Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB: Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008, 25: 2097-2116. 10.1007/s11095-008-9661-9.
Article
CAS
Google Scholar
Bailar JC, Gornik HL: Cancer undefeated. N Engl J Med. 1997, 336: 1569-1574. 10.1056/NEJM199705293362206.
Article
Google Scholar
Sonnenschein C, Soto AM: Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol. 2008, 18: 372-377. 10.1016/j.semcancer.2008.03.012.
Article
CAS
Google Scholar
Baker SG, Kramer BS: Paradoxes in carcinogenesis: new opportunities for research directions. BMC Cancer. 2007, 7: 151-10.1186/1471-2407-7-151.
Article
CAS
Google Scholar
Soto AM, Sonnenschein C: The somatic mutation theory of cancer: growing problems with the paradigm?. Bioessays. 2004, 26: 1097-1107. 10.1002/bies.20087.
Article
CAS
Google Scholar
Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.
Article
CAS
Google Scholar
Loeb LA: A mutator phenotype in cancer. Cancer Res. 2001, 61: 3230-3239.
CAS
Google Scholar
Szent-Gyorgyi A: The living state and cancer. Proc Natl Acad Sci USA. 1977, 74: 2844-2847. 10.1073/pnas.74.7.2844.
Article
CAS
Google Scholar
Roth DB, Gellert M: New guardians of the genome. Nature. 2000, 404: 823-825. 10.1038/35009180.
Article
CAS
Google Scholar
Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond). 2005, 2: 30-10.1186/1743-7075-2-30.
Article
CAS
Google Scholar
Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, Laughner E, Ravi R, Simons J, Taghavi P, Zhong H: 'The metabolism of tumours': 70 years later. Novartis Found Symp. 2001, 240: 251-260. full_text. discussion 260-254
Article
CAS
Google Scholar
Ristow M: Oxidative metabolism in cancer growth. Curr Opin Clin Nutr Metab Care. 2006, 9: 339-345. 10.1097/01.mco.0000232892.43921.98.
Article
CAS
Google Scholar
Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004, 4: 891-899. 10.1038/nrc1478.
Article
CAS
Google Scholar
Gogvadze V, Orrenius S, Zhivotovsky B: Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol. 2008, 18: 165-173. 10.1016/j.tcb.2008.01.006.
Article
CAS
Google Scholar
Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature. 1998, 396: 643-649. 10.1038/25292.
Article
CAS
Google Scholar
Wokolorczyk D, Gliniewicz B, Sikorski A, Zlowocka E, Masojc B, Debniak T, Matyjasik J, Mierzejewski M, Medrek K, Oszutowska D, Suchy J, Gronwald J, Teodorczyk U, Huzarski T, Byrski T, Jakubowska A, Gorski B, Wetering van de T, Walczak S, Narod SA, Lubinski J, Cybulski C: A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res. 2008, 68: 9982-9986. 10.1158/0008-5472.CAN-08-1838.
Article
CAS
Google Scholar
Nowell PC: Tumor progression: a brief historical perspective. Semin Cancer Biol. 2002, 12: 261-266. 10.1016/S1044-579X(02)00012-3.
Article
CAS
Google Scholar
Frezza C, Gottlieb E: Mitochondria in cancer: Not just innocent bystanders. Semin Cancer Biol. 2008
Google Scholar
Gatenby RA, Gillies RJ: Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol. 2007, 39: 1358-1366. 10.1016/j.biocel.2007.03.021.
Article
CAS
Google Scholar
Heiden Vander MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809.
Article
CAS
Google Scholar
Ortega AD, Sanchez-Arago M, Giner-Sanchez D, Sanchez-Cenizo L, Willers I, Cuezva JM: Glucose avidity of carcinomas. Cancer Lett. 2009, 276: 125-135. 10.1016/j.canlet.2008.08.007.
Article
CAS
Google Scholar
Altenberg B, Greulich KO: Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004, 84: 1014-1020. 10.1016/j.ygeno.2004.08.010.
Article
CAS
Google Scholar
Warburg O: The Metabolism of Tumours. New York. Edited by: Richard R Smith. 1931
Google Scholar
Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.
Article
CAS
Google Scholar
Warburg O: The prime cause of cancer and prevention - Part 2. Annual meeting of Nobelists at Lindau, Germany. 1969, http://www.hopeforcancer.com/OxyPlus.htm
Google Scholar
Moreno-Sanchez R, Rodriguez-Enriquez S, Saavedra E, Marin-Hernandez A, Gallardo-Perez JC: The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells?. Biofactors. 2009, 35: 209-225. 10.1002/biof.31.
Article
CAS
Google Scholar
Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED: A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007, 11: 37-51. 10.1016/j.ccr.2006.10.020.
Article
CAS
Google Scholar
Semenza GL: HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr. 2007, 39: 231-234. 10.1007/s10863-007-9081-2.
Article
CAS
Google Scholar
Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E: Energy metabolism in tumor cells. Febs J. 2007, 274: 1393-1418. 10.1111/j.1742-4658.2007.05686.x.
Article
CAS
Google Scholar
Aisenberg AC: The Glycolysis and Respiration of Tumors. 1961, New York, Academic Press
Google Scholar
Fantin VR, Leder P: Mitochondriotoxic compounds for cancer therapy. Oncogene. 2006, 25: 4787-4797. 10.1038/sj.onc.1209599.
Article
CAS
Google Scholar
Hervouet E, Demont J, Pecina P, Vojtiskova A, Houstek J, Simonnet H, Godinot C: A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis. 2005, 26: 531-539. 10.1093/carcin/bgi001.
Article
CAS
Google Scholar
Weinhouse S: On respiratory impairment in cancer cells. Science. 1956, 124: 267-269. 10.1126/science.124.3215.267.
Article
CAS
Google Scholar
Weinhouse S: The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976, 87: 115-126. 10.1007/BF00284370.
Article
CAS
Google Scholar
Krebs H: Otto Warburg: Cell Physiologist, Biochemist, and Eccentric. 1981, Oxford, Clarendon
Google Scholar
Kim JW, Dang CV: Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006, 66: 8927-8930. 10.1158/0008-5472.CAN-06-1501.
Article
CAS
Google Scholar
Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134: 703-707. 10.1016/j.cell.2008.08.021.
Article
CAS
Google Scholar
Shaw RJ: Glucose metabolism and cancer. Current opinion in cell biology. 2006, 18: 598-608. 10.1016/j.ceb.2006.10.005.
Article
CAS
Google Scholar
Jones RG, Thompson CB: Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009, 23: 537-548. 10.1101/gad.1756509.
Article
CAS
Google Scholar
Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF: Ketone bodies, potential therapeutic uses. IUBMB Life. 2001, 51: 241-247. 10.1080/152165401753311780.
Article
CAS
Google Scholar
Kocherginsky N: Acidic lipids, H(+)-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas. 2009, 99: 20-41.
CAS
Google Scholar
Veech RL, Kashiwaya Y, Gates DN, King MT, Clarke K: The energetics of ion distribution: the origin of the resting electric potential of cells. IUBMB Life. 2002, 54: 241-252. 10.1080/15216540215678.
Article
CAS
Google Scholar
Veech RL, Lawson JW, Cornell NW, Krebs HA: Cytosolic phosphorylation potential. J Biol Chem. 1979, 254: 6538-6547.
CAS
Google Scholar
Donnelly M, Scheffler IE: Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture. J Cell Physiol. 1976, 89: 39-51. 10.1002/jcp.1040890105.
Article
CAS
Google Scholar
Baggetto LG: Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 1992, 74: 959-974. 10.1016/0300-9084(92)90016-8.
Article
CAS
Google Scholar
Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I: Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA. 2000, 97: 2826-2831. 10.1073/pnas.97.6.2826.
Article
CAS
Google Scholar
Reitzer LJ, Wice BM, Kennell D: Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979, 254: 2669-2676.
CAS
Google Scholar
Schwimmer C, Lefebvre-Legendre L, Rak M, Devin A, Slonimski PP, di Rago JP, Rigoulet M: Increasing mitochondrial substrate-level phosphorylation can rescue respiratory growth of an ATP synthase-deficient yeast. J Biol Chem. 2005, 280: 30751-30759. 10.1074/jbc.M501831200.
Article
CAS
Google Scholar
DeBerardinis RJ: Is cancer a disease of abnormal cellular metabolism?. New angles on an old idea. Genet Med. 2008, 10: 767-777. 10.1097/GIM.0b013e31818b0d9b.
Article
CAS
Google Scholar
Phillips D, Aponte AM, French SA, Chess DJ, Balaban RS: Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry. 2009, 48: 7140-7149. 10.1021/bi900725c.
Article
CAS
Google Scholar
Wallace DC: Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005, 70: 363-374. 10.1101/sqb.2005.70.035.
Article
CAS
Google Scholar
Pedersen PL: Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978, 22: 190-274.
Article
CAS
Google Scholar
Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA: Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007, 292: C125-136. 10.1152/ajpcell.00247.2006.
Article
CAS
Google Scholar
Fantin VR, St-Pierre J, Leder P: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006, 9: 425-434. 10.1016/j.ccr.2006.04.023.
Article
CAS
Google Scholar
Colowick SP: The status of Warburg's theory of glycolysis and respiration in tumors. Quart Rev Biol. 1961, 36: 273-276. 10.1086/403479.
Article
Google Scholar
Zu XL, Guppy M: Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004, 313: 459-465. 10.1016/j.bbrc.2003.11.136.
Article
CAS
Google Scholar
Burk D, Schade AL: On respiratory impairment in cancer cells. Science. 1956, 124: 270-272.
CAS
Google Scholar
Chance B, Hess B: Spectroscopic evidence of metabolic control. Science. 1959, 129: 700-708. 10.1126/science.129.3350.700.
Article
CAS
Google Scholar
Samudio I, Fiegl M, Andreeff M: Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res. 2009, 69: 2163-2166. 10.1158/0008-5472.CAN-08-3722.
Article
CAS
Google Scholar
Chen Y, Cairns R, Papandreou I, Koong A, Denko NC: Oxygen consumption can regulate the growth of tumors, a new perspective on the warburg effect. PLoS One. 2009, 4: e7033-10.1371/journal.pone.0007033.
Article
CAS
Google Scholar
Ramanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005, 102: 5992-5997. 10.1073/pnas.0502267102.
Article
CAS
Google Scholar
Mayevsky A: Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives. Mitochondrion. 2009
Google Scholar
van Wijk R, Souren J, Schamhart DH, van Miltenburg JC: Comparative studies of the heat production of different rat hepatoma cells in culture. Cancer Res. 1984, 44: 671-673.
CAS
Google Scholar
Smith AE, Kenyon DH: A unifying concept of carcinogenesis and its therapeutic implications. Oncology. 1973, 27: 459-479. 10.1159/000224754.
Article
CAS
Google Scholar
Yuneva M: Finding an "Achilles' heel" of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle. 2008, 7: 2083-2089.
Article
CAS
Google Scholar
Deberardinis RJ, Cheng T: Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2009
Google Scholar
Yang C, Sudderth J, Dang T, Bachoo RG, McDonald JG, Deberardinis RJ: Glioblastoma Cells Require Glutamate Dehydrogenase to Survive Impairments of Glucose Metabolism or Akt Signaling. Cancer Res. 2009
Google Scholar
John AP: Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: the impact of this on the treatment of cancer. Med Hypotheses. 2001, 57: 429-431. 10.1054/mehy.2001.1335.
Article
CAS
Google Scholar
Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G: Mitochondrial gateways to cancer. Mol Aspects Med. 2009
Google Scholar
Foster CS, Spoerri PE, Glees P, Spoerri O: The mode of mitochondrial degeneration in gliomas. Acta Neurochir (Wien). 1978, 43: 229-237. 10.1007/BF01587958.
Article
CAS
Google Scholar
Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK: Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Res. 2003, 31: 3909-3917. 10.1093/nar/gkg446.
Article
CAS
Google Scholar
Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC: The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 2002, 62: 6674-6681.
CAS
Google Scholar
Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN: Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008
Google Scholar
Arismendi-Morillo GJ, Castellano-Ramirez AV: Ultrastructural mitochondrial pathology in human astrocytic tumors: potentials implications pro-therapeutics strategies. J Electron Microsc (Tokyo). 2008, 57: 33-39. 10.1093/jmicro/dfm038.
Article
Google Scholar
Kiebish MA, Han X, Cheng H, Seyfried TN: In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours. ASN Neuro. 2009, 1-
Google Scholar
Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M: Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta. 2009, 1796: 252-265.
CAS
Google Scholar
Crabtree HG: Observations on the carbohydrate metabolism of tumors. Biochem J. 1929, 23: 536-545.
Article
CAS
Google Scholar
Bellance N, Benard G, Furt F, Begueret H, Smolkova K, Passerieux E, Delage JP, Baste JM, Moreau P, Rossignol R: Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. Int J Biochem Cell Biol. 2009, 41: 2566-2577. 10.1016/j.biocel.2009.08.012.
Article
CAS
Google Scholar
Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML: Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem. 2000, 275: 22387-22394. 10.1074/jbc.M909868199.
Article
CAS
Google Scholar
Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM: Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol. 2008, 182: 937-950. 10.1083/jcb.200801152.
Article
CAS
Google Scholar
Ohtsuka T, Nishijima M, Suzuki K, Akamatsu Y: Mitochondrial dysfunction of a cultured Chinese hamster ovary cell mutant deficient in cardiolipin. J Biol Chem. 1993, 268: 22914-22919.
CAS
Google Scholar
Chicco AJ, Sparagna GC: Role of cardiolipin alterations in mitochondrial dysfunction and disease. American journal of physiology Cell physiology. 2007, 292: C33-44. 10.1152/ajpcell.00243.2006.
Article
CAS
Google Scholar
Schug ZT, Gottlieb E: Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta. 2009
Google Scholar
Veech RL: The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004, 70: 309-319. 10.1016/j.plefa.2003.09.007.
Article
CAS
Google Scholar
Trachootham D, Alexandre J, Huang P: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov. 2009, 8: 579-591. 10.1038/nrd2803.
Article
CAS
Google Scholar
Detmer SA, Chan DC: Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007, 8: 870-879. 10.1038/nrm2275.
Article
CAS
Google Scholar
Acebo P, Giner D, Calvo P, Blanco-Rivero A, Ortega AD, Fernandez PL, Roncador G, Fernandez-Malave E, Chamorro M, Cuezva JM: Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. Transl Oncol. 2009, 2: 138-145.
Article
Google Scholar
Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M, Eardley I, Selby PJ, Banks RE: Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics. 2003, 3: 1620-1632. 10.1002/pmic.200300464.
Article
CAS
Google Scholar
Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C: Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 2002, 23: 759-768. 10.1093/carcin/23.5.759.
Article
CAS
Google Scholar
Roskelley RC, Mayer N, Horwitt BN, Salter WT: Studies in Cancer. Vii. Enzyme Deficiency in Human and Experimental Cancer. J Clin Invest. 1943, 22: 743-751. 10.1172/JCI101447.
Article
CAS
Google Scholar
Rasnick D, Duesberg PH: How aneuploidy affects metabolic control and causes cancer. Biochem J. 1999, 340 (Pt 3): 621-630. 10.1042/0264-6021:3400621.
Article
CAS
Google Scholar
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW: An integrated genomic analysis of human glioblastoma multiforme. Science. 2008, 321: 1807-1812. 10.1126/science.1164382.
Article
CAS
Google Scholar
Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008, 321: 1801-1806. 10.1126/science.1164368.
Article
CAS
Google Scholar
Pollard PJ, Wortham NC, Tomlinson IP: The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med. 2003, 35: 632-639. 10.1080/07853890310018458.
Article
CAS
Google Scholar
Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H, Devilee P, Cremers CW, Schiffman JD, Bentz BG, Gygi SP, Winge DR, Kremer H, Rutter J: SDH5, a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma. Science. 2009
Google Scholar
Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, Mey van der A, Taschner PE, Rubinstein WS, Myers EN, Richard CW, Cornelisse CJ, Devilee P, Devlin B: Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000, 287: 848-851. 10.1126/science.287.5454.848.
Article
CAS
Google Scholar
Alam NA, Rowan AJ, Wortham NC, Pollard PJ, Mitchell M, Tyrer JP, Barclay E, Calonje E, Manek S, Adams SJ, Bowers PW, Burrows NP, Charles-Holmes R, Cook LJ, Daly BM, Ford GP, Fuller LC, Hadfield-Jones SE, Hardwick N, Highet AS, Keefe M, MacDonald-Hull SP, Potts ED, Crone M, Wilkinson S, Camacho-Martinez F, Jablonska S, Ratnavel R, MacDonald A, Mann RJ, Grice K, Guillet G, Lewis-Jones MS, McGrath H, Seukeran DC, Morrison PJ, Fleming S, Rahman S, Kelsell D, Leigh I, Olpin S, Tomlinson IP: Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet. 2003, 12: 1241-1252. 10.1093/hmg/ddg148.
Article
CAS
Google Scholar
Favier J, Briere JJ, Burnichon N, Riviere J, Vescovo L, Benit P, Giscos-Douriez I, De Reynies A, Bertherat J, Badoual C, Tissier F, Amar L, Libe R, Plouin PF, Jeunemaitre X, Rustin P, Gimenez-Roqueplo AP: The warburg effect is genetically determined in inherited pheochromocytomas. PLoS One. 2009, 4: e7094-10.1371/journal.pone.0007094.
Article
CAS
Google Scholar
Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990, 250: 1233-1238. 10.1126/science.1978757.
Article
CAS
Google Scholar
Yokota J: Tumor progression and metastasis. Carcinogenesis. 2000, 21: 497-503. 10.1093/carcin/21.3.497.
Article
CAS
Google Scholar
Duesberg P, Rasnick D, Li R, Winters L, Rausch C, Hehlmann R: How aneuploidy may cause cancer and genetic instability. Anticancer Res. 1999, 19: 4887-4906.
CAS
Google Scholar
Kruse JP, Gu W: Modes of p53 regulation. Cell. 2009, 137: 609-622. 10.1016/j.cell.2009.04.050.
Article
CAS
Google Scholar
Olovnikov IA, Kravchenko JE, Chumakov PM: Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol. 2009, 19: 32-41. 10.1016/j.semcancer.2008.11.005.
Article
CAS
Google Scholar
Sonnenschein C, Soto AM: Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog. 2000, 29: 205-211. 10.1002/1098-2744(200012)29:4<205::AID-MC1002>3.0.CO;2-W.
Article
CAS
Google Scholar
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Heiden Vander MG, Su SM: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009
Google Scholar
Traven A, Wong JM, Xu D, Sopta M, Ingles CJ: Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem. 2001, 276: 4020-4027. 10.1074/jbc.M006807200.
Article
CAS
Google Scholar
Veatch JR, McMurray MA, Nelson ZW, Gottschling DE: Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell. 2009, 137: 1247-1258. 10.1016/j.cell.2009.04.014.
Article
Google Scholar
Jazwinski SM: The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging. Gene. 2005, 354: 22-27. 10.1016/j.gene.2005.03.040.
Article
CAS
Google Scholar
Erol A: Retrograde regulation due to mitochondrial dysfunction may be an important mechanism for carcinogenesis. Med Hypotheses. 2005, 65: 525-529. 10.1016/j.mehy.2005.03.022.
Article
CAS
Google Scholar
Butow RA, Avadhani NG: Mitochondrial signaling: the retrograde response. Mol Cell. 2004, 14: 1-15. 10.1016/S1097-2765(04)00179-0.
Article
CAS
Google Scholar
Amuthan G, Biswas G, Ananadatheerthavarada HK, Vijayasarathy C, Shephard HM, Avadhani NG: Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene. 2002, 21: 7839-7849. 10.1038/sj.onc.1205983.
Article
CAS
Google Scholar
Miceli MV, Jazwinski SM: Common and cell type-specific responses of human cells to mitochondrial dysfunction. Exp Cell Res. 2005, 302: 270-280. 10.1016/j.yexcr.2004.09.006.
Article
CAS
Google Scholar
Singh KK, Kulawiec M, Still I, Desouki MM, Geradts J, Matsui S: Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene. 2005, 354: 140-146. 10.1016/j.gene.2005.03.027.
Article
CAS
Google Scholar
Liu Z, Butow RA: Mitochondrial retrograde signaling. Annu Rev Genet. 2006, 40: 159-185. 10.1146/annurev.genet.40.110405.090613.
Article
CAS
Google Scholar
Miceli MV, Jazwinski SM: Nuclear gene expression changes due to mitochondrial dysfunction in ARPE-19 cells: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2005, 46: 1765-1773. 10.1167/iovs.04-1327.
Article
Google Scholar
Kulawiec M, Ayyasamy V, Singh KK: p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog. 2009, 8: 8-10.4103/1477-3163.50893.
Article
CAS
Google Scholar
Kulawiec M, Safina A, Desouki MM, Still I, Matsui SI, Bakin A, Singh KK: Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther. 2008, 7-
Google Scholar
Wolfman JC, Planchon SM, Liao J, Wolfman A: Structural and functional consequences of c-N-Ras constitutively associated with intact mitochondria. Biochim Biophys Acta. 2006, 1763: 1108-1124. 10.1016/j.bbamcr.2006.07.015.
Article
CAS
Google Scholar
Borghouts C, Benguria A, Wawryn J, Jazwinski SM: Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics. 2004, 166: 765-777. 10.1534/genetics.166.2.765.
Article
CAS
Google Scholar
Simbula G, Glascott PA, Akita S, Hoek JB, Farber JL: Two mechanisms by which ATP depletion potentiates induction of the mitochondrial permeability transition. Am J Physiol. 1997, 273: C479-488.
CAS
Google Scholar
Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N, Demazy C, Remacle J, Raes M: CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. Embo J. 2002, 21: 53-63. 10.1093/emboj/21.1.53.
Article
CAS
Google Scholar
Whitfield JF: Calcium, calcium-sensing receptor and colon cancer. Cancer Lett. 2009, 275: 9-16. 10.1016/j.canlet.2008.07.001.
Article
CAS
Google Scholar
Coussens LM, Werb Z: Inflammation and cancer. Nature. 2002, 420: 860-867. 10.1038/nature01322.
Article
CAS
Google Scholar
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009, 30: 1073-1081. 10.1093/carcin/bgp127.
Article
CAS
Google Scholar
Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C, Avadhani NG: Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. Embo J. 2001, 20: 1910-1920. 10.1093/emboj/20.8.1910.
Article
CAS
Google Scholar
Biswas G, Guha M, Avadhani NG: Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene. 2005, 354: 132-139. 10.1016/j.gene.2005.03.028.
Article
CAS
Google Scholar
Semenza GL: Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J. 2007, 405: 1-9.
Article
CAS
Google Scholar
Dang CV, Semenza GL: Oncogenic alterations of metabolism. Trends Biochem Sci. 1999, 24: 68-72. 10.1016/S0968-0004(98)01344-9.
Article
CAS
Google Scholar
Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008, 8: 705-713. 10.1038/nrc2468.
Article
CAS
Google Scholar
Tennant DA, Duran RV, Boulahbel H, Gottlieb E: Metabolic transformation in cancer. Carcinogenesis. 2009, 30: 1269-1280. 10.1093/carcin/bgp070.
Article
CAS
Google Scholar
King A, Selak MA, Gottlieb E: Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006, 25: 4675-4682. 10.1038/sj.onc.1209594.
Article
CAS
Google Scholar
Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008, 453: 807-811. 10.1038/nature06905.
Article
CAS
Google Scholar
Zhang L, Li L, Liu H, Prabhakaran K, Zhang X, Borowitz JL, Isom GE: HIF-1alpha activation by a redox-sensitive pathway mediates cyanide-induced BNIP3 upregulation and mitochondrial-dependent cell death. Free Radic Biol Med. 2007, 43: 117-127. 10.1016/j.freeradbiomed.2007.04.005.
Article
CAS
Google Scholar
Haeberle HA, Durrstein C, Rosenberger P, Hosakote YM, Kuhlicke J, Kempf VA, Garofalo RP, Eltzschig HK: Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS One. 2008, 3: e3352-10.1371/journal.pone.0003352.
Article
CAS
Google Scholar
Moon EJ, Jeong CH, Jeong JW, Kim KR, Yu DY, Murakami S, Kim CW, Kim KW: Hepatitis B virus × protein induces angiogenesis by stabilizing hypoxia-inducible factor-1alpha. Faseb J. 2004, 18: 382-384.
CAS
Google Scholar
Dang CV, Le A, Gao P: MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities. Clin Cancer Res. 2009
Google Scholar
Kolodner RD, Putnam CD, Myung K: Maintenance of genome stability in Saccharomyces cerevisiae. Science. 2002, 297: 552-557. 10.1126/science.1075277.
Article
CAS
Google Scholar
Delsite R, Kachhap S, Anbazhagan R, Gabrielson E, Singh KK: Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol Cancer. 2002, 1: 6-10.1186/1476-4598-1-6.
Article
Google Scholar
Evans AR, Limp-Foster M, Kelley MR: Going APE over ref-1. Mutat Res. 2000, 461: 83-108.
Article
CAS
Google Scholar
Ma Y, Bai RK, Trieu R, Wong LJ: Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. Biochim Biophys Acta. 2010, 1797: 29-37. 10.1016/j.bbabio.2009.07.008.
Article
CAS
Google Scholar
Lebedeva MA, Eaton JS, Shadel GS: Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim Biophys Acta. 2009, 1787: 328-334. 10.1016/j.bbabio.2009.01.004.
Article
CAS
Google Scholar
Holley AK, St Clair DK: Watching the watcher: regulation of p53 by mitochondria. Future Oncol. 2009, 5: 117-130. 10.2217/14796694.5.1.117.
Article
CAS
Google Scholar
Busso CS, Iwakuma T, Izumi T: Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene. 2009, 28: 1616-1625. 10.1038/onc.2009.5.
Article
CAS
Google Scholar
Burhans WC, Heintz NH: The cell cycle is a redox cycle: Linking phase-specific targets to cell fate. Free Radic Biol Med. 2009
Google Scholar
Whitaker M: Calcium microdomains and cell cycle control. Cell Calcium. 2006, 40: 585-592. 10.1016/j.ceca.2006.08.018.
Article
CAS
Google Scholar
Liu Y, Malureanu L, Jeganathan KB, Tran DD, Lindquist LD, van Deursen JM, Bram RJ: CAML loss causes anaphase failure and chromosome missegregation. Cell Cycle. 2009, 8: 940-949.
Article
CAS
Google Scholar
Marx J: Cell biology. Do centrosome abnormalities lead to cancer?. Science. 2001, 292: 426-429. 10.1126/science.292.5516.426.
Article
CAS
Google Scholar
Chang DC, Meng C: A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J Cell Biol. 1995, 131: 1539-1545. 10.1083/jcb.131.6.1539.
Article
CAS
Google Scholar
Salmon ED, Segall RR: Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus). J Cell Biol. 1980, 86: 355-365. 10.1083/jcb.86.2.355.
Article
CAS
Google Scholar
Anghileri LJ: Warburg's cancer theory revisited: a fundamentally new approach. Arch Geschwulstforsch. 1983, 53: 1-8.
CAS
Google Scholar
Fosslien E: Cancer morphogenesis: role of mitochondrial failure. Ann Clin Lab Sci. 2008, 38: 307-329.
CAS
Google Scholar
Parkin DM: The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006, 118: 3030-3044. 10.1002/ijc.21731.
Article
CAS
Google Scholar
Koike K: Hepatitis B virus X gene is implicated in liver carcinogenesis. Cancer Lett. 2009
Google Scholar
Clippinger AJ, Bouchard MJ: Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol. 2008, 82: 6798-6811. 10.1128/JVI.00154-08.
Article
CAS
Google Scholar
D'Agostino DM, Bernardi P, Chieco-Bianchi L, Ciminale V: Mitochondria as functional targets of proteins coded by human tumor viruses. Adv Cancer Res. 2005, 94: 87-142. 10.1016/S0065-230X(05)94003-7.
Article
Google Scholar
Koura M, Isaka H, Yoshida MC, Tosu M, Sekiguchi T: Suppression of tumorigenicity in interspecific reconstituted cells and cybrids. Gann. 1982, 73: 574-580.
CAS
Google Scholar
Israel BA, Schaeffer WI: Cytoplasmic suppression of malignancy. In Vitro Cell Dev Biol. 1987, 23: 627-632. 10.1007/BF02621071.
Article
CAS
Google Scholar
Howell AN, Sager R: Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc Natl Acad Sci USA. 1978, 75: 2358-2362. 10.1073/pnas.75.5.2358.
Article
CAS
Google Scholar
Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC: mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA. 2005, 102: 719-724. 10.1073/pnas.0408894102.
Article
CAS
Google Scholar
Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R: Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 2004, 18: 1875-1885. 10.1101/gad.1213504.
Article
CAS
Google Scholar
Li L, Connelly MC, Wetmore C, Curran T, Morgan JI: Mouse embryos cloned from brain tumors. Cancer Res. 2003, 63: 2733-2736.
CAS
Google Scholar
McKinnell RG, Deggins BA, Labat DD: Transplantation of pluripotential nuclei from triploid frog tumors. Science. 1969, 165: 394-396. 10.1126/science.165.3891.394.
Article
CAS
Google Scholar
Harris H: The analysis of malignancy by cell fusion: the position in 1988. Cancer Res. 1988, 48: 3302-3306.
CAS
Google Scholar
Kroemer G, Pouyssegur J: Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008, 13: 472-482. 10.1016/j.ccr.2008.05.005.
Article
CAS
Google Scholar
Tzachanis D, Boussiotis VA: Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle. 2009, 8: 1019-1025.
Article
CAS
Google Scholar
Sonnenschein C, Soto AM: The Society of Cells: Cancer and the Control of Cell Proliferation. 1999, New York, Springer-Verlag
Google Scholar
Godinot C, de Laplanche E, Hervouet E, Simonnet H: Actuality of Warburg's views in our understanding of renal cancer metabolism. J Bioenerg Biomembr. 2007, 39: 235-241. 10.1007/s10863-007-9088-8.
Article
CAS
Google Scholar
Marsh J, Mukherjee P, Seyfried TN: Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res. 2008, 14: 7751-7762. 10.1158/1078-0432.CCR-08-0213.
Article
CAS
Google Scholar
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009, 458: 762-765. 10.1038/nature07823.
Article
CAS
Google Scholar
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008, 105: 18782-18787. 10.1073/pnas.0810199105.
Article
CAS
Google Scholar
Bagheri S, Nosrati M, Li S, Fong S, Torabian S, Rangel J, Moore DH, Federman S, Laposa RR, Baehner FL, Sagebiel RW, Cleaver JE, Haqq C, Debs RJ, Blackburn EH, Kashani-Sabet M: Genes and pathways downstream of telomerase in melanoma metastasis. Proc Natl Acad Sci USA. 2006, 103: 11306-11311. 10.1073/pnas.0510085103.
Article
CAS
Google Scholar
Saretzki G: Telomerase, mitochondria and oxidative stress. Exp Gerontol. 2009, 44: 485-492. 10.1016/j.exger.2009.05.004.
Article
CAS
Google Scholar
Santos JH, Meyer JN, Van Houten B: Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet. 2006, 15: 1757-1768. 10.1093/hmg/ddl098.
Article
CAS
Google Scholar
Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S, Peters H, Birch-Machin MA, von Zglinicki T, Saretzki G: Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci. 2008, 121: 1046-1053. 10.1242/jcs.019372.
Article
CAS
Google Scholar
Mukherjee P, Abate LE, Seyfried TN: Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004, 10: 5622-5629. 10.1158/1078-0432.CCR-04-0308.
Article
CAS
Google Scholar
Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002, 86: 1615-1621. 10.1038/sj.bjc.6600298.
Article
CAS
Google Scholar
Iruela-Arispe ML, Dvorak HF: Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost. 1997, 78: 672-677.
CAS
Google Scholar
Folkman J: The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992, 3: 65-71.
CAS
Google Scholar
Folkman J: Incipient angiogenesis. J Natl Cancer Inst. 2000, 92: 94-95. 10.1093/jnci/92.2.94.
Article
CAS
Google Scholar
Greenberg JI, Cheresh DA: VEGF as an inhibitor of tumor vessel maturation: implications for cancer therapy. Expert Opin Biol Ther. 2009, 9: 1347-1356. 10.1517/14712590903208883.
Article
CAS
Google Scholar
Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo KT, Manseau EJ, Dvorak HF: Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res. 1996, 56: 172-181.
CAS
Google Scholar
Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med. 2003, 9: 669-676. 10.1038/nm0603-669.
Article
CAS
Google Scholar
Bos R, van Diest PJ, de Jong JS, Groep van der P, Valk van der P, Wall van der E: Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology. 2005, 46: 31-36. 10.1111/j.1365-2559.2005.02045.x.
Article
CAS
Google Scholar
Tarin D: Comparisons of metastases in different organs: biological and clinical implications. Clin Cancer Res. 2008, 14: 1923-1925. 10.1158/1078-0432.CCR-07-5259.
Article
Google Scholar
Bacac M, Stamenkovic I: Metastatic cancer cell. Annu Rev Pathol. 2008, 3: 221-247. 10.1146/annurev.pathmechdis.3.121806.151523.
Article
CAS
Google Scholar
Duffy MJ, McGowan PM, Gallagher WM: Cancer invasion and metastasis: changing views. J Pathol. 2008, 214: 283-293. 10.1002/path.2282.
Article
CAS
Google Scholar
Steeg PS: Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006, 12: 895-904. 10.1038/nm1469.
Article
CAS
Google Scholar
Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002, 2: 563-572. 10.1038/nrc865.
Article
CAS
Google Scholar
Fidler IJ: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003, 3: 453-458. 10.1038/nrc1098.
Article
CAS
Google Scholar
Huysentruyt LC, Shelton LM, Seyfried TN: Influence of methotrexate and cisplatin on tumor progression and survival in the VM mouse model of systemic metastatic cancer. Int J Cancer. 2010, 126: 65-72. 10.1002/ijc.24649.
Article
CAS
Google Scholar
Khanna C, Hunter K: Modeling metastasis in vivo. Carcinogenesis. 2005, 26: 513-523. 10.1093/carcin/bgh261.
Article
CAS
Google Scholar
Steeg PS: Heterogeneity of drug target expression among metastatic lesions: lessons from a breast cancer autopsy program. Clin Cancer Res. 2008, 14: 3643-3645. 10.1158/1078-0432.CCR-08-1135.
Article
Google Scholar
Pawelek JM: Cancer-cell fusion with migratory bone-marrow-derived cells as an explanation for metastasis: new therapeutic paradigms. Future Oncol. 2008, 4: 449-452. 10.2217/14796694.4.4.449.
Article
Google Scholar
Kalluri R: EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 2009, 119: 1417-1419. 10.1172/JCI39675.
Article
CAS
Google Scholar
Nowell PC: The clonal evolution of tumor cell populations. Science. 1976, 194: 23-28. 10.1126/science.959840.
Article
CAS
Google Scholar
Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 1990, 61: 759-767. 10.1016/0092-8674(90)90186-I.
Article
CAS
Google Scholar
Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavarone A: The transcriptional network for mesenchymal transformation of brain tumours. Nature. 1999
Google Scholar
Hart IR: New evidence for tumour embolism as a mode of metastasis. J Pathol. 2009, 219: 275-276. 10.1002/path.2616.
Article
Google Scholar
Garber K: Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. J Natl Cancer Inst. 2008, 100: 232-233. 10.1093/jnci/djn032.
Article
Google Scholar
Lu X, Kang Y: Cell Fusion as a Hidden Force in Tumor Progression. Cancer Res. 2009
Google Scholar
Munzarova M, Lauerova L, Kovarik J, Rejthar A, Brezina V, Kellnerova R, Kovarik A: Fusion-induced malignancy?. A preliminary study. (a challenge to today's common wisdom). Neoplasma. 1992, 39: 79-86.
CAS
Google Scholar
Ruff MR, Pert CB: Small cell carcinoma of the lung: macrophage-specific antigens suggest hemopoietic stem cell origin. Science. 1984, 225: 1034-1036. 10.1126/science.6089338.
Article
CAS
Google Scholar
Fais S: Cannibalism: a way to feed on metastatic tumors. Cancer Lett. 2007, 258: 155-164. 10.1016/j.canlet.2007.09.014.
Article
CAS
Google Scholar
Huysentruyt LC, Mukherjee P, Banerjee D, Shelton LM, Seyfried TN: Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model. Int J Cancer. 2008, 123: 73-84. 10.1002/ijc.23492.
Article
CAS
Google Scholar
Munzarova M, Kovarik J: Is cancer a macrophage-mediated autoaggressive disease?. Lancet. 1987, 1: 952-954. 10.1016/S0140-6736(87)90295-9.
Article
CAS
Google Scholar
Pawelek JM, Chakraborty AK: Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008, 8: 377-386. 10.1038/nrc2371.
Article
CAS
Google Scholar
Pawelek JM: Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol. 2005, 6: 988-993. 10.1016/S1470-2045(05)70466-6.
Article
CAS
Google Scholar
Psaila B, Lyden D: The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009, 9: 285-293. 10.1038/nrc2621.
Article
CAS
Google Scholar
Munzarova M, Lauerova L, Capkova J: Are advanced malignant melanoma cells hybrids between melanocytes and macrophages?. Melanoma Res. 1992, 2: 127-129.
Article
CAS
Google Scholar
Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, Gentile M, Luciani F, Parmiani G, Rivoltini L, Malorni W, Fais S: Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res. 2006, 66: 3629-3638. 10.1158/0008-5472.CAN-05-3204.
Article
CAS
Google Scholar
Willenbring H, Bailey AS, Foster M, Akkari Y, Dorrell C, Olson S, Finegold M, Fleming WH, Grompe M: Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med. 2004, 10: 744-748. 10.1038/nm1062.
Article
CAS
Google Scholar
Glinsky GV, Berezovska O, Glinskii AB: Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005, 115: 1503-1521. 10.1172/JCI23412.
Article
CAS
Google Scholar
Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9: 239-252. 10.1038/nrc2618.
Article
CAS
Google Scholar
Gordon S: Development and distribution of mononuclear phagocytes: Relevance to inflammation. Inflammation: Basic Principles and Clinical Correlates. Edited by: Snyderman JIGaR. 1999, New York: Lippincott Williams & Wilkins, 35-48.
Google Scholar
Lewis CE, Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006, 66: 605-612. 10.1158/0008-5472.CAN-05-4005.
Article
CAS
Google Scholar
Pollard JW: Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 2008, 84: 623-630. 10.1189/jlb.1107762.
Article
CAS
Google Scholar
Scherer HJ: A critical review: The pathology of cerebral gliomas. J Neurol Neuropsychiat. 1940, 3: 147-177. 10.1136/jnnp.3.2.147.
Article
CAS
Google Scholar
Leenstra S, Das PK, Troost D, de Boer OJ, Bosch DA: Human malignant astrocytes express macrophage phenotype. J Neuroimmunol. 1995, 56: 17-25. 10.1016/0165-5728(94)00128-B.
Article
CAS
Google Scholar
Youness E, Barlogie B, Ahearn M, Trujillo JM: Tumor cell phagocytosis. Its occurrence in a patient with medulloblastoma. Arch Pathol Lab Med. 1980, 104: 651-653.
CAS
Google Scholar
Kumar PV, Hosseinzadeh M, Bedayat GR: Cytologic findings of medulloblastoma in crush smears. Acta Cytol. 2001, 45: 542-546.
Article
CAS
Google Scholar
Shabo I, Olsson H, Sun XF, Svanvik J: Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer. 2009, 125: 1826-1831. 10.1002/ijc.24506.
Article
CAS
Google Scholar
Handerson T, Camp R, Harigopal M, Rimm D, Pawelek J: Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res. 2005, 11: 2969-2973. 10.1158/1078-0432.CCR-04-2211.
Article
CAS
Google Scholar
Abodief WT, Dey P, Al-Hattab O: Cell cannibalism in ductal carcinoma of breast. Cytopathology. 2006, 17: 304-305. 10.1111/j.1365-2303.2006.00326.x.
Article
CAS
Google Scholar
Marin-Padilla M: Erythrophagocytosis by epithelial cells of a breast carcinoma. Cancer. 1977, 39: 1085-1089. 10.1002/1097-0142(197703)39:3<1085::AID-CNCR2820390312>3.0.CO;2-U.
Article
CAS
Google Scholar
Spivak JL: Phagocytic tumour cells. Scand J Haematol. 1973, 11: 253-256.
Article
CAS
Google Scholar
Ruff MR, Farrar WL, Pert CB: Interferon gamma and granulocyte/macrophage colony-stimulating factor inhibit growth and induce antigens characteristic of myeloid differentiation in small-cell lung cancer cell lines. Proc Natl Acad Sci USA. 1986, 83: 6613-6617. 10.1073/pnas.83.17.6613.
Article
CAS
Google Scholar
Molad Y, Stark P, Prokocimer M, Joshua H, Pinkhas J, Sidi Y: Hemophagocytosis by small cell lung carcinoma. Am J Hematol. 1991, 36: 154-156. 10.1002/ajh.2830360218.
Article
CAS
Google Scholar
Falini B, Bucciarelli E, Grignani F, Martelli MF: Erythrophagocytosis by undifferentiated lung carcinoma cells. Cancer. 1980, 1140-1145. 10.1002/1097-0142(19800901)46:5<1140::AID-CNCR2820460511>3.0.CO;2-B.
Google Scholar
DeSimone PA, East R, Powell RD: Phagocytic tumor cell activity in oat cell carcinoma of the lung. Hum Pathol. 1980, 11: 535-539.
CAS
Google Scholar
Pawelek JM, Chakraborty AK: The cancer cell--leukocyte fusion theory of metastasis. Adv Cancer Res. 2008, 101: 397-444. 10.1016/S0065-230X(08)00410-7.
Article
CAS
Google Scholar
Rachkovsky M, Sodi S, Chakraborty A, Avissar Y, Bolognia J, McNiff JM, Platt J, Bermudes D, Pawelek J: Melanoma × macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis. 1998, 16: 299-312. 10.1023/A:1006557228604.
Article
CAS
Google Scholar
Monteagudo C, Jorda E, Carda C, Illueca C, Peydro A, Llombart-Bosch A: Erythrophagocytic tumour cells in melanoma and squamous cell carcinoma of the skin. Histopathology. 1997, 31: 367-373. 10.1046/j.1365-2559.1997.2670867.x.
Article
CAS
Google Scholar
Breier F, Feldmann R, Fellenz C, Neuhold N, Gschnait F: Primary invasive signet-ring cell melanoma. J Cutan Pathol. 1999, 26: 533-536. 10.1111/j.1600-0560.1999.tb01802.x.
Article
CAS
Google Scholar
Lazar D, Taban S, Dema A, Cornianu M, Goldis A, Ratiu I, Sporea I: Gastric cancer: the correlation between the clinicopathological factors and patients' survival (I). Rom J Morphol Embryol. 2009, 50: 41-50.
Google Scholar
Sung CO, Seo JW, Kim KM, Do IG, Kim SW, Park CK: Clinical significance of signet-ring cells in colorectal mucinous adenocarcinoma. Mod Pathol. 2008, 21: 1533-1541. 10.1038/modpathol.2008.170.
Article
Google Scholar
Moonda A, Fatteh S: Metastatic colorectal carcinoma: an unusual presentation. J Cutan Pathol. 2009, 36: 64-66. 10.1111/j.1600-0560.2008.01007.x.
Article
Google Scholar
Schorlemmer HU, Bosslet K, Kern HF, Sedlacek HH: Similarities in function between pancreatic tumor cells and macrophages and their inhibition by murine monoclonal antibodies. Behring Inst Mitt. 1988, 240-264.
Google Scholar
Khayyata S, Basturk O, Adsay NV: Invasive micropapillary carcinomas of the ampullo-pancreatobiliary region and their association with tumor-infiltrating neutrophils. Mod Pathol. 2005, 18: 1504-1511. 10.1038/modpathol.3800460.
Article
Google Scholar
Kojima S, Sekine H, Fukui I, Ohshima H: Clinical significance of "cannibalism" in urinary cytology of bladder cancer. Acta Cytol. 1998, 42: 1365-1369.
Article
CAS
Google Scholar
Chetty R, Cvijan D: Giant (bizarre) cell variant of renal carcinoma. Histopathology. 1997, 30: 585-587. 10.1046/j.1365-2559.1997.5560789.x.
Article
CAS
Google Scholar
Yasunaga M, Ohishi Y, Nishimura I, Tamiya S, Iwasa A, Takagi E, Inoue T, Yahata H, Kobayashi H, Wake N, Tsuneyoshi M: Ovarian undifferentiated carcinoma resembling giant cell carcinoma of the lung. Pathol Int. 2008, 58: 244-248. 10.1111/j.1440-1827.2008.02218.x.
Article
Google Scholar
Lee H, Sodek KL, Hwang Q, Brown TJ, Ringuette M, Sodek J: Phagocytosis of collagen by fibroblasts and invasive cancer cells is mediated by MT1-MMP. Biochem Soc Trans. 2007, 35: 704-706. 10.1042/BST0350704.
Article
CAS
Google Scholar
Tsoi WC, Feng CS: Hemophagocytosis by rhabdomyosarcoma cells in bone marrow. Am J Hematol. 1997, 54: 340-342. 10.1002/(SICI)1096-8652(199704)54:4<340::AID-AJH17>3.0.CO;2-F.
Article
CAS
Google Scholar
Etcubanas E, Peiper S, Stass S, Green A: Rhabdomyosarcoma, presenting as disseminated malignancy from an unknown primary site: a retrospective study of ten pediatric cases. Med Pediatr Oncol. 1989, 17: 39-44. 10.1002/mpo.2950170108.
Article
CAS
Google Scholar
Seyfried TN: Perspectives on brain tumor formation involving macrophages, glia, and neural stem cells. Perspect Biol Med. 2001, 44: 263-282. 10.1353/pbm.2001.0035.
Article
CAS
Google Scholar
Kim SY, Roh JL, Yeo NK, Kim JS, Lee JH, Choi SH, Nam SY: Combined 18F-fluorodeoxyglucose-positron emission tomography and computed tomography as a primary screening method for detecting second primary cancers and distant metastases in patients with head and neck cancer. Ann Oncol. 2007, 18: 1698-1703. 10.1093/annonc/mdm270.
Article
CAS
Google Scholar
Hursting SD, Kari FW: The anti-carcinogenic effects of dietary restriction: mechanisms and future directions. Mutat Res. 1999, 443: 235-249.
Article
CAS
Google Scholar
Jose DG, Good RA: Quantitative effects of nutritional protein and calorie deficiency upon immune responses to tumors in mice. Cancer Res. 1973, 33: 807-812.
CAS
Google Scholar
Wheatley KE, Williams EA, Smith NC, Dillard A, Park EY, Nunez NP, Hursting SD, Lane MA: Low-carbohydrate diet versus caloric restriction: effects on weight loss, hormones, and colon tumor growth in obese mice. Nutr Cancer. 2008, 60: 61-68. 10.1080/01635580802393118.
Article
CAS
Google Scholar
Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK: Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst. 1999, 91: 512-523. 10.1093/jnci/91.6.512.
Article
CAS
Google Scholar
Kari FW, Dunn SE, French JE, Barrett JC: Roles for insulin-like growth factor-1 in mediating the anti-carcinogenic effects of caloric restriction. J Nutr Health Aging. 1999, 3: 92-101.
CAS
Google Scholar
Mavropoulos JC, Buschemeyer WC, Tewari AK, Rokhfeld D, Pollak M, Zhao Y, Febbo PG, Cohen P, Hwang D, Devi G, Demark-Wahnefried W, Westman EC, Peterson BL, Pizzo SV, Freedland SJ: The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev Res (Phila Pa). 2009, 2: 557-565.
Article
CAS
Google Scholar
Bonorden MJ, Rogozina OP, Kluczny CM, Grossmann ME, Grambsch PL, Grande JP, Perkins S, Lokshin A, Cleary MP: Intermittent calorie restriction delays prostate tumor detection and increases survival time in TRAMP mice. Nutr Cancer. 2009, 61: 265-275. 10.1080/01635580802419798.
Article
Google Scholar
Thompson HJ, McGinley JN, Spoelstra NS, Jiang W, Zhu Z, Wolfe P: Effect of dietary energy restriction on vascular density during mammary carcinogenesis. Cancer Res. 2004, 64: 5643-5650. 10.1158/0008-5472.CAN-04-0787.
Article
CAS
Google Scholar
Kritchevsky D: Caloric restriction and experimental carcinogenesis. Toxicol Sci. 1999, 52: 13-16.
Article
CAS
Google Scholar
Tannenbaum A: Nutrition and cancer. Physiopathology of Cancer. Edited by: Homburger F. 1959, NY: Paul B. Hober, 517-562.
Google Scholar
Kalaany NY, Sabatini DM: Tumours with PI3K activation are resistant to dietary restriction. Nature. 2009, 458: 725-731. 10.1038/nature07782.
Article
CAS
Google Scholar
Hursting SD, Smith SM, Lashinger LM, Harvey AE, Perkins SN: Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis. 2010, 31: 83-89. 10.1093/carcin/bgp280.
Article
CAS
Google Scholar
Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunkett W, Huang P: Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006, 175: 913-923. 10.1083/jcb.200512100.
Article
CAS
Google Scholar
Young CD, Anderson SM: Sugar and fat - that's where it's at: metabolic changes in tumors. Breast Cancer Res. 2008, 10: 202-10.1186/bcr1852.
Article
CAS
Google Scholar
Thompson HJ, Jiang W, Zhu Z: Mechanisms by which energy restriction inhibits carcinogenesis. Adv Exp Med Biol. 1999, 470: 77-84.
Article
CAS
Google Scholar
Thompson HJ, Zhu Z, Jiang W: Dietary Energy Restriction in Breast Cancer Prevention. Journal of mammary gland biology and neoplasia. 2003, 8: 133-142. 10.1023/A:1025743607445.
Article
Google Scholar
Mukherjee P, Zhau J-R, Sotnikov AV, Clinton SK: Dietary and nutritional modulation of tumor angiogenesis. Antiangiogenic Agents in Cancer Therapy. Edited by: Teicher BA. 1999, Totowa, NJ: Humana Press, 237-261.
Chapter
Google Scholar
Thompson HJ, Zhu Z, Jiang W: Identification of the apoptosis activation cascade induced in mammary carcinomas by energy restriction. Cancer Res. 2004, 64: 1541-1545. 10.1158/0008-5472.CAN-03-3108.
Article
CAS
Google Scholar
Zhu Z, Jiang W, McGinley J, Wolfe P, Thompson HJ: Effects of dietary energy repletion and IGF-1 infusion on the inhibition of mammary carcinogenesis by dietary energy restriction. Molecular carcinogenesis. 2005, 42: 170-176. 10.1002/mc.20071.
Article
CAS
Google Scholar
Hagopian K, Ramsey JJ, Weindruch R: Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice. Exp Gerontol. 2003, 38: 253-266. 10.1016/S0531-5565(02)00203-6.
Article
CAS
Google Scholar
Lee CK, Klopp RG, Weindruch R, Prolla TA: Gene expression profile of aging and its retardation by caloric restriction. Science. 1999, 285: 1390-1393. 10.1126/science.285.5432.1390.
Article
CAS
Google Scholar
Lee CK, Weindruch R, Prolla TA: Gene-expression profile of the ageing brain in mice. Nat Genet. 2000, 25: 294-297. 10.1038/77046.
Article
CAS
Google Scholar
Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN: Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond). 2004, 1: 11-10.1186/1743-7075-1-11.
Article
CAS
Google Scholar
Mahoney LB, Denny CA, Seyfried TN: Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis. 2006, 5: 13-10.1186/1476-511X-5-13.
Article
CAS
Google Scholar
Cahill GF: Starvation in man. N Engl J Med. 1970, 282: 668-675.
Article
CAS
Google Scholar
Cahill GF, Veech RL: Ketoacids? Good medicine?. Trans Am Clin Climatol Assoc. 2003, 114: 149-161. discussion 162-143
Google Scholar
Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN: The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond). 2007, 4: 5-10.1186/1743-7075-4-5.
Article
CAS
Google Scholar
Fredericks M, Ramsey RB: 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem. 1978, 31: 1529-1531. 10.1111/j.1471-4159.1978.tb06581.x.
Article
CAS
Google Scholar
Tisdale MJ, Brennan RA: Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br J Cancer. 1983, 47: 293-297.
Article
CAS
Google Scholar
Seyfried NT, Kiebish M, Mukherjee P: Targeting energy metabolism in brain cancer with restricted diets. Glioblastoma: Molecular Mechanisms of Pathogenesis and Current Therapeutic Strategies. Edited by: Ray S. 2010, New York: Springer, 341-363.
Chapter
Google Scholar
Seyfried TN, Kiebish M, Mukherjee P, Marsh J: Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets. Epilepsia. 2008, 49 (Suppl 8): 114-116. 10.1111/j.1528-1167.2008.01853.x.
Article
Google Scholar
Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P: Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003, 89: 1375-1382. 10.1038/sj.bjc.6601269.
Article
CAS
Google Scholar
Seyfried TN, Mukherjee P: Anti-Angiogenic and Pro-Apoptotic Effects of Dietary Restriction in Experimental Brain Cancer: Role of Glucose and Ketone Bodies. Integration/Interaction of Oncologic Growth. Cancer Growth and Progression. Edited by: Meadows GG. 2005, New York: Kluwer Academic, 15: 259-270. full_text.
Chapter
Google Scholar
Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995, 14: 202-208.
Article
CAS
Google Scholar
Otto C, Kaemmerer U, Illert B, Muehling B, Pfetzer N, Wittig R, Voelker HU, Thiede A, Coy JF: Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer. 2008, 8: 122-10.1186/1471-2407-8-122.
Article
CAS
Google Scholar
Mavropoulos JC, Isaacs WB, Pizzo SV, Freedland SJ: Is there a role for a low-carbohydrate ketogenic diet in the management of prostate cancer?. Urology. 2006, 68: 15-18. 10.1016/j.urology.2006.03.073.
Article
Google Scholar
Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN: Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer. 2008, 7: 37-10.1186/1476-4598-7-37.
Article
CAS
Google Scholar
Argiles JM, Moore-Carrasco R, Fuster G, Busquets S, Lopez-Soriano FJ: Cancer cachexia: the molecular mechanisms. Int J Biochem Cell Biol. 2003, 35: 405-409. 10.1016/S1357-2725(02)00251-0.
Article
CAS
Google Scholar
Tisdale MJ: Cancer anorexia and cachexia. Nutrition. 2001, 17: 438-442. 10.1016/S0899-9007(01)00506-8.
Article
CAS
Google Scholar
Todorov PT, Wyke SM, Tisdale MJ: Identification and characterization of a membrane receptor for proteolysis-inducing factor on skeletal muscle. Cancer Res. 2007, 67: 11419-11427. 10.1158/0008-5472.CAN-07-2602.
Article
CAS
Google Scholar
Tisdale MJ: Biology of cachexia. J Natl Cancer Inst. 1997, 89: 1763-1773. 10.1093/jnci/89.23.1763.
Article
CAS
Google Scholar
Lopez-Lazaro M: The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?. Anticancer Agents Med Chem. 2008, 8: 305-312. 10.2174/187152008783961932.
Article
CAS
Google Scholar
Rodriguez-Enriquez S, Marin-Hernandez A, Gallardo-Perez JC, Carreno-Fuentes L, Moreno-Sanchez R: Targeting of cancer energy metabolism. Mol Nutr Food Res. 2009, 53: 29-48. 10.1002/mnfr.200700470.
Article
CAS
Google Scholar
Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 2006, 25: 4633-4646. 10.1038/sj.onc.1209597.
Article
CAS
Google Scholar
Marsh J, Mukherjee P, Seyfried TN: Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted ketogenic diet. Nutr Metab (Lond). 2008, 5: 33-10.1186/1743-7075-5-33.
Article
CAS
Google Scholar
Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986, 315: 1650-1659.
Article
CAS
Google Scholar
Dong W, Selgrade MK, Gilmour IM, Lange RW, Park P, Luster MI, Kari FW: Altered alveolar macrophage function in calorie-restricted rats. Am J Respir Cell Mol Biol. 1998, 19: 462-469.
Article
CAS
Google Scholar
Medina MA: Glutamine and cancer. J Nutr. 2001, 131: 2539S-2542S. discussion 2550S-2531S
CAS
Google Scholar
Newsholme P: Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?. J Nutr. 2001, 131: 2515S-2522S. discussion 2523S-2514S
CAS
Google Scholar
Tijerina AJ: The biochemical basis of metabolism in cancer cachexia. Dimens Crit Care Nurs. 2004, 23: 237-243. 10.1097/00003465-200411000-00001.
Article
Google Scholar
Piscitelli SC, Thibault A, Figg WD, Tompkins A, Headlee D, Lieberman R, Samid D, Myers CE: Disposition of phenylbutyrate and its metabolites, phenylacetate and phenylacetylglutamine. J Clin Pharmacol. 1995, 35: 368-373.
Article
CAS
Google Scholar
American Cancer Society: Cancer Facts & Figures 2009. 2009, American Cancer Society, Atlanta, 68-
Google Scholar
Chance B, Sies H, Boveris A: Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979, 59: 527-605.
CAS
Google Scholar
Ziegler DR, Ribeiro LC, Hagenn M, Siqueira IR, Araujo E, Torres IL, Gottfried C, Netto CA, Goncalves CA: Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem Res. 2003, 28: 1793-1797. 10.1023/A:1026107405399.
Article
CAS
Google Scholar
Elias SG, Peeters PH, Grobbee DE, van Noord PA: Breast cancer risk after caloric restriction during the 1944-1945 Dutch famine. J Natl Cancer Inst. 2004, 96: 539-546.
Article
Google Scholar
Hursting SD, Forman MR: Cancer risk from extreme stressors: lessons from European Jewish survivors of World War II. J Natl Cancer Inst. 2009, 101: 1436-1437. 10.1093/jnci/djp357.
Article
Google Scholar
Qiao YL, Dawsey SM, Kamangar F, Fan JH, Abnet CC, Sun XD, Johnson LL, Gail MH, Dong ZW, Yu B, Mark SD, Taylor PR: Total and cancer mortality after supplementation with vitamins and minerals: follow-up of the Linxian General Population Nutrition Intervention Trial. J Natl Cancer Inst. 2009, 101: 507-518. 10.1093/jnci/djp037.
Article
CAS
Google Scholar
Balietti M, Fattoretti P, Giorgetti B, Casoli T, Di Stefano G, Solazzi M, Platano D, Aicardi G, Bertoni-Freddari C: A ketogenic diet increases succinic dehydrogenase activity in aging cardiomyocytes. Ann N Y Acad Sci. 2009, 1171: 377-384. 10.1111/j.1749-6632.2009.04704.x.
Article
CAS
Google Scholar
Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL: Insulin, ketone bodies, and mitochondrial energy transduction. Faseb J. 1995, 9: 651-658.
CAS
Google Scholar
Cleary MP, Jacobson MK, Phillips FC, Getzin SC, Grande JP, Maihle NJ: Weight-cycling decreases incidence and increases latency of mammary tumors to a greater extent than does chronic caloric restriction in mouse mammary tumor virus-transforming growth factor-alpha female mice. Cancer Epidemiol Biomarkers Prev. 2002, 11: 836-843.
CAS
Google Scholar
Kritchevsky D: Fundamentals of nutrition: applications to cancer research. Nutritional Oncology. Edited by: Heber D, Blackburn GL, Go VLW. 1999, Boston: Academic Press, 5-10.
Google Scholar
Kritchevsky D: Caloric restriction and experimental mammary carcinogenesis. Breast Cancer Res Treat. 1997, 46: 161-167. 10.1023/A:1005960410225.
Article
CAS
Google Scholar
Hopper BD, Przybyszewski J, Chen HW, Hammer KD, Birt DF: Effect of ultraviolet B radiation on activator protein 1 constituent proteins and modulation by dietary energy restriction in SKH-1 mouse skin. Mol Carcinog. 2009, 48: 843-852. 10.1002/mc.20529.
Article
CAS
Google Scholar
Steinbach G, Heymsfield S, Olansen NE, Tighe A, Holt PR: Effect of caloric restriction on colonic proliferation in obese persons: implications for colon cancer prevention. Cancer Res. 1994, 54: 1194-1197.
CAS
Google Scholar
Albanes D: Caloric intake, body weight, and cancer: a review. Nutr Cancer. 1987, 9: 199-217. 10.1080/01635588709513929.
Article
CAS
Google Scholar