Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, et al. The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia. 1999;40(12):1721–6. doi:10.1111/j.1528-1157.1999.tb01589.x.
Article
CAS
Google Scholar
Wilder R. The effect of ketonemia on the course of epilepsy. Mayo Clin Bulletin. 1921;2:307–8.
Google Scholar
Thiele E. Assessing the efficacy of antiepileptic treatments: the ketogenic diet. Epilepsia. 2003;44 Suppl 7:26–9. doi:10.1046/j.1528-1157.44.s7.4.x.
Article
CAS
Google Scholar
Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789–96. doi:10.1038/ejcn.2013.116.
Article
CAS
Google Scholar
Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohemmed BS, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003;348:2082–90.
Article
CAS
Google Scholar
Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007;86:276–84.
CAS
Google Scholar
Westman EC, Yancy WS, Edman JS, Tomlin KF, Perkins CE. Effect of 6-month adherence to a very low carbohydrate diet program. Am J Med. 2002;113(1):30–6.
Article
Google Scholar
Forsythe C, Phinney S, Fernandez M, Quann E, Wood R, Bibus D, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008;43(1):65–77. doi:10.1007/s11745-007-3132-7.
Article
CAS
Google Scholar
Boden G, Sargrad K, Homko C, Mozzoli M, Stein T. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med. 2005;142(6):403–11.
Article
CAS
Google Scholar
Gumbiner B, Wendel J, McDermott M. Effects of diet composition and ketosis on glycemia during very-low-energy-diet therapy in obese patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1996;63(1):110–5.
CAS
Google Scholar
Nielsen J, Joensson E. Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr Metab. 2008;5:14. doi:10.1186/1743-7075-5-14.
Article
Google Scholar
Yancy W, Foy M, Chalecki A, Vernon M, Westman E. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab. 2005;2:34. doi:10.1186/1743-7075-2-34.
Article
Google Scholar
Dashti HM, Al-Zaid NS, Mathew TC, Al-Mousawi M, Talib H, Asfar SK, et al. Long term effects of ketogenic diet in obese subjects with high cholesterol level. Mol Cell Biochem. 2006;286(1–2):1–9. doi:10.1007/s11010-005-9001-x.
Article
CAS
Google Scholar
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009;59(2):293–315. doi:10.1016/j.brainresrev.2008.09.002.
Article
CAS
Google Scholar
Mavropoulos JC, Yancy WS, Hepburn J, Westman EC. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab. 2004;2:35. doi:10.1186/1743-7075-2-35.
Article
Google Scholar
Seyfried T, Flores R, Poff A, D’Agostino D. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35:515–27. doi:10.1093/carcin/bgt480.
Article
CAS
Google Scholar
Poff AM, Ari C, Arnold P, Seyfried TN, D’Agostino DP. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer. 2014;135:1711–20. doi:10.1002/ijc.28809.
Article
CAS
Google Scholar
Poff A, Ari C, Seyfried T, D’Agostino D. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS ONE. 2013;8(6), e65522. doi:10.1371/journal.pone.0065522.
Article
CAS
Google Scholar
Seyfried T, Shelton L. Cancer as a metabolic disease. Nutr Metab. 2010;7:7. doi:10.1186/1743-7075-7-7.
Article
Google Scholar
Fine E, Segal-Isaacson C, Feinman R, Herszkopf S, Romano M, Tomuta N, et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 2012;28(10):1028–35. doi:10.1016/j.nut.2012.05.001.
Article
CAS
Google Scholar
Zhao Z, Lange D, Voustianiouk A, MacGrogan D, Ho L, Suh J, et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 2006;7:29. doi:10.1186/1471-2202-7-29.
Article
Google Scholar
White H, Venkatesh B. Clinical review: ketones and brain injury. Crit Care. 2011;15(2):219. doi:10.1186/cc10020.
Article
Google Scholar
Prins M. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab. 2008;28(1):1–16. doi:10.1038/sj.jcbfm.9600543.
Article
CAS
Google Scholar
Henderson S, Vogel J, Barr L, Garvin F, Jones J, Costantini L. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab. 2009;6:31. doi:10.1186/1743-7075-6-31.
Article
Google Scholar
Brownlow M, Benner L, D’Agostino D, Gordon M, Morgan D. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS ONE. 2013;8(9), e75713. doi:10.1371/journal.pone.0075713.g008.
Article
CAS
Google Scholar
Kossoff EH, Hartman AL. Ketogenic diets: new advances for metabolism-based therapies. Curr Opin Neurol. 2012;25:173–8. doi:10.1097/WCO.0b013e3283515e4a.
Article
CAS
Google Scholar
Kwiterovich P, Vining E, Pyzik P, Skolasky R, Freeman J. Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA. 2003;290(7):912–20. doi:10.1001/jama.290.7.912.
Article
CAS
Google Scholar
Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill Jr GF. Ketone bodies, potential therapeutic uses. IUBMB Life. 2001;51(4):241–7. doi:10.1080/152165401753311780.
Article
CAS
Google Scholar
D’Agostino D, Pilla R, Held H, Landon C, Puchowicz M, Brunengraber H, et al. Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am J Physiol Regul Integr Comp Physiol. 2013;304(10):R829–36. doi:10.1152/ajpregu.00506.2012.
Article
Google Scholar
Gasior M, French A, Joy M, Tang R, Hartman A, Rogawski M. The anticonvulsant activity of acetone, the major ketone body in the ketogenic diet, is not dependent on its metabolites acetol, 1,2-propanediol, methylglyoxal, or pyruvic acid. Epilepsia. 2007;48(4):793–800. doi:10.1111/j.1528-1167.2007.01026.x.
Article
CAS
Google Scholar
Likhodii S, Nylen K, Burnham W. Acetone as an anticonvulsant. Epilepsia. 2008;49 Suppl 8:83–6. doi:10.1111/j.1528-1167.2008.01844.x.
Article
Google Scholar
Seymour K, Bluml S, Sutherling J, Sutherling W, Ross B. Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. Magma. 1999;8(1):33–42.
CAS
Google Scholar
Halevy A, Peleg-Weiss L, Cohen R, Shuper A. An update on the ketogenic diet, 2012. Rambam Maimonides Med J. 2012;3(1), e0005. doi:10.5041/RMMJ.10072.
Article
Google Scholar
Amari A, Grace N, Fisher W. Achieving and maintaining compliance with the ketogenic diet. J Appl Behav Anal. 1995;28(3):341–2. doi:10.1901/jaba.1995.28-341.
Article
CAS
Google Scholar
Zhang Y, Kuang Y, LaManna J, Puchowicz M. Contribution of brain glucose and ketone bodies to oxidative metabolism. Adv Exp Med Biol. 2013;765:365–70. doi:10.1007/978-1-4614-4989-8_51.
Article
CAS
Google Scholar
Maalouf M, Sullivan P, Davis L, Kim D, Rho J. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007;145(1):256–64. doi:10.1016/j.neuroscience.2006.11.065.
Article
CAS
Google Scholar
Milder J, Patel M. Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res. 2012;100(3):295–303. doi:10.1016/j.eplepsyres.2011.09.021.
Article
CAS
Google Scholar
Shimazu T, Hirschey M, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211–4. doi:10.1126/science.1227166.
Article
CAS
Google Scholar
Kim DY, Davis L, Sullivan P, Maalouf M, Simeone T, van Brederode J, et al. Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem. 2007;101(5):1316–26. doi:10.1111/j.1471-4159.2007.04483.x.
Article
CAS
Google Scholar
Veech R. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fat Acids. 2004;70(3):309–19. doi:10.1016/j.plefa.2003.09.007.
Article
CAS
Google Scholar
Sato K, Kashiwaya Y, Keon C, Tsuchiya N, King M, Radda G, et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995;9(8):651–8.
CAS
Google Scholar
Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell D, Veech R, et al. Control of glucose utilization in working perfused rat heart. J Biol Chem. 1994;269(41):25502–14.
CAS
Google Scholar
Sullivan P, Rippy N, Dorenbos K, Concepcion R, Agarwal A, Rho J. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 2004;55(4):576–80. doi:10.1002/ana.20062.
Article
CAS
Google Scholar
Bough K, Rho J. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia. 2007;48(1):43–58. doi:10.1111/j.1528-1167.2007.00915.x.
Article
CAS
Google Scholar
Bough K, Wetherington J, Hassel B, Pare J, Gawryluk J, Greene J, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223–35. doi:10.1002/ana.20899.
Article
CAS
Google Scholar
Ruskin D, Kawamura M, Masino S. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS ONE. 2009;4(12), e8349. doi:10.1371/journal.pone.0008349.
Article
Google Scholar
Paoli A, Moro T, Bosco G, Bianco A, Grimaldi KA, Camporesi E, et al. Effects of n-3 polyunsaturated fatty acids (ω-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Marine drugs. 2015;13(2):996–1009. doi:10.3390/md13020996.
Article
CAS
Google Scholar
Desrochers S, Dubreuil P, Brunet J, Jetté M, David F, Landau BR, et al. Metabolism of (R, S)-1,3-butanediol acetoacetate esters, potential parenteral and enteral nutrients in conscious pigs. Am J Physiol. 1995;268(4 Pt 1):E660–7.
CAS
Google Scholar
Clarke K, Tchabanenko K, Pawlosky R, Carter E, Knight N, Murray A, et al. Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regul Toxicol Pharmacol. 2012;63(2):196–208. doi:10.1016/j.yrtph.2012.04.001.
Article
CAS
Google Scholar
Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 2012;63(3):401–8. doi:10.1016/j.yrtph.2012.04.008.
Article
CAS
Google Scholar
Warnick G, Knopp R, Fitzpatrick V, Branson L. Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints. Clin Chem. 1990;36(1):15–9.
CAS
Google Scholar
Friedewald W, Levy R, Fredrickson D. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
CAS
Google Scholar
Harlan Laboratories Inc U. Sprague Dawley Outbred Rat. In: http://www.harlan.com/products_and_services/research_models_and_services/research_models/sprague_dawley_outbred_rat.hl. 2008. http://www.harlan.com/products_and_services/research_models_and_services/research_models/sprague_dawley_outbred_rat.hl. Accessed date January 30, 2014.
Inc TB. Sprague Dawley Rat. In: http://www.taconic.com/sd. 2014. http://www.taconic.com/user-assets/documents/spraguedawley_booklet.pdf. Accessed date January 30, 2014.
McPherson P, McEneny J. The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. J Physiol Biochem. 2012;68(1):141–51. doi:10.1007/s13105-011-0112-4.
Article
CAS
Google Scholar
Moore J, Eric C, Westman M. Cholesterol Clarity: What the HDL is Wrong With my Numbers. Las Vegas: Victory Belt Publishing Inc; 2013.
Google Scholar
Dekaban A. Plasma lipids in epileptic children treated with the high fat diet. Arch Neurol. 1966;15(2):177–84.
Article
CAS
Google Scholar
Chesney D, Brouhard B, Wyllie E, Powaski K. Biochemical abnormalities of the ketogenic diet in children. Clin Pediatr. 1999;38(2):107–9. doi:10.1177/000992289903800207.
Article
CAS
Google Scholar
Schwartz R, Boyes S, Aynsley-Green A. Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Dev Med Child Neurol. 1989;31(2):152–60.
Article
CAS
Google Scholar
Katyal N, Koehler A, McGhee B, Foley C, Crumrine P. The ketogenic diet in refractory epilepsy: the experience of Children’s Hospital of Pittsburgh. Clin Pediatr. 2000;39(3):153–9. doi:10.1177/000992280003900303.
Article
CAS
Google Scholar
Ellenbroek J, van Dijck L, Töns H, Rabelink T, Carlotti F, Ballieux B, et al. Long-term ketogenic diet causes glucose intolerance and reduced beta and alpha cell mass but no weight loss in mice. Am J Physiol Endocrinol Metab. 2014;306(5):E552–8. doi:10.1152/ajpendo.00453.2013.
Article
CAS
Google Scholar
Bergqvist A. Long-term monitoring of the ketogenic diet: Do’s and Don’ts. Epilepsy Res. 2012;100(3):261–6. doi:10.1016/j.eplepsyres.2011.05.020.
Article
Google Scholar
Groesbeck D, Bluml R, Kossoff E. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev Med Child Neurol. 2006;48(12):978–81. doi:10.1017/s0012162206002143.
Article
Google Scholar
Patel A, Pyzik P, Turner Z, Rubenstein J, Kossoff E. Long-term outcomes of children treated with the ketogenic diet in the past. Epilepsia. 2010;51(7):1277–82. doi:10.1111/j.1528-1167.2009.02488.x.
Article
Google Scholar
Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab. 2003;88(4):1617–23. doi:10.1210/jc.2002-021480.
Article
CAS
Google Scholar
Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41. doi:10.1056/NEJMoa0708681.
Article
CAS
Google Scholar
Volek JS, Phinney SD, Forsythe CE, Quann EE, Wood RJ, Puglisi MJ, et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids. 2009;44(4):297–309. doi:10.1007/s11745-008-3274-2.
Article
CAS
Google Scholar
Feinman RD, Volek JS. Low carbohydrate diets improve atherogenic dyslipidemia even in the absence of weight loss. Nutr Metab. 2006;3:24. doi:10.1186/1743-7075-3-24.
Article
Google Scholar
Sharman MJ, Gomez AL, Kraemer WJ, Volek JS. Very low-carbohydrate and low-fat diets affect fasting lipids and postprandial lipemia differently in overweight men. J Nutr. 2004;134(4):880–5.
CAS
Google Scholar
Sharman MJ, Kraemer WJ, Love DM, Avery NG, Gomez AL, Scheett TP, et al. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 2002;132(7):1879–85.
CAS
Google Scholar
Westman EC, Mavropoulos J, Yancy WS, Volek JS. A review of low-carbohydrate ketogenic diets. Curr Atheroscler Rep. 2003;5(6):476–83.
Article
Google Scholar
Wood RJ, Volek JS, Davis SR, Dell’Ova C, Fernandez ML. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease. Nutr Metab. 2006;3:19. doi:10.1186/1743-7075-3-19.
Article
Google Scholar
Volek JS, Sharman MJ, Forsythe CE. Modification of lipoproteins by very low-carbohydrate diets. J Nutr. 2005;135(6):1339–42.
CAS
Google Scholar
Volek JS, Westman EC. Very-low-carbohydrate weight-loss diets revisited. Cleve Clin J Med. 2002;69(11):849. 53, 56–8 passim.
Article
Google Scholar
Volek JS, Sharman MJ, Gomez AL, DiPasquale C, Roti M, Pumerantz A, et al. Comparison of a very low-carbohydrate and low-fat diet on fasting lipids, LDL subclasses, insulin resistance, and postprandial lipemic responses in overweight women. J Am Coll Nutr. 2004;23(2):177–84.
Article
Google Scholar
Volek JS, Sharman MJ. Cardiovascular and hormonal aspects of very-low-carbohydrate ketogenic diets. Obes Res. 2004;12 Suppl 2:115s–23. doi:10.1038/oby.2004.276.
Article
CAS
Google Scholar
Volek JS, Sharman MJ, Gomez AL, Scheett TP, Kraemer WJ. An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial pipemic responses compared with a low fat diet in normal weight, normolipidemic women. J Nutr. 2003;133(9):2756–61.
CAS
Google Scholar
Schoeler NE, Wood S, Aldridge V, Sander JW, Cross JH, Sisodiya SM. Ketogenic dietary therapies for adults with epilepsy: feasibility and classification of response. Epilepsy & behavior : E&B. 2014;37:77–81. doi:10.1016/j.yebeh.2014.06.007.
Article
Google Scholar
Sengupta P. The laboratory Rat: relating its Age with Human’s. Int J Prev Med. 2013;4(6):624–30.
Google Scholar
Tsuchiya N, Harada Y, Taki M, Minematsu S, Maemura S, Amagaya S. Age-related changes and sex differences on the serum chemistry values in Sprague–Dawley rats--I. 6–30 weeks of age. Exp Anim. 1995;43(5):671–8.
CAS
Google Scholar
Saito K, Ishikawa M, Murayama M, Urata M, Senoo Y, Toyoshima K, et al. Effects of sex, age, and fasting conditions on plasma lipidomic profiles of fasted Sprague–Dawley rats. PLoS ONE. 2013;9(11):e112266. doi:10.1371/journal.pone.0112266.
Article
Google Scholar
Ellington A, Kullo I. Atherogenic lipoprotein subprofiling. Adv Clin Chem. 2008;46:295–317.
Article
CAS
Google Scholar
Mudd J, Borlaug B, Johnston P, Kral B, Rouf R, Blumenthal R, et al. Beyond low-density lipoprotein cholesterol: defining the role of low-density lipoprotein heterogeneity in coronary artery disease. J Am Coll Cardiol. 2007;50(18):1735–41. doi:10.1016/j.jacc.2007.07.045.
Article
CAS
Google Scholar
Sacks F, Campos H. Clinical review 163: cardiovascular endocrinology: Low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocrinol Metab. 2003;88(10):4525–32. doi:10.1210/jc.2003-030636.
Article
CAS
Google Scholar
Wierzbicki A. Quality as well as quantity? Beyond low-density lipoprotein-cholesterol - the role of particle size. Int J Clin Pract. 2007;61(11):1780–2. doi:10.1111/j.1742-1241.2007.01571.x.
Article
CAS
Google Scholar
Tantibhedhyangkul P, Hashim S, Van Itallie T. Effects of ingestion of long-chain triglycerides on glucose tolerance in man. Diabetes. 1967;16(11):796–9. doi:10.2337/diab.16.11.796.
Article
CAS
Google Scholar
Eckel R, Hanson A, Chen A, Berman J, Yost T, Brass E. Dietary substitution of medium-chain triglycerides improves insulin-mediated glucose metabolism in NIDDM subjects. Diabetes. 1992;41(5):641–7. doi:10.2337/diab.41.5.641.
Article
CAS
Google Scholar
Yost T, Erskine J, Gregg T, Podlecki D, Brass E, Eckel R. Dietary substitution of medium chain triglycerides in subjects with non-insulin-dependent diabetes mellitus in an ambulatory setting: impact on glycemic control and insulin-mediated glucose metabolism. J Am Coll Nutr. 1994;13(6):615–22. doi:10.1080/07315724.1994.10718457.
Article
CAS
Google Scholar
Kashiwaya Y, Pawlosky R, Markis W, King MT, Bergman C, Srivastava S, et al. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat. J Biol Chem. 2010;285(34):25950–6. doi:10.1074/jbc.M110.138198.
Article
CAS
Google Scholar
Senior B, Loridan L. Direct regulatory effect of ketones on lipolysis and on glucose concentrations in man. Nature. 1968;219(5149):83–4.
Article
CAS
Google Scholar
Miles JM, Haymond MW, Gerich JE. Suppression of glucose production and stimulation of insulin secretion by physiological concentrations of ketone bodies in man. J Clin Endocrinol Metab. 1980;52(1):34–7. doi:10.1210/jcem-52-1-34.
Article
Google Scholar
Kristian HM, Thomas S, Niels HS, Thomas G, Gerrit van H. Systemic, cerebral and skeletal muscle ketone body and energy metabolism during acute hyper-D-β-hydroxybutyrataemia in post-absorptive healthy males. J Clin Endocrin Metabol. 2014. doi:10.1210/jc.2014-2608
Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF. Brain metabolism during fasting. J Clin Invest. 1967;46(10):1589–95. doi:10.1172/JCI105650.
Article
CAS
Google Scholar
Papamandjaris AA, MacDougall DE, Jones PJ. Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci. 1997;62(14):1203–15.
Article
Google Scholar
Linde R, Hasselbalch S, Topp S, Paulson O, Madsen P. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat. J Cereb Blood Flow Metab. 2006;26(2):170–80. doi:10.1038/sj.jcbfm.9600177.
Article
CAS
Google Scholar
Azzam R, Azar N. Marked seizure reduction after MCT supplementation. Case reports in neurological medicine. 2013;2013:809151. doi:10.1155/2013/809151.
Article
Google Scholar
Corwin RL. Binge-type eating induced by limited access in rats does not require energy restriction on the previous day. Appetite. 2004;42(2):139–42. doi:10.1016/j.appet.2003.08.010.
Article
Google Scholar
Keenan KP, Ballam GC, Dixit R, Soper KA, Laroque P, Mattson BA, et al. The effects of diet, overfeeding and moderate dietary restriction on Sprague–Dawley rat survival, disease and toxicology. J Nutr. 1997;127(5 Suppl):851S–6.
CAS
Google Scholar
Keenan KP, Smith PF, Hertzog P, Soper K, Ballam GC, Clark RL. The effects of overfeeding and dietary restriction on Sprague–Dawley Rat survival and early pathology biomarkers of aging. Toxicol Pathol. 1994. doi:10.1177/019262339402200308.
Google Scholar
Kashiwaya Y, Bergman C, Lee J-H, Wan R, King M, Mughal M, et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(6):1530–9. doi:10.1016/j.neurobiolaging.2012.11.023.
Article
CAS
Google Scholar
Birkhahn R, McCombs C, Clemens R, Hubbs J. Potential of the monoglyceride and triglyceride of DL-3-hydroxybutyrate for parenteral nutrition: synthesis and preliminary biological testing in the rat. Nutrition. 1997;13(3):213–9. doi:10.1016/s0899-9007(96)00404-2.
Article
CAS
Google Scholar
Puchowicz M, Smith C, Bomont C, Koshy J, David F, Brunengraber H. Dog model of therapeutic ketosis induced by oral administration of R, S-1,3-butanediol diacetoacetate. J Nutr Biochem. 2000;11(5):281–7.
Article
CAS
Google Scholar
Brunengraber H. Potential of ketone body esters for parenteral and oral nutrition. Nutrition. 1997;13(3):233–5.
Article
CAS
Google Scholar