999, 23 (5): 528-536. 10.1038/sj.ijo.0800867.
CAS
Google Scholar
Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD, Lau J, Eknoyan G: National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003, 139 (2): 137-147.
Google Scholar
Coresh J, Byrd-Holt D, Astor BC, Briggs JP, Eggers PW, Lacher DA, Hostetter TH: Chronic Kidney Disease Awareness, Prevalence, and Trends among U.S. Adults, 1999 to 2000. J Am Soc Nephrol. 2005, 16 (1): 180-188. 10.1681/ASN.2004070539.
Google Scholar
Muntner P, He J, Hamm L, Loria C, Whelton PK: Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002, 13 (3): 745-753.
Google Scholar
Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS: Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003, 41 (1): 1-12. 10.1053/ajkd.2003.50007.
Google Scholar
Johnson CA: Creating practice guidelines for chronic kidney disease: an insider's view. Am Fam Physician. 2004, 70 (5): 823-824.
Google Scholar
Palmer BF: Disturbances in renal autoregulation and the susceptibility to hypertension-induced chronic kidney disease. Am J Med Sci. 2004, 328 (6): 330-343.
Google Scholar
National Kidney Foundation: Chronic Kidney Diseases.http://www.kidneynca.org/WhatsNew_Campaigns_KidneyUrologicDisease.asp
Vupputuri S, Batuman V, Muntner P, Bazzano LA, Lefante JJ, Whelton PK, He J: Effect of blood pressure on early decline in kidney function among hypertensive men. Hypertension. 2003, 42 (6): 1144-1149. 10.1161/01.HYP.0000101695.56635.31.
CAS
Google Scholar
Segura J, Campo C, Gil P, Roldan C, Vigil L, Rodicio JL, Ruilope LM: Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients. J Am Soc Nephrol. 2004, 15 (6): 1616-1622. 10.1097/01.ASN.0000127045.14709.75.
Google Scholar
Wright JTJ, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, Cheek D, Douglas-Baltimore JG, Gassman J, Glassock R, Hebert L, Jamerson K, Lewis J, Phillips RA, Toto RD, Middleton JP, Rostand SG: Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. Jama. 2002, 288 (19): 2421-2431. 10.1001/jama.288.19.2421.
CAS
Google Scholar
Kasiske BL, Kalil RS, Ma JZ, Liao M, Keane WF: Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med. 1993, 118 (2): 129-138.
CAS
Google Scholar
Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, King AJ, Klahr S, Massry SG, Seifter JL: Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995, 123 (10): 754-762.
CAS
Google Scholar
Tarver-Carr ME, Powe NR, Eberhardt MS, LaVeist TA, Kington RS, Coresh J, Brancati FL: Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors. J Am Soc Nephrol. 2002, 13 (9): 2363-2370. 10.1097/01.ASN.0000026493.18542.6A.
Google Scholar
Zheng F, Plati AR, Banerjee A, Elliot S, Striker LJ, Striker GE: The molecular basis of age-related kidney disease. Sci Aging Knowledge Environ. 2003, 2003 (29): PE20-
Google Scholar
Brown WW, Sandberg K: Introduction: gender and kidney disease. Adv Ren Replace Ther. 2003, 10 (1): 1-2. 10.1053/jarr.2003.50009.
Google Scholar
Satko SG, Freedman BI: The importance of family history on the development of renal disease. Curr Opin Nephrol Hypertens. 2004, 13 (3): 337-341.
Google Scholar
Zhou BF, Wu XG, Tao SQ, Yang J, Cao TX, Zheng RP, Tian XZ, Lu CQ, Miao HY, Ye FM: Dietary patterns in 10 groups and the relationship with blood pressure. Collaborative Study Group for Cardiovascular Diseases and Their Risk Factors. Chin Med J (Engl). 1989, 102 (4): 257-261.
CAS
Google Scholar
He J, Klag MJ, Whelton PK, Chen JY, Qian MC, He GQ: Dietary macronutrients and blood pressure in southwestern China. J Hypertens. 1995, 13 (11): 1267-1274.
CAS
Google Scholar
Burke V, Hodgson JM, Beilin LJ, Giangiulioi N, Rogers P, Puddey IB: Dietary Protein and Soluble Fiber Reduce Ambulatory Blood Pressure in Treated Hypertensives. Hypertension. 2001, 38 (4): 821-826.
CAS
Google Scholar
St. Jeor ST, Howard BV, Prewitt TE, Bovee V, Bazzarre T, Eckel RH: Dietary Protein and Weight Reduction: A statement for healthcare professionals from the nutrition committee of the council on nutrition, physical Activity, and metabolism of the american heart association. Circulation. 2001, 104 (15): 1869-1874.
CAS
Google Scholar
Addis T, Drury DR: The Rate of Urea Excretion. VII. The effect of various other factors than blood urea concentration on the rate of urea excretion. J Biol Chem. 1923, 55 (4): 629-638.
CAS
Google Scholar
Jolliffe N, Smith HW: The Excretion of Urine In The Dog: I. The Urea and Creatinine Clearances on a Mixed Diet. Am J Physiol. 1931, 98 (4): 572-577.
CAS
Google Scholar
Shannon JA, Jolliffe N, Smith HW: The Excretion of Urine in The Dog: VI. The Filtration and Secretion of Exogenous Creatinine. Am J Physiol. 1932, 102 (3): 534-550.
CAS
Google Scholar
Herrin RC, Rabin A, Feinstein RN: The influence of diet upon urea clearance in dogs. Am J Physiol. 1937, 119 (1): 87-92.
CAS
Google Scholar
Van Slyke DD, Rhoads CP, Hiller A, Alving A: The relationship of the urea clearance to the renal blood flow. Am J Physiol. 1934, 110 (2): 387-391.
CAS
Google Scholar
Tuttle KR, Puhlman ME, Cooney SK, Short RA: Effects of amino acids and glucagon on renal hemodynamics in type 1 diabetes. Am J Physiol Renal Physiol. 2002, 282 (1): F103-12.
CAS
Google Scholar
Bilo HJ, Schaap GH, Blaak E, Gans RO, Oe PL, Donker AJ: Effects of chronic and acute protein administration on renal function in patients with chronic renal insufficiency. Nephron. 1989, 53 (3): 181-187.
CAS
Google Scholar
Lentine K, Wrone EM: New insights into protein intake and progression of renal disease. Curr Opin Nephrol Hypertens. 2004, 13 (3): 333-336.
Google Scholar
Knight EL, Stampfer MJ, Hankinson SE, Spiegelman D, Curhan GC: The Impact of Protein Intake on Renal Function Decline in Women with Normal Renal Function or Mild Renal Insufficiency. Ann Intern Med. 2003, 138 (6): 460-467.
Google Scholar
Johnson DW, Mudge DW, Sturtevant JM, Hawley CM, Campbell SB, Isbel NM, Hollett P: Predictors of decline of residual renal function in new peritoneal dialysis patients. Perit Dial Int. 2003, 23 (3): 276-283.
Google Scholar
Meloni C, Tatangelo P, Cipriani S, Rossi V, Suraci C, Tozzo C, Rossini B, Cecilia A, Di Franco D, Straccialano E, Casciani CU: Adequate protein dietary restriction in diabetic and nondiabetic patients with chronic renal failure. J Ren Nutr. 2004, 14 (4): 208-213.
Google Scholar
Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH: The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996, 124 (7): 627-632.
CAS
Google Scholar
Franz MJ, Wheeler ML: Nutrition therapy for diabetic nephropathy. Curr Diab Rep. 2003, 3 (5): 412-417.
Google Scholar
Beto JA, Bansal VK: Medical nutrition therapy in chronic kidney failure: integrating clinical practice guidelines. Journal of the American Dietetic Association. 2004, 104 (3): 404-409. 10.1016/j.jada.2003.12.028.
Google Scholar
Krauss RM, Eckel RH, Howard B, Appel LJ, Daniels SR, Deckelbaum RJ, Erdman JWJ, Kris-Etherton P, Goldberg IJ, Kotchen TA, Lichtenstein AH, Mitch WE, Mullis R, Robinson K, Wylie-Rosett J, St Jeor S, Suttie J, Tribble DL, Bazzarre TL: AHA Dietary Guidelines: revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Stroke. 2000, 31 (11): 2751-2766.
CAS
Google Scholar
Allen FM, Cope OM: Influence of Diet on Blood Pressure and Kidney Size in Dogs. J Urol. 1942, 47: 751-
CAS
Google Scholar
Osborne TB, Mendel LB, Park EA, Winternitz MC, With the cooperation of Helen C. Cannon and Deborah Jackson: Physiological effectgs of diets unusually rich in protein or inorganic salts. J Biol Chem. 1927, 71 (2): 317-350.
CAS
Google Scholar
Wilson HE: An Investigation of the Cause of Renal Hypertrophy in Rats Fed on a High Protein Diet. Biochem J. 1933, 27: 1348-
CAS
Google Scholar
Addis T, MacKay EM, MacKay LL: The effect on the kidney of the long continued administration of diets containing an excess of certain food elements. II. Excess of acid and alkali. J Biol Chem. 1926, 71 (1): 157-166.
CAS
Google Scholar
Hammond KA, Janes DN: The effects of increased protein intake on kidney size and function. J Exp Biol. 1998, 201 ( Pt 13): 2081-2090.
Google Scholar
Skov AR, Toubro S, Bulow J, Krabbe K, Parving HH, Astrup A: Changes in renal function during weight loss induced by high vs low-protein low-fat diets in overweight subjects. Int J Obes Relat Metab Disord. 1999, 23 (11): 1170-1177. 10.1038/sj.ijo.0801048.
CAS
Google Scholar
Gorin E, Dickbuch S: Release of cyclic AMP from chicken erythrocytes. Horm Metab Res. 1980, 12 (3): 120-124.
CAS
Google Scholar
Bankir L, Martin H, Dechaux M, Ahloulay M: Plasma cAMP: a hepatorenal link influencing proximal reabsorption and renal hemodynamics?. Kidney Int Suppl. 1997, Suppl 59: S50-6.
Google Scholar
Bankir L, Ahloulay M, Devreotes PN, Parent CA: Extracellular cAMP inhibits proximal reabsorption: are plasma membrane cAMP receptors involved?. Am J Physiol Renal Physiol. 2002, 282 (3): F376-392.
CAS
Google Scholar
Slomowitz LA, Gabbai FB, Khang S, Satriano J, Thareau S, Deng A, Thomson SC, Blantz RC, Munger KA: Protein intake regulates the vasodilatory function of the kidney and the NMDA receptor expression. Am J Physiol Regul Integr Comp Physiol. 2004, R1184-9.
Google Scholar
Conrad KP, Novak J, Danielson LA, Kerchner LJ, Jeyabalan A: Mechanisms of renal vasodilation and hyperfiltration during pregnancy: current perspectives and potential implications for preeclampsia. Endothelium. 2005, 12 (1-2): 57-62.
CAS
Google Scholar
Klahr S: The modification of diet in renal disease study. N Engl J Med. 1989, 320 (13): 864-866.
CAS
Google Scholar
Consumer Reports on Health: Feature Report; Is your diet up-to-date? (New recommendations have changed the standard advice). 2003, 4-6.
Google Scholar
Time: How to Eat Smarter; In a world that is raining food, making healthy choices about what and how to eat is not easy. Here are some rules to live by. 2003, 48-
Google Scholar
CNBC: Diet Dangers; Debate on the dangers of high protein-low carb diets after Physicians Committee for Responsible Medicine came to warn about health risks. 2003, Capital Report , Video Monitoring Services of America
Google Scholar
Fox News Channel: Diet; People who do the low carb diet will get hurt. 2004, The O'Reilly Factor , Video Monitoring Services of America
Google Scholar
Schaffer SW, Lombardini JB, Azuma J: Interaction between the actions of taurine and angiotensin II. Amino Acids. 2000, 18 (4): 305-318.
CAS
Google Scholar
Brandle E, Sieberth HG, Hautmann RE: Effect of chronic dietary protein intake on the renal function in healthy subjects. Eur J Clin Nutr. 1996, 50 (11): 734-740.
CAS
Google Scholar
USA Today: High-protein diets gaining support. 1999
Google Scholar
Taubes G: What if It's All Been a Big Fat Lie?. The New York Times Magazine. 2002
Google Scholar
Young VR, El-Khoury AE, Raguso CA, Forslund AH, Hambraeus L: Rates of urea production and hydrolysis and leucine oxidation change linearly over widely varying protein intakes in healthy adults. J Nutr. 2000, 130 (4): 761-766.
CAS
Google Scholar
Bankir L, Bouby N, Trinh-Trang-Tan MM, Ahloulay M, Promeneur D: Direct and indirect cost of urea excretion. Kidney Int. 1996, 49 (6): 1598-1607.
CAS
Google Scholar
AtkinsExposed.org.http://www.atkinsexposed.org/atkins/79/American_Kidney_Fund.htm
Martin WF, Bolster DR, Gaine PC, Hanley LJ, Pikosky MA, Bennett BT, Maresh CM, Armstrong LE, Rodriguez NR: Increased Dietary Protein Affects Hydration Indices in Runners [in press]. J Am Diet Assoc. 2006, 106 (1):
Calloway DH, Spector H: Nitrogen balance as related to caloric and protein intake in active young men. Am J Clin Nutr. 1954, 2 (6): 405-412.
CAS
Google Scholar
Layman DK, Baum JI: Dietary Protein Impact on Glycemic Control during Weight Loss. J Nutr. 2004, Suppl 4: 968S-973.
Google Scholar
Due A, Toubro S, Skov AR, Astrup A: Effect of normal-fat diets, either medium or high in protein, on body weight in overweight subjects: a randomised 1-year trial. Int J Obes Relat Metab Disord. 2004, 28 (10): 1283-1290. 10.1038/sj.ijo.0802767.
CAS
Google Scholar
Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams M, Gracely EJ, Samaha FF: The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med. 2004, 140 (10): 778-785.
Google Scholar
Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP: Effect of a Low-Carbohydrate Diet on Appetite, Blood Glucose Levels, and Insulin Resistance in Obese Patients with Type 2 Diabetes. Ann Intern Med. 2005, 142 (6): 403-411.
CAS
Google Scholar
Fern EB, Bielinski RN, Schutz Y: Effects of exaggerated amino acid and protein supply in man. Experientia. 1991, 47 (2): 168-172. 10.1007/BF01945420.
CAS
Google Scholar
Lemon PW: Is increased dietary protein necessary or beneficial for individuals with a physically active lifestyle?. Nutr Rev. 1996, 54 (4 Pt 2): S169-75.
CAS
Google Scholar
Chen JD, Wang JF, Li KJ, Zhao YW, Wang SW, Jiao Y, Hou XY: Nutritional problems and measures in elite and amateur athletes. Am J Clin Nutr. 1989, 49 (5 Suppl): 1084-1089.
CAS
Google Scholar
Chromiak JA, Antonio J: Use of amino acids as growth hormone-releasing agents by athletes. Nutrition. 2002, 18 (7-8): 657-661. 10.1016/S0899-9007(02)00807-9.
CAS
Google Scholar
Poortmans JR, Dellalieux O: Do regular high protein diets have potential health risks on kidney function in athletes?. Int J Sport Nutr Exerc Metab. 2000, 10 (1): 28-38.
CAS
Google Scholar
Singer MA: Dietary protein-induced changes in excretory function: a general animal design feature. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2003, 136 (4): 785-801. 10.1016/j.cbpc.2003.08.012.
Google Scholar
Lacroix M, Gaudichon C, Martin A, Morens C, Mathe V, Tome D, Huneau JF: A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am J Physiol Regul Integr Comp Physiol. 2004, 287 (4): R934-42.
CAS
Google Scholar
Collins DMCTRJBKPRTMCPEK: Chronic high protein feeding does not produce glomerulosclerosis or renal insufficiency in the normal rat. J Am Soc Nephrol. 1990, 1: 624-
Google Scholar
Robertson JL, Goldschmidt M, Kronfeld DS, Tomaszewski JE, Hill GS, Bovee KC: Long-term renal responses to high dietary protein in dogs with 75% nephrectomy. Kidney Int. 1986, 29 (2): 511-519.
CAS
Google Scholar
Stonard MD, Samuels DM, Lock EA: The pathogenesis and effect on renal function of nephrocalcinosis induced by different diets in female rats. Food Chem Toxicol. 1984, 22 (2): 139-146. 10.1016/0278-6915(84)90094-2.
CAS
Google Scholar
Wasserstein AG, Stolley PD, Soper KA, Goldfarb S, Maislin G, Agus Z: Case-control study of risk factors for idiopathic calcium nephrolithiasis. Miner Electrolyte Metab. 1987, 13 (2): 85-95.
CAS
Google Scholar
Robertson WG, Heyburn PJ, Peacock M, Hanes FA, Swaminathan R: The effect of high animal protein intake on the risk of calcium stone-formation in the urinary tract. Clin Sci (Lond). 1979, 57 (3): 285-288.
CAS
Google Scholar
Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY: Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis. 2002, 40 (2): 265-274. 10.1053/ajkd.2002.34504.
CAS
Google Scholar
Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J: Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005, 81 (2): 341-354.
CAS
Google Scholar
Curhan GC, Willett WC, Rimm EB, Stampfer MJ: A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med. 1993, 328 (12): 833-838. 10.1056/NEJM199303253281203.
CAS
Google Scholar
Breslau NA, Brinkley L, Hill KD, Pak CY: Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab. 1988, 66 (1): 140-146.
CAS
Google Scholar
Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ: Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med. 1997, 126 (7): 497-504.
CAS
Google Scholar
Curhan GC, Willett WC, Knight EL, Stampfer MJ: Dietary factors and the risk of incident kidney stones in younger women: Nurses' Health Study II. Arch Intern Med. 2004, 164 (8): 885-891. 10.1001/archinte.164.8.885.
Google Scholar
Meschi T, Schianchi T, Ridolo E, Adorni G, Allegri F, Guerra A, Novarini A, Borghi L: Body weight, diet and water intake in preventing stone disease. Urol Int. 2004, Suppl 1: 29-33. 10.1159/000076588.
Google Scholar
Hess B: Nutritional aspects of stone disease. Endocrinol Metab Clin North Am. 2002, 31 (4): 1017-30, ix-x. 10.1016/S0889-8529(02)00029-4.
CAS
Google Scholar
Raj GV, Auge BK, Assimos D, Preminger GM: Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys. J Endourol. 2004, 18 (2): 157-161. 10.1089/089277904322959798.
Google Scholar
Nguyen QV, Kalin A, Drouve U, Casez JP, Jaeger P: Sensitivity to meat protein intake and hyperoxaluria in idiopathic calcium stone formers. Kidney Int. 2001, 59 (6): 2273-2281.
CAS
Google Scholar
Jaeger P: Renal stone disease in the 1990s: the powder keg and tinderbox theory. Curr Opin Nephrol Hypertens. 1992, 1 (1): 141-148.
CAS
Google Scholar